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Abstract

We study two species of representing data for classifying topoi. First, we
exposit an approach to classifying topos theory using Lawverian doctrines. Con-
tributions are made to relative topos theory and internal locale theory in order
to accommodate our doctrinal approach. Applications of our development are
then made to the study of syntactic completions of doctrines. We also study the
representation of classifying topoi by localic and topological groupoids, culmi-
nating in a model-theoretic characterisation of which open topological groupoids
represent the classifying topos of a theory.
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Introduction

Topoi (by topos unqualified, we mean Grothendieck topos) were originally introduced
by Grothendieck to tackle problems arising in algebraic geometry and algebraic topol-
ogy, but have since become central to the categorical study of logic. In this dissertation,
we study two species of representing data for the classifying topos of a predicate (or
tirst-order) theory — doctrinal and groupoidal representations:

_- The classifying

,-7  topos of atheory, “<_
/// \\\
the doctrine groupoids
of a theory, of models.

Prior to motivating the use of these representing data, we recall some important
examples of topoi and the notion of a classifying topos.

Topos theory and topology. Many natural examples of topoi are generated from
topological starting data:

Examples 0.1. (i) (Sheaves on a space) Given a topological space X, the slice cat-
egory LH/X, where LH C Top is the subcategory of local homeomorphisms
between topological spaces, is a topos: the familiar topos Sh(X) of sheaves on X.

Topos theory subsumes the point-free incarnation of topology, locale theory
(see [RT], [97] or Section [LT), in that the map X — Sh(X) yields a fully faithful
2-embedding

Sh: Loc —— Topos

of locales into the bicategory of topoi, geometric morphisms, and 2-cells between
these (i.e. natural transformations between the inverse image functors).

(ii) (Topoi of continuous actions) If G is a topological group (or even a monoid), the
category BG of continuous actions by G on discrete sets is also a topos.

There is a sense in which every topos is a generalisation of the notion of topological
space in which “points can have non-trivial isomorphisms’. This is expressed by the
representation results of [68] and [[I7] discussed in Part B. In this manner, topoi can
be likened to orbifolds from differential geometry (cf. [94], [105]).

The notion of a ‘space whose points have isomorphisms’ is captured formally by
an internal groupoid of either the category of topological spaces Top, or locales Loc (if
‘space’ is taken in the pointfree sense). Each localic or topological groupoid can be

ix
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associated with a topos of equivariant sheaves that generalises both species of topoi from
Examples T (full definitions are given in Chapter M). The representation results [[7],
[68] state that every topos (with enough points) is equivalent to the sheaves on an
open localic/topological groupoid.

Classifying topoi. In addition to a topological description, each topos admits a log-
ical representation via the notion of a classifying topos. The terminology ‘classifying
topos” was inspired by analogy with classifying spaces from algebraic topology. In-
deed, the first examples of classifying topoi from [3, §IV.2.3-4], namely the topoi of
the form BG, play the same role as the classifying spaces of principal bundles (see, for
instance, [90]).

The classifying topos of a theory T is a topos Er for which there is an equivalence

T-mod(¥) ~ Geom(F, Er)

natural in F, where T-mod(¥) is the category of models of T in the topos ¥ (see [63,
§D1] for how to construct models internal to an arbitrary topos) and Geom(¥, &) is
the category of geometric morphisms from # to &y. By this universal property, the
classifying topos of a theory is unique up to equivalence.

Example 0.2 (Remark D3.1.14 [63]). The Lindenbaum-Tarski algebra Ly of a propo-
sitional geometric theory T is a locale, i.e. a ‘pointfree space’, and the topos Sh(L)
classifies T.

Geometric logic is that fragment of infinitary first-order logic whose permissible
symbols are equality =, truth T, falsity L, finite conjunction A, infinitary disjunction
\/ and existential quantification 3. In [, §2.3], Abramsky describes geometric logic
as the logic of observable properties — those properties that can be determined to hold
on the basis of a finite amount of information. Not only does every geometric theory
have a classifying topos (see [?2, Theorem 2.1.10]), but every topos is the classifying
topos for some geometric theory (see [?2, Theorem 2.1.11]). Classifying topos theory
lends geometric logic a strong spatial intuition, as explored in [124]. Note, however,
that theories from other fragments of predicate logic can also have classifying topoi.
Intuitively, the classifying topos embodies the essential information about a theory.

(A) Doctrinal representations.

It is therefore of interest for the logician to study representations of classifying topoi,
as these are effectively representations of the logical theory by other data. We first
consider representations of topoi by doctrines in the sense of Lawvere [77]. Doctrine
theory represents another approach to categorical logic, parallel to classifying topos
theory. A doctrine is a categorical generalisation of the notion of a Lindenbaum-Tarski
algebra to the first-order setting, an alternative to the cylindrical algebras suggested
by Tarski [60] and polyadic algebras suggested by Halmos [47].

In Part [Al, we exposit a classifying topos theory for Lawverian doctrines. We will
observe in Section M4 that many previously known results in classifying topos theory
admit intuitive proofs when phrased in the language of doctrine theory. Additionally,
we compare our doctrinal construction of the classifying topos of a theory with the
standard textbook account involving syntactic categories.
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A topos-theoretic framework for completions of doctrines. Our classifying topos
theory for doctrines also yields applications to doctrine theory. In recent years, many
syntacitc completions of doctrines have been considered in the literature (e.g. [B0], [96],

develop a topos-theoretic framework for generating completions of doctrines to other
subfragments of geometric logic.

The geometric completion we introduce is semantically invariant, meaning the cate-
gory of models associated with a doctrine and its geometric completion are equivalent.
Thus, we intend to study the semantics for various doctrines with a unified approach
using the familiar language of geometric logic.

(B) Groupoidal representations.

A classical result of model theory asserts that an No-categorical theory is entirely
determined, up to the level of bi-interpretability, by the topological automorphism
group of its unique countable model (proven by Ahlbrandt and Ziegler in [?, §1],
attributed to unpublished work of Coquand). Explicitly, given Ny-categorical theories
Tl and Tz,

T, T, are bi-interpretable <= Aut(M) = Aut(N)

where M and N are countable models of T; and T, respectively. As shown in recent
work by Ben Yaacov [J], the assumption that the theories are Ny-categorical can be
removed by replacing a topological group with a topological groupoid (however, this
groupoid is not a groupoid of models).

However, in many ways bi-interpretability is too fine an equivalence on first-order
theories — there are theories that ought to be considered ‘equivalent’, but which are
not bi-interpretable (see [/], [70, Example 8.4], [123, §4.7]). In the topos-theoretic
approach to predicate logic, it is more natural to consider a strictly weaker notion of
equivalence between theories (which is satisfied by the examples referenced above,
see for example [127]).

Definition 0.3 (§D1.4.13 [63], §2.2.1 [22]). Given two theories T, T’ with classifying
topoi, there is a (natural) equivalence

T-mod(F) ~ T'-mod(F)

of models, for each topos ¥, if and only if there is an equivalence of topoi Er = Ey.
We call such equivalences Morita equivalences, after Morita equivalence for rings [95].

The representation of classifying topoi by topological groupoids. Part B of this
dissertation concerns a study of Morita equivalence of first-order theories employ-
ing topological groupoids, paralleling the classical model theoretic account for bi-
interpretability. We seek to characterise Morita equivalence of theories in terms of
which open topological groupoids ‘represent” a given theory in the following sense.

Definition 0.4. An (open) topological groupoid is said to represent a theory if its topos
of sheaves classifies the theory.

Morita equivalence of theories can thus be translated into Morita equivalence of
their representing groupoids, that is if their topoi of sheaves are equivalent. Already in
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the case of topological groups, the question of Morita equivalence is rather involved,
as evidenced in [971].

Relation to Stone-type and Galois-type representations. As a ‘generalised space
in which points have isomorphisms’, the classifying topos of a theory is the gen-
eralised space whose points are models of a theory, and whose isomorphisms are
isomorphisms of these models. Thus, as explained in [B], [4, §5-6], we intuit that the
representation of classifying topoi by a topological groupoid of models is a predicate
extension of Stone duality for propositional theories [T11], [TT2], which associates a
theory of propositional logic to its space of models (this contrasts with the “first-order
duality” of Makkai [86, §5-8], [85] where a groupoid of models is equipped with
ultracategory structure rather than topological structure).

Moreover, as formalised in [14, §7], the representation of topoi by localic/topological
groupoids also represents an abstraction of Grothendieck’s Galois theory (see [44,
§V.4]). Thus, the representation of classifying topoi by a topological groupoid rep-
resents a common generalisation of Stone-type and Galois-type representations for
logical theories.

Classification result and consequences. In PartB, we characterise which groupoids
of models constitute a representation of the classifying topos of a theory, subsuming the
previous topological representation results [5], [1T1], [17], [2T], [B6], [B7] found in the
literature. Intuitively, this expresses which groupoids of models ‘have enough infor-
mation to recover’ the theory. Our characterisation has a distinctly model-theoretic
flavour, contrasting with localic representation results of [34], [68].

Subsequently, we demonstrate that every geometric morphism between topoi with
enough points is induced by a homomorphism of topological groupoids, and thereby
establish a biequivalence for topoi with enough points, giving a topological parallel
for the analogous result in the localic setting [92, §7]. Informally, this expresses that,
just as topoi are ‘spaces whose points have isomorphisms’, geometric morphisms are
‘continuous maps that respect isomorphisms between points’.

As a consequence, in Corollary VIIT TS, we will observe that two theories with rep-
resenting groupoids are Morita equivalent if and only if their representing groupoids
can be compared via a cospan of weak equivalences. Thus, we have transformed the
problem of Morita equivalence into the domain of topological algebra.

Chapter overview

Since, at times, we will detour through subjects that could seem distant to our original
motivation, we include an overview motivating the content of each chapter as it relates
to our overarching aims.

Chapter [ is adapted from the preprint [127]; modified content from the preprint
[128] is split across Chapter M and Chapter [V, while the preprint [126] has become
Chapter Mand Chapter VII; Chapter M is taken from joint work with Graham Manuell
in the preprint [BS8].
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Relative topos theory

Relative topoi. Chapter Il concerns relative topos theory in the sense of [?6]. Because
doctrines, in whose language we develop our logical applications, are examples of
fibred categories, it is natural to seek a relative formalism. If topos theory is the study
of the bicategory Topos of topoi, geometric morphisms, and natural transformations
(between the inverse image functors), then relative topos theory is the study of the
bicategory RelTopos of relative topoi,

(i) the bicategory whose objects are geometric morphisms f: ¥ — &,

(ii) whose arrows are squares of geometric morphisms
F——G
fl = ig
& — H

that commute up to isomorphism,

(iii) and whose 2-cells (k,h) = (k’,h’) consist of a pair of 2-cells f: k = k' and
y: h = I’ between geometric morphisms for which the 2-diagram

//’L\\u
F F G
\/‘J
f

/\
& y H
\\\7//”

commutes (Where the empty 2-cells gok ~ho fand gok’ = I’ o f represent the
distinguished isomorphisms), i.e.

g*p=y=+f.

Much of the necessary work regarding relative topos theory has been developed in
[26], [?4] and [8]. Chapter [ both recalls this background theory, and extends the
previous literature in the necessary directions for our intended, logical applications.

What is the benefit of relative topos theory? By fixing a base topos & for ¥, we
have presented ¥ internally to & (see [63, Theorem B3.3.4]). In particular, ¥ is the
topos of internal sheaves on an internal site. Many internal constructions inside topoi,
and in particular internal sites, can be of interest outside of topos theory.

Examples 0.5. For example, given a monoid M, any internal notion of the topos
BM comes equipped with an M-action and internal constructions are naturally M-
equivariant.
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(i) In particular, the internal language of the topos BN, for the monoid (N, 0, +), is
exploited in [TT6] for the study of difference algebra.

(ii) In the topos BG, for a discrete group G, an internal (pointfree) space X of BG
corresponds to an action of G on a space X (see, for instance, [63, Example
C2.5.8(d)] or Section IC37). Moreover, the cohomology theory of the topos of
internal sheaves Shgc(X) coincides with Borel’s equivariant cohomology for the
group action G X X — X (see [45] and [TT0]).

For some applications of relative topos theory, the literature on internal sites (see,
for instance, [32] or [b3]) is already sufficient. However, as explained in [6], the more
flexible notion of relative sites can often be preferable as a formalism.

A cylindrical Diaconescu’s equivalence. We present a ‘cylindrical” variant of the
relative ‘Diaconescu’s equivalence’” (so-named for [32]) found in [?4, Theorem 3.3]
and [8, Theorem 3.6]. Our cylindrical version will play the same role as the standard
Diaconescu’s equivalence in establishing a classifying topos theory for doctrines.

Internal locale theory

Internal locales and geometric theories. In Chapter[l, we pursue a systematic study
of one, ubiquitous kind of relative sites: internal locales. As observed in [63, Theorem
D3.2.5] (and generalised in [99], [?2, §7.1] and Section [T4), an internal locale of
the object classifier Sets™™5*® may be identified with a single-sorted geometric theory.
Thus, to study the algebraic structure of (single-sorted) geometric theories, it suffices
to study the internal locale theory of Sets""®** (as performed in Chapter [TI).

Therefore, it is important to proceed with a well-developed theory of internal
locales. For applications, it is especially important to have concrete methods of
externalising properties of internal locales, as these will be of tangible interest to the
practising mathematician. External treatments of internal locale theory appear in [bS],
[63, §C1.6] and [24].

Pointwise properties of internal locales. We will show that

(i) surjections of internal locales,
(ii) embeddings of internal sublocales,

(iii) and the co-frame operations on the co-frame of internal sublocales

can all be computed ‘pointwise’.

Classifying topoi via doctrines

Classifying topoi for doctrines. Having developed the necessary background ma-
terial in Chapter I and Chapter [, in Chapter [T we develop a theory of classifying
topoi for Lawverian doctrines. As exposited in Section [T, any first order system
of deduction, satisfying the weakest of requirements, admits a representation by a
doctrine, making them the perfect formalism for our philosophical aims.
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Doctrines vs. syntactic categories. A textbook account of classifying topos theory,
as can be found in [2?], [63], [79], constructs the classifying topos &t of a regular,
coherent, or geometric theory T via the syntactic site. However, as discussed in
Section MI37, the fact that a syntactic category can be constructed for the theory T
presupposes that it exists in a fragment of logic with at least the expressive power of
regular logic.

We demonstrate that, when the necessary underlying structure is present, it is
equivalent to represent theories using either doctrines or syntactic categories, in as
much as they have equivalent classifying topoi.

The geometric completion of a doctrine

Significant interest has been shown in syntactic completions of doctrines, such as the

The geometric completion. In Chapter [V, we provide another logical completion:
the geometric completion. This sends a doctrine to a geometric doctrine, a member of a
class of doctrines with the expressive power of geometric logic.

Unlike other completions of doctrines considered in the literature, the geometric
completion takes a Grothendieck topology as a second argument. As a result, the ge-
ometric completion is not only universal, but also semantically invariant and idempotent.

Our development yields a general framework for generating completions of doc-
trines for sub-fragments of geometriclogic. In this fashion, we recover Trotta’s existen-
tial completion (see Proposition [V.3T), as well as identifying the coherent completion
of a doctrine. We are also able to relate completions of doctrines to completions
of categories, such as the regular completion (see [?7]), via the syntactic category
construction studied in Section [IT3.

Sheaves on a groupoid

Chapter M begins our study of the groupoidal representation of predicate theories.
Every localic or topological groupoid comes equipped with a natural notion of a topos
of equivariant sheaves. Chapter M establishes the pertinent properties of topoi of sheaves
on a topological groupoid that will facilitate our subsequent study of representing
groupoids. Section V2 includes a comparison between the representation of topoi by
topological groupoids and localic groupoids.

A localic representing groupoid

In the landmark paper [68], Joyal and Tierney famously proved that every topos
is equivalent to a topos of equivariant sheaves on an open localic groupoid, giving
sense to the statement that every topos is a ‘space whose points can possess non-trivial
isomorphisms’.

Because the localic representation of classifying topoi contrasts with their topologi-
cal representation studied in Chapter VI, we give in Chapter V1 an explicit description
of a representing localic groupoid for the classifying topos of a geometric theory and
sketch its providence via the methods of [68]. As expressed in [63, Remark C5.2.8(c)],
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the argument via geometric theories is the most natural way to witness the Joyal-
Tierney representation result. The localic groupoid we give is directly comparable
to the representing topological groupoids studied in [5], [B6], [B7] and, with a slight
modification (see Remark WI.73), also the representing topological groupoids studied
in [17].

Topological representing groupoids

Topological representation. In [17], Butz and Moerdijk give the topological parallel
to the Joyal-Tierney result [68] by showing that every topos with enough points is
equivalent to the topos of sheaves on an open topological groupoid. Equivalently, this
expresses that every geometric theory whose set-based models are conservative has
a representing groupoid of models. In [5], [36], [37], an explicitly logical description
of a representing open topological groupoid is given for the classifying topos of a
geometric theory with enough points. Special cases of representing groupoids are
considered in [2T] and [ILT].

The classification result. Our contribution in Chapter VI is to characterise the
open topological groupoids that represent a given geometric theory. Intuitively, this
characterises which groupoids of models ‘have enough information’ to recover the
theory.

We will observe that it is not merely enough for the underlying models of a
groupoid to be conservative. Instead, we must also impose a model-theoretic con-
dition, elimination of parameters, on the groupoid. The representation of geometric
theories using doctrines, as set out in Chapter [, is used to simplify our calculations.
The results on internal locale morphisms from Chapter [ are also essential to our
proof.

Our classification result recovers the representations of topoi by open topological
groupoids considered in the literature. We are also able to demonstrate, using the
classification result, that every open topological groupoid is Morita equivalent to its
étale completion, giving a topological parallel to the same result for localic groupoids
found in [92, §7] (see also Remark VTA).

Representing groupoids for doctrines. Finally, the language of doctrines, used in
Part [Al, is married to the language of representing groupoids from Part B when
in Section VITZ we translate our classification of the representing groupoids of a
geometric theory, across the geometric completion from Chapter [V], to deduce a
classification of the representing groupoids of a doctrine, thus fulfilling the intended
purpose of the geometric completion: to produce one study of semantics within the
familiar syntax of geometric logic.

Weak equivalences of groupoids

Moerdijk’s equivalence. We continue our study of the groupoid representation of
topoi in Chapter VITI. In [92, §7], Moerdijk demonstrates that the category Topos
is equivalent to a subcategory of localic groupoids localised by a right calculus of
fractions (see [40, §1]).
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A topological parallel. We aim to give the topological parallel, where topoi are
replaced by topoi with enough points, and localic groupoids are replaced by topo-
logical groupoids. Informally, this expresses that, just as topoi can be thought of as a
‘space whose points have isomorphisms’, geometric morphisms can be thought of as
‘continuous maps that preserve isomorphisms of points’.

We demonstrate that, unlike the Moerdijk result [92], in the topological setting we
cannot obtain our desired equivalence by taking a right calculus of fractions on any
subcategory of topological groupoids. A left (bi)calculus of fractions must instead be
employed.

Logical motivation. As explicated in Section VI, a geometric morphism
f:& — Er

between classifying topoi (with enough points) is identical to a (pseudo-natural)
functor

Fg: T'-mod(F) —— T-mod(¥)

between model categories, or informally: instructions on how to transform a T’-model
into a T-model. Our biequivalence thus expresses that the geometric morphism f is
determined by the action of Fges restricted to a representing groupoid of models for
T’, lending credence to the slogan that representing groupoids are those groupoids of
models that ‘have enough information” to recover the theory.

Moreover, from the biequivalence we are able to deduce a characterisation of
Morita equivalence for topological groupoids, and thus a characterisation of Morita
equivalence for theories in terms of their representing groupoids.






Part A

Doctrinal Representations






Chapter I

Relative topos theory

What is relative topos theory? There are many equivalent ways to define what a
(Grothendieck) topos is.

(i) A topos &Eis a category satisfying the Giraud axioms (see [/9, Appendix]), includ-
ing the requirement that & has a small set of generators.

(ii) A topos is a category that is equivalent to the category of sheaves on some site
(in Sets, i.a. a small site).

(iii) A topos & is an elementary topos with a bounded geometric morphism & — Sets
(see [B3, Definition A2.1.1, Definition B3.1.7]).

Thus, broadly conceived, (Grothendieck) topos theory is the study of topoi over the
topos Sets.

The focus on Sets is not strictly necessary. Given any elementary topos &, a
bounded geometric morphism between elementary topoi f: ¥ — & with codomain
& yields an internal site (C, J) of & (see [63, Theorem B3.3.4]). Even when ¥ and &
are both Grothendieck topoi, in which case they are both presented by some pair of
sites in Sets, it may still be valuable to fix a certain geometric morphism f: ¥ — & or
base topos for ¥ . This is because the choice of geometric morphism f: # — & is akin
to a particular ‘perspective’ on ¥, relative to &. Relative topos theory embraces this
relative perspective —the fundamental objects of study being the geometric morphisms
between topoi.

A cylindrical Diaconescu’s equivalence. The purpose of this chapter is to exposit
a relative site theory, in the sense of [?6, §8], suitable for our applications to doctrine
theory. Recall that Diaconescu’s equivalence establishes an equivalence between the
geometric morphisms f: ¥ — Sh(C, J) whose codomain is the sheaf topos Sh(C, J)
with certain functors C — ¥, the flat functors. A relative version of Diaconescu’s
equivalence appears in [?4, Theorem 3.3] and [8, Theorem 3.6], work inspired by a
particular case tackled in [42]. In Theorem L7, we present a ‘cylindrical’ variant that
emphasises a change of base, which will facilitate our definition of the classifying
topos of a doctrine in Chapter [II.

Relative vs. internal site theory. There are two approaches found in the literature
that generalise site theory to a relative setting. In addition to relative sites, as in-
troduced in [26], there is also the internal site theoretic approach, which translates

3
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standard site theory into the internal language of a topos (see, for instance, [32]). As
also discussed in [6], on the whole relative sites present a more attractive formalism
for the study of relative topoi.

(i) Relative sites are a slightly weaker notion than internal sites, and thus more sites
can be compared, although every relative site is Morita equivalent to an internal
site. In this regard, there are two chief benefits to relative sites.

— Firstly, a relative site may be large. The benefit of this can be likened to how
the canonical site (&, J.an) Of a topos & is not small, and therefore not strictly
internal to Sets, but it is still a useful site to consider.

— Secondly, arelative site may be pseudo-functorial, and thus higher categorical
notions can be considered using relative site theory.

(ii) Being explicit by definition, when working with those relative sites that are also
internal sites, there is no need to translate between internal and external notions.
This is especially useful for applications outside of topos theory.

Overview. To prefigure the subsequent development: a relative site consists of a
comorphism of sites that is also a Street fibration. The first half of this chapter consists of
recalling the necessary background material to make sense of this definition, before
the latter half turns to its use in relative topos theory. The chapter is divided as
follows.

(A) We first recall in Section [T the notions of a comorphism and a morphism of
sites.

(B) In Section 2, we recall the theory of fibrations and their relation to fibred
categories. We recall the theory of Grothendieck fibrations and Street fibrations
separately, although we will not differentiate between the two.

(C) Having recalled enough background material, in Section [3 we recall the defi-
nition of relative sites and define their morphisms. We show that a morphism
of relative sites induces a morphism of relative topoi.

(D) The final addition, Section [4, is devoted to a cylindrical version of the rel-
ative Diaconescu’s equivalence found in [?4] and [8]. We also prove some
consequences of this result, including an extension of the notion of subcanonical
topology to the relative setting.

I.1 Morphisms and comorphisms of sites

Morphisms and comorphisms of sites constitute two methods of generating geometric
morphisms from their generating data, i.e. sites, and can therefore be compared with
defining homomorphisms on free algebras by functions on their generators. Indeed,
we will observe in Section IT4 that morphisms of sites generalise the practice of
defining frame homomorphisms in terms of generators and relations for a frame.
Morphisms and comorphisms of sites were originally introduced, under different
names, in [3]. For a modern treatment, the reader is directed to [79, §VII] and [?3].
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Comorphisms of sites. Comorphisms of sites are functors of the underlying cate-
gories of sites that induce geometric morphisms covariantly.

Definition 1.1 (Definition 2.1, Exposé III [3]). Let (C,]) and (D, K) be sites. A comor-
phism of sites

is a functor F: C — D with the cover lifting property — for each object ¢ of C and
K-covering sieve S on F(c), there exists a [-covering sieve R on ¢ such that F(R) C S.

A comorphism of sites F: (C,]) — (D, K) induces a geometric morphism
Cr: Sh(C,]) — Sh(D,K)

(see [B, SIII.2] or [79, Theorem VIL.10.5]) for which the inverse image C;. is given by
aj(— o F). The composite of two comorphisms of sites F and G is still a comorphism of
sites whose induced geometric morphism is the composite Cr.c = Cr 0 C¢. Moreover,
any natural transformation

F
S
<)) ﬂ?’ (D, K)

NS

G

between comorphisms of sites induces a natural transformation a;(— o F) = aj(— o G)
and thus a 2-cell of geometric morphisms Cr = Cg.

Thus, taking the geometric morphism induced by a comorphism of sites is natu-
rally bifunctorial. Let ComorphSites denote the bicategory whose objects are sites,
whose 1-cells are comorphisms of sites and whose 2-cells are natural transformations
between comorphisms of sites. By above, there is a bifunctor ComorphSites — Topos
that sends a site to its topos of sheaves, and a comorphism of sites F to its induced
geometric morphism Cr.

The Giraud topology. Recall from [3, §3.1, Exposé IlI] that, given a functor F: D — C
and a Grothendieck topology | on C, there is a unique finest topology on ) making F
a comorphism of sites. In [3], the name ‘topologie induite” was used, but the topology
was subsequently dubbed the Giraud topology in [26] due to its pioneering use in [47].

Definition 1.2 (Definition 3.1, Exposé III [3], cf. §2 [47]). Let (C,]) be a site, and let
F: D — C be a functor. The Giraud topology Jr on D is the Grothendieck topology on
D defined by the following universal property. For any other Grothendieck topology
K on D, the following are equivalent:

(i) firstly, [r € K;

(ii) the functor F defines a comorphism of sites

(D,K) — (C,));
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(iii) for each J-covering sieve S on F(d) € C, the sieve

{d'ide@‘P(g)es}

is K-covering.

Morphisms of sites. Morphisms of sites, on the other hand, are functors of the
underlying categories of sites that induce geometric morphisms contravariantly.

Definition 1.3 (Definition 3.2 [?3]). Let (C, ]) and (D, K) be sites. A morphism of sites

F: (C,]) — (D,K)

is a functor F: C — O satistying the following conditions.

(i)
(i)

(iii)

(iv)

If S is a J-covering sieve on ¢ € C, then F(S) is a K-covering family of morphisms
on F(c).

Every object d of D admits a K-covering sieve {d; — d | i € I} such that each
object d;, for i € I, has a morphism d; — F(c;) to the image of some c¢; € C.

For any pair of objects c¢;, ¢, of C and any pair of morphisms
d —5 F(o), d —25 F(cy)
of D, there exists a K-covering family
{di LN d ' iel }

of morphisms in 9, a pair of families

1 2
{Cif—l)Cl iEI}, {Cif—l)Cz ZEI}

of morphisms in C, and, for each i € I, a morphism d; LN F(c}) such that the
squares

di —"— d di —"— d
Lo bk
E(f}) E(f7)
F(ei) —— Fla), F(e;) —— F(ca)
commute.
For any pair of parallel arrows
h
ol ;} c
f

of C, and any arrow 4 LN F(c’) of D such that F(f1) o ¢ = F(f2) o g, there exists a
K-covering family
{di b dlie 1}
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of morphisms of O, a family of morphisms

e; .
{cl-—>c’ zel}

of Csuch that fioe; = f,0¢; foralli € I, and, for each i € I, a morphism d; LN F(c;)
such that the square

hi
d — d

ki\L ig

F(ei) ,

Fe) — E()

commutes for eachi € I.

Remark 1.4. In Definition 3, conditions to express that a functor preserves
finite limits relatively, including those finite limits that do not appear in C (cf. the
discussion in [ZT]). Condition [ii) expresses that the terminal object is preserved,
products, and equalizers. If C and D are both cartesian categories, then a functor

F: C — D that preserves finite limits satisfies conditions to [iv). The converse is
also true K is a subcanonical topology (see [107, Corollary 4.14]).

A morphism of sites F: (C, ]) = (D, K) induces a geometric morphism
Sh(F): Sh(D,K) —— Sh(C,]))

for which the direct image Sh(F). sends a sheaf P: D% — Sets of Sh(D, K) to PoF” (see
[79, Theorem VII.10.2]). Morphisms of sites were originally defined in [B, Definition
1.1, Exposé I1I] as the hypothesis in the following result:

Proposition 1.5 (§3.2 [23]). A functor F: C — D is a morphism of sites F: (C, ]) = (D, K)
if and only if there exists a geometric morphism

f: Sh(D,K) —> Sh(C, )

such that the square
Cc———— D

KC\L lf@

Sh(C,]) —— Sh(D,K)

commutes (here, € denotes the canonical functor of the site (C, ]), i.e. the composite ajo K¢
of the Yoneda embedding followed by sheafification). If so, the geometric morphism f is unique
up to unique isomorphism.

It follows that the composite of two morphisms of sites is still a morphism of sites
and that Sh(F o G) = Sh(G) o Sh(F) for any two composable morphisms of sites F and
G. Similarly, a natural transformation

F
/\(
C.)) ﬂ? (D, K)

A

G
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between morphisms of sites evidently yields a natural transformation
Sh(F). = — o F* == — o G°? = Sh(G).

and therefore a 2-cell of geometric morphisms Sh(G) = Sh(F) (see also [63, Remark
C2.3.5]).

Thus, just as with comorphisms of sites, taking the geometric morphism induced
by a morphism of sites is naturally bifunctorial. Let MorphSites denote the bicategory
whose objects are sites, whose 1-cells are morphisms of sites and whose 2-cells are
natural transformations between morphisms of sites. By above, there exists a bifunctor
MorphSites® — Topos that sends a site to its topos of sheaves and a morphism of
sites to its induced geometric morphism.

Dense morphisms of sites. Many properties of geometric morphisms can be com-
puted at the level of morphisms and comorphisms of sites, as is demonstrated in [23].
Of particular interest is when a morphism of sites induces an equivalence of topoi.
Sufficient conditions are described in [75, §2]. Necessary and sufficient conditions
are given in [?3, Proposition 5.5 & Theorem 5.7], however we won’t need the extra
generality.

Definition 1.6 (§2 [/5]). A dense morphism of sites

is a functor F: C — D such that:

(i) Sisa J-covering family in C if and only if F(S) is K-covering in D,
(ii) for every object d of D, there exists a K-covering family of morphisms F(c;) — d,

(iii) for every pair of objects ¢;,c; of C and an arrow F(c;) 5F (cp) in D, there is a

J-covering family of arrows c! N c1 and a family of arrows c; LR c; such that
8 o F(fi) = F(ki),
(iv) for any pair of arrows

A

; f ”

in C such that F(f;) = F(f,), there exists a J-covering family of arrows
{c; Lalie 1}
such that fyok;i = fok; foralli eI

By [107, Theorem 11.2], each dense morphism of sites is a morphism of sites. The
induced geometric morphism is an equivalence of topoi.

The comparison lemma, as originally formulated for (full) subcategories in [B,
Theorem 4.1, Exposé 1II], can be recovered via the special case of a dense morphism
of sites whose underlying functor is the inclusion of a subcategory.
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Definition I.7. A subcategory C C D of a site (D, K) is dense if

(i) for every d € D, there is a covering family S € K(d) generated by morphisms
whose domains are in C,

(ii) for every arrow c % d € D, there is a covering family S € J(c) generated by

morphisms b 4, ¢ such that go fisinC.

Lemma I.8 (The Comparison Lemma). Let (D, K) be a site and let C be a dense subcategory.
There is an equivalence of topoi Sh(D, K) =~ Sh(C, K|¢).

I.2 Fibrations

In this section, we recall the theory of fibrations. Just as the datum of a presheaf
P: C°° — Sets can be collected into a single category using the category of elements
construction, so too can the datum of a functor P: C°? — Cat, or a pseudo-functor
P: C? — QAT, be concentrated into a single category: the Grothendieck construction
C = P (see [44, Eposé IV]). The category C = P comes equipped with a canonical
projection 7p: C = P — C, and fibrations characterise those functors of this form. We
would expect the theory of fibrations to appear in the study of internal sites since,
by [63, Corollary D1.2.14], an internal category of a presheaf topos Sets“” is simply a
functor P: C°? — Cat.

[.2.1 Grothendieck fibrations

Although we will eventually consider the more general notion of Street fibration, for
ease of development we first recall the theory of (Grothendieck) fibrations. Recall
from [b63, Definition B1.3.4] that a fibration A: C — & is a functor such that, for each

object ¢ of C and an arrow e 4 A(c), there exists a cartesian lifting d 5 cof f, thatis an

’

arrow of C such that A(g) = f and, for any arrows d’ 2, cof Cand A(d) A A(d) of &
for which the triangle

Ad) — A@)

Am \LA(g)
A(c)

commutes, there exists a unique arrow d’ %, d of C such that the triangle

commutes and A(k’) = k (note that we are using the terminology ‘cartesian arrow’
where Johnstone uses ‘prone’). Recall also that, given a pair of fibrations A: C — &
and B: © — ¥, a morphism of the fibrations A — B consists of a pair of functors
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F: C— Dand G: & — ¥ such that the square

C—=D
A\L B
?’

commutes and, if d L ceCis cartesian, so too is F(d) 16, F(c).

Cloven fibrations and fibred categories. Recall that a cleavage for the fibration A is

a choice of cartesian lifting for each arrow e ER Ale).
Any (strictly) fibred category, i.e. a functor P: C°? — Cat, yields a fibration via the
Grothendieck construction. We denote by C > P the category

(i) whose objects are pairs (c, x) where c is an object of C and x is an object of P(c),

(i) and an arrow (c, x) (d ) is a pair consisting of an arrow c ER d of C and an
arrow x > P(f)(y) of P(c).

The projection functor mtp: C > P — C, which acts by

(c,x) —c,

(£.8)

)L @yl d,

is a fibration. The cartesian lifting of an arrow e ER 7tp(c, x) in C can be taken as the

/idP X,
arrow (e, P(f)(x)) (—fﬂ)» (c,x), yielding a cleavage for the fibration np: C =P — C.

Example 1.9. The Grothendieck construction of a presheaf P: C°? — Sets, viewed as
a strictly fibred category, coincides with the category of elements of P.

Let P: C°? — Cat and Q: D°° — Cat be a pair of strictly fibred categories. A
morphism of strictly fibred categories, by which we mean a functor F: C — O and a
natural transformation a: P = Q o F°P, also yields a morphism of fibrations. We will
denote by F = a the functor F > a: C = P — D > Q that acts by

(c, %) = (F(c), ae(x)),

U9, @, y) > (F(0), ae(x))

F(f)ac(8))

(c,x) — (F(d), aa(y))-

The square
CxP % Dx(Q
o ]
cC——— D
commutes, and F = a sends cartesian arrows to cartesian arrows. Therefore, the pair
(F, F = a) is a morphism of fibrations 7tp — 7.

Definition I.10 (Definition 7.1, Exposé IV [44]). Fibrations of the form ntp: C~<P — C
are known as cloven fibrations.



I.2. FIBRATIONS 11

Proposition 1.11 (Theorem 1.3.5 [63]). If we assume the axiom of choice, every fibration is
cloven.

Therefore, we will often elect to work in the notionally and conceptually conve-
nient framework of (strictly) fibred categories rather than fibrations.

[.2.2 Street fibrations

For the majority of this thesis, we will be working with functors valued in skeletal
categories, in particular PoSet, where every isomorphism is an equality, and therefore
the above formalism suffices for our applications. However, for the more general
development of the theory of relative sites, fibrations will not be enough. Namely,
tibrations break the so-called ‘principle of equivalence’ - that constructions in category
theory should only be defined up to equivalence and not equality. Instead, we must
work with a variation of the above theory of fibrations.

The necessary generalisations to the flavour of fibrations studied above were
introduced by Street in [T13] and developed further in [IT4]. Just as cloven fibrations
correspond to strictly fibred categories, cloven Street fibrations correspond to fibred
categories in the bifunctorial sense (see [10]).

Definitions 1.12 (Definition 4.1 [10], Definition 2.8 [T14]). (i) By a fibred category we
mean a pseudo-functor P: C°? — CUAT, essentially a functor where we have
relaxed the condition that P preserves identities and compositions of arrows; P
now only needs to preserve these up to equivalence, i.e. P consists of the data:

a) a category P(c) for eachc € C,
b) a functor P(f): P(c) — P(d) for each d Jce C,

c) a distinguished natural isomorphism Pjq. : idp) = P(id.) for each ¢ € C,

d) and a distinguished natural isomorphism

Pfog: P(g) o P(f) = P(f 0 g)

for each paireg d, di> ceC,

satisfying the coherence axioms:

e) for each arrow d EN ceC,

idp(q idpa)

P(O) — PO "D s pd) = Plo) —Ls p(a) b Pd)

P(id,
zﬂp idcof Pfoig dﬂz

P(f) P(f)
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f) and for each triple of arrows ¢’ KA e, e EN d,d i> ceC,

P(g) P(g) (h)
?Pfg\\, ?ngx/

P(C)%P)%P()—P()%P(d)%P

P(goh)

W Pfo <qh> ?

P(fogoh) P(fogoh)
(ii) A Street fibration is a functor A: C — & such that for each object ¢ € C and an

arrow ¢ A(c), there exists a (weak) cartesian lifting d 5 ¢ of f, by which
we mean that there exists a distinguished isomorphism h: e — P(d) such that
P(g) o h = f and that g is cartesian in the same sense as before — i.e. for any

’

arrows d’ 5 c € Cand A(d") LN A(d) € C for which the triangle
Ad) —2 A@)

A
Am \L (9]

Ale)

. . K .
commutes, there exists a unique arrow d’ — d of C such that the triangle

d—>d
R
c
commutes and A(k’) = k.
Proposition 1.13 (Corollary 3.8 [I[14]). For each fibred category
P: CP — QUT,
the Grothendieck construction C = P yields a Street fibration tip: C>=P — C.

Example 1.14 (The canonical fibration of a geometric morphism). We give some exam-
ples of pseudo-functors that are not functors, and hence Street fibrations that are not
Grothendieck fibrations, culminating in what will become for us a recurring example
of a Street fibration: the canonical fibration of a geometric morphism.

(i) For a category C with all pullbacks, we obtain a pseudo-functor
C/(-): CP — QAT
by sending each object ¢ € C to the slice category C/c and, for each arrow

il ce C, the functor C/f acts by sending e % ceC/ctothe pullback
f—

|

N
(9N

AN

QU —

9]
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Since pullbacks are only defined up to unique isomorphism, in general C/(-)
is a pseudo-functor not a functor. The corresponding Street fibration coincides
with the functor

tgt: C> —— C

whose domain is the arrow category C? of C and which acts on objects by sending
an arrow to its target.

(i) We can perform a relative version of the above construction. For a category
C with all pullbacks and and any functor F: » — C, we obtain, analogously
to above, a pseudo-functor C/F: D°° — CUT by sending each object d € D

to the slice category C/F(d) and each arrow d’ 4, d € C to the functor C [E(f).
The corresponding category O =~ C/F coincides with the comma category, usually
denoted by (id¢ | F).

In particular, a geometric morphism f: ¥ — & yields pseudo-functor

F/f: EP — CAT

and hence a Street fibration & < ¥ /f* — &, the canonical fibration of a geometric
morphism.

Morphisms of Street fibrations. We should also eliminate the use of equality in
our definition of a morphism of fibrations. We therefore define a morphism of Street
fibrations A: C — Eand B: D — F to be a pair of functors F: C - Dand G: E - F
such that F sends cartesian arrows to cartesian arrows and the square

c—t5o
A = \LB
&Sy F

commutes up to natural isomorphism. Given two fibred categories P: C°P? — CAT
and Q: D°° — CUT, a morphism of fibred categories consists of a functor F: C — D and
pseudo-natural transformation a: P — Qo F°P, that is a functor a.: P(c) — QF(c) for each

¢ € C, and a natural isomorphism a¢: QF(f)ca. = ay: P(f), for each arrow d ER ceC,
satisfying the coherence conditions

idgr()
QF(c) || Qiar  QF(c)
/\ Q(idr)

P(c) ﬂp P(c) —= Q(c) = P(c) |

\_/l d
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and, for each pair e LN d,d 4, ceC,

QF(f) QF (d) P(g) oy Q) QF(f)
! QF(f) oF(g) Zﬂaf
P SN

P(©) %5 QF(©) QF(f —— QF() =

\ Z af ﬂ J ﬂ% /
P(feg) P(e) o) P(e)

As before, the pair (F, @) yields a morphism of Street fibrations (F, F <a): mp — 1 (see
[26, §2.2]).

Since fibrations in the sense of Grothendieck and the sense of Street share the same
pertinent properties, we will not bother differentiating the two notions. Indeed, a

cloven Street fibration is equivalent to a Grothendieck fibration (see [26, Proposition
2.2.5]).

I.3 Relative sites

We have now recalled enough background material to recall the definition of a relative
site.

Definition 1.15 (Definition 8.2.1 [26]). Let (C,]) be a site. A relative site over (C,])
consists of

(i) afibration A: D — C,

(ii) and a topology K on C such that K contains the Giraud topology Ja (see
Definition [2).

Equivalently, a relative site is a fibred category P: C°? — CUT and a topology K on
C > P such that the fibration yields a comorphism of sites ntp: (C =< P,K) — (C,]).
Thus, (modulo some size requirements discussed below) every relative site defines a
relative topos

Sh(C = P,K) —— Sh(C,]).

Remark I.16. Although our fibred category P: C°? — CUT is allowed to take values in
large categories, there are some size requirements we must impose. Firstly, we require
that, for each c € C, the category P(c) is locally small. Secondly, we require that the
site (C < P, K) has a small set of generators, i.e. a small set of objects { (c;, x;)|i € I} € C>P
such that any other object (d, y) € C>P admits a K-covering by arrows whose domains
are taken among the set { (c;, x;)|i € [ }. All of the examples of fibred categories with
topologies on C > P one considers in practice satisfy these size conditions.

These conditions are necessary since we desire the two facts to be true of a relative
site:

(i) the category of sheaves Sh(C = P,K) is a (Grothendieck) topos (in particular,
Sh(C = P, K) has a small set of generators),
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CP)°P

(ii) and secondly, there is a Yoneda functor L¢.p: CxP — Sets! and hence also

a canonical functor €c.p: C > P — Sh(C = P, K).

The notion of a relative site generalises the notion of an internal site (see [63, §C2]).
An internal category of a presheaf topos Sets®”, i.e. a functor P: C°® — Cat, can be
assigned a topos of internal presheaves, which is given by the presheaf topos Sets "
(see [63, Lemma C2.5.3]). An internal Grothendieck topology can also be introduced,
and it is shown in [63, Proposition C2.5.4] that the topos of internal sheaves on an
internal site of Sh(C, ]) is of the form Sh(C = P, K) for some Grothendieck topology K
on C = P containing the Giraud topology. Thus, when a relative site is also an internal
site, our development coincides with the internal treatment.

Example 1.17 (§8.2.2 [26], The canonical relative site of a geometric morphism). We
return to the example of the canonical relative fibration & < ¥/ f* of a geometric
morphism f: ¥ — & from Example [T4 and describe a topology ], on the category
E=F[f* — & for which there is an equivalence

can

Sh(8 > ¢/f*l jcan) = ?:'/

from which (& = F/f*,]
morphism.
Recall that objects of & = ¥/ f* are pairs

«an) deserves the title: the canonical relative site of a geometric

(E, F3 f*E)
where E € Eand F5 fE € ¥, and an arrow
(1)

(E, N f*E) o, (E’, F g—'>f*E')

. . h '
consists of a pair of arrows E— E’ € Eand F %, I’ € ¥ such that the square

in ¥ commutes. There are two evident projections: firstly, the ever-present fibration

USaa 8><17:/f* — &

that sends ( E, F5 f'E ) to E (for increased symmetry of notation, we will denote this

functor by 7g). Secondly, there is the projection g: ExF/f* = F,
(E, Fs f*E) - F,

(E,Pif*E)——»(E',P’if*E')HPﬂP'.
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We denote by ], the Grothendieck topology on & < ¥/ f* whose covering sieves
are precisely those sieves that are sent by m# to jointly epimorphic families, i.e. a
family of arrows

ieI}

{(Ei, Fiif*Ei) TN (E, F& f*E)

iel}

is a jointly epimorphic family in . As f*: & — F preserves jointly epimorphic
families, the projection

in &= F/f*is ] sa-covering if and only if

{Fih—il>F

%R (8 ~ 7:-/f*l jcan) —> (8/ ]can)

has the cover lifting property and so is a comorphism of sites. Hence, (€ = F/f*, ] .n)
is a relative site over the canonical site (&, J.an) for &.

In fact, we can say more. By applying [?3, Theorem 3.16], the functor 7+ is both a
dense morphism of sites and a comorphism of sites

TlF : (8 > ?‘/f*, Tcan) — (?’/ jcan)/

from which we deduce an equivalence of topoi Sh(E = F/f*, ] ...) = ¥, and moreover
that there is an isomorphism of geometric morphisms

f

7 > &
l = !
Sh(8><1 ?’/f*/ Tcan) T> &.

Thus, every geometric morphism f: ¥ — & is represented by its canonical relative
site 7tg: (8 > T/f*/ ]can) - (8/ ]can)'

I.3.1 Morphisms of relative sites

We complete this section by describing morphisms of relative sites. Our theory is a
natural extension to that developed in [?4] so as to include change of base.

Definition I.18. A morphism of relative sites
£6): |cn s @En| — |00 Fm)

consists of a pair of functors F: C — O and G: & — ¥ such that

(i) the pair (F, G) constitutes a morphism of fibrations

c—ts oD

Al o= s

&3 F,
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(ii) and both F: (C,]) — (D,K) and G: (§,L) — (¥, M) are morphisms of sites.

Later in Proposition we will observe that morphisms of relative sites admit a
simpler description in special cases. Let

C,) — (D,K)

A= e

& L) —<> (F, M),

be a morphism of relative sites. The constituent functors A, B, F and G induce a square
of geometric morphisms

Sh(F)

Sh(C,]) <——— Sh(D,K)

e le (Li)

Sh(G)

Sh(§,L) <= Sh(¥,M).

However, a priori there is no reason for this square to commute (up to isomorphism)
and thus define a morphism of relative topoi. We will show that the specific conditions
made on a morphism of relative sites, namely that the functors A, B, F and G also
constitute a morphism of fibrations, suffice to demonstrate that the square ([3) does
indeed commute.

Lemma 1.19. Let A: (C,]) — (E,L) and B: (D, K) — (F, M) both be relative sites and let
€6 [cn s En| — [0 m)

be a morphism of relative sites. Then the induced square of geometric morphisms

Sh(F)

Sh(C,]) «<— Sh(D,K)

of = o

Sh(G)

Sh(E,L) <— Sh(¥,M)

commutes up to isomorphism.

Proof. The overarching method of the proof is to turn the morphisms of sites F and G
into comorphisms of sites, and then appeal to the bifunctoriality of sending a comor-
phism of sites to its induced geometric morphism. We are able to turn morphisms
of sites into comorphisms of sites by [?3, Theorem 3.16]. For the morphism of sites
F: (C,]) = (D, K), there are functors

C 7= (lplF) =2 D

where

(i) (1p | F) denotes the comma category
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a) whose objects are pairs
(c, d>5F (c))

of an object ¢ € C and an arrow d — F(c) in D,
b) and whose arrows are pairs

©,d 5 Ee) -2 (,dS Fe)

of arrows ¢’ > c € Cand @’ 5 & for which the square

g ——d
4oL

Fi¢) =25 F(o)

commutes;

(ii) m¢: (1p LF) = Cand nip: (1p | F) — D are the respective projection functors

nc: (¢,d = Fo) = ¢,
np: (c,d = F(c)) — d;
(iii) ir: C — (1p | F) is the functor that sends c € C to

id F(c)

(c, F(c) 2o, P(c)) € (1p LF).

Moreover, when the category (1p | F) is endowed with the Grothendieck topology K,
whose covering sieves are precisely those that are sent by 715 to K-covering sieves, we
have that

(i) 7c: (1p LF),K) = (C,]) is a comorphism of sites,
(ii) ir: (C,]) = ((1p L F),K) is a morphism of sites,
(iii) p: (1p | F),K) — (D,K) is both a morphism and comorphism of sites and
induces an equivalence of topoi

Sh((1p | F),K) ~ Sh(D, K).

We also have that Sh(F) = C,, o Sh(np), and Cy,, is an inverse to Sh(np). Similarly,
there are functors

alﬁg(uw)lm-‘

with analogous properties, in particular Sh(G) = C, o Sh(ni#) and C,, is an inverse
for Sh(mt#).

We construct a comorphism of sites H: ((1p | F),K) — ((1# | G), M) such that the
diagram

C <=~ (1plF) 25 D

Al ~ lH N iB (Lii)

&+ (Iy 1G) == F
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commutes up to isomorphism. The functor H sends an object (c, d5F (c)) to

B(a)
(A, B) > BEF©) = GAE)),
where we have used that the square

cC—ts o

Ai ~ lB (Lii)

8%7—‘/

commutes up to isomorphism. Similarly, H is defined to send an arrow
(c’,d’ “, F(c’)) s (e,d S FO)

to (A(h), B(g)). The functor H clearly makes the diagram (I[Gd) commute up to isomor-
phism.
It remains to show that H has the cover lifting property. Let

5 ={ (o0 i > Gle) £ (40), Bid) 2% B(F©) = GA©))

iel}

be a M-covering sieve, i.e.

m(S):{ﬁﬂB(d)'iel}

is M-covering. As A is a fibration, there exists, for each i € I, a cartesian lifting of

e 5 A(c) € & to an arrow ¢’ £, ¢ € C. Since the square (1) is also a morphism of
F /7

fibrations, F(c’) 1), F(c) € D is cartesian too. Now we apply the fact that B has the

cover lifting property to deduce the existence of a K-covering sieve R on 4 such that

B(R) C 1t#(S), i.e. for each d’ 5 din R, there exists an i € [ such that B(k) factors as

B(k)

h;

> B(d)

| I

BF()) — =23 B(F()) = G(A(0)).

As F(g’) is cartesian, there is a unique arrow 4’ LF (c’) € O making the square

g —5 54

Loy
F(c') — F(0)
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commute. Hence, as R is a K-covering sieve,

{(c’,d L E@)) & (c,d 5 FO) [k e R}

is a K-covering lifting of S, whence H is a comorphism of sites
H: ((1p LF),K) - (15 1G), M)

as desired.
By the commutation of ([i) up to isomorphism, we deduce that the induced
diagram of geometric morphisms

Sh(C, ]) <2~ Sh((lp LF),K) —2% Sh(D,K)

0| I = o

Sh(E,L) <= Sh((15 L G), M) —Z3 Sh(F, M)

[

commutes up to isomorphism too. Thereby, we conclude that

Ca o Sh(F) = C4 0 Cy, o Sh(mp),
= Cr, 0 Cy o Sh(myp),
= Cy © Sh(riy) 0 s, 0 Ciy 0 Sh(1p),
= Sh(G) 0 Cp 0 Cr 0 Sh(1p),
= Sh(G) o Cp

as required. O

I.4 A cylindrical Diaconescu’s equivalence

In this final section, we present a cylindrical version of the relative Diaconescu’s equiv-
alence and some corollaries of our statement. Recall that Diaconescu’s equivalence
states that, for each site (C, J) and each topos &, there is an equivalence of categories

Topos(E, Sh(C, ])) = J-Flat(C, &). (Liv)

Unravelling definitions, the latter category is precisely

MorphSites ((C, D, (&, ]Can)).

One direction of the equivalence ([1¥) sends a J-flat functor F: C — & to the geometric
morphism

Sh(F) 8 = Sh(8/ ]Can) H Sh(C, ])

induced by F as a morphism of sites F: (C,]) — (&, Jean).- In the other direction,
a geometric morphism f: & — Sh(C,]) is sent to the J-flat functor f* o {¢c: C — &.
Diaconescu’s equivalence is essential to the textbook development of classifying topos
theory. The same is true for our relative exposition.
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A relative version of Diaconescu’s equivalence appears in [24, Theorem 3.3] and
[8, Theorem 3.6], generalising the work of Giraud [47]. We present a ‘cylindrical’
variant to the equivalence found in [8], [?4] that includes a change of base suitable
for our later applications. We provide a self-contained account here, but the functors
witnessing the equivalence in Theorem 7T could also be constructed by appealing to
[8, Theorem 3.6] (see Remark [C22).

For notational convenience in this section, when there is no confusion, we will
write a~! for the functor P(a): P(d) — P(c), where P: C°? — CUT is a fibred category

a .
and ¢ — d is an arrow of C.

Lemma I.20. Let P: C°? — CUT be a fibred category. For each object (d, y) of C = P, there
exists a canonical choice of a natural transformation

Suy: fowr(d,y) — Le(d) o mtp.

such that
(i) for each arrow z — y of P(d), the triangle

(ide,u)o—

Lewr(d, 2) > ewp(d, y)

%,Xl Ay)

Leld) o mp

commutes,

(ii) and for each arrow ¢ = d of C, the square

(aid -

, 11/)0—
fexp(c,ay) ————> dcwr(d,y)

-
Sea-l y)\L \L‘Bm,y)

Fe(c) omp —=—— Xc(d) o mp

is a pullback in Sets """,

Proof. For each object (e, x), the map

B Sowr(d, Y)le, ) = Zold)(e)

that sends an arrow (e, x) N dy)toe EN d is evidently the component of a natural

transformation. Immediately, we see that the triangle

(ideu)o—

Lexp(d, z) > Lexr(d, )

% JAy)

Le(d) o mp

commutes for each arrow z — y € P(d).
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Recalling that pullbacks in Sets“*"" are computed pointwise, for [} is suffices to

show that, for each (e, x) € C < P, the square

ey

(a,id 1 )o—
J:CNP(C/ ﬂ_ly)(er X) —_— J:Cxp(d/ y)(e/ X)

(ex) (e,x)
gw—ly)l igww

Le(e)(e) — > Leld)(e)

is a pullback in Sets. This is given by the evident isomorphism

ear(c,a™'y)(e,x) = {(e, 0 L (¢, aty)

eiceC,
x = a'y € Pe) '

e i> ceC,
(e L e, y)) S 2—1]/ € Ple),
e—>decC,
g=aof
Lee)(e) X xowye) Fexp(d, y)(e, x).

IR

O

Theorem 1.21 (The cylindrical Diaconescu’s equivalence). Given a relative site over
(C,)), i.e. a pseudo-functor
P: CF — QUT

and a Grothendieck topology K on C = P that contains the Giraud topology, there is an
equivalence of categories

#  Sh(C = P,K) (CxPK) (ExF/f Jean)
Topos lf , lcnp ~ RelMorph lnp , lﬂs ,
& Sh(C, ]) (C, ]) (81 ]can)

where
F Sh(CxPK)

Topos lf , lcnp

&  Sh(C))
denotes the category

(i) whose objects are squares of geometric morphisms

7 —2 5 Sh(C=DPK)

1=

& —" 3 Sh(C,))

that commute up to isomorphism,
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(ii) and whose arrows (g,h) — (g’, h’) consist of a pair of 2-cells f: g = ¢' and y: h =k’
for which the cylindrical 2-diagram

8
/ﬂ\(
7 B Sh(C < P,K)
\,/(
f * Crp
h
Sh(C, ])

:

h’
commutes (where the empty 2-cells represent the distinguished isomorphisms), i.e.

Cop*B=y*f,

and
(C=PK)  (E=TF/f"]can)
RelMorph \an , iﬂa
€ )) (&, Jcan)

denotes the category
(i) whose objects are morphisms of relative sites, i.e. morphisms of fibrations

CxP — ExF/f
1 -k
c—21 &
for which G: (C=P,K) = (ExF [ f*, Joan) and H: (C, ]) = (&, Jean) are both morphisms
of sites,
(i1) and whose arrows (G, H) ¥, (G',H’) consist of a pair of natural transformations
B: G= G’ and y: H = H’ for which the cylindrical 2-diagram
G

foExF/f Tean)

(C=P,K)
\_/(
I
Tip . g
/\
C.)) Hy (&, Jean)

\H/

commutes (i.e. Tig * f =y * Tp).
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Proof. Given a morphism of fibrations

CxP — ExF/f"

C————¢&

IR

T

for which G: (C=<P,K) = (ExF /f*,].an) and H: (C, ]) — (&, Jan) are both morphisms
of sites, by Lemma [T9 and Example [T7 there is a diagram of geometric morphisms

Sh(G)

F = Sh(E=F/f,]om) —— Sh(C = P,K)

Ls e e

Sh(H)

& == Sh(E, Joan) ———— Sh(C,))

that commutes up to isomorphism.
This assignment of objects can be extended to a functor

CxPK)  (E=T/F, o) 7 Sh(CxPK)
RelMorph l/np ’ \Lng — TOPOS \Lf ’ \LC”P
(&) (&, Jean) & Sh(C))

since, recalling from [b3, Remark C2.3.5], any natural transformations f: G = G’ and
y: H = H’ between morphisms of sites induce 2-cells Sh(f): Sh(G) = Sh(G’) and
Sh(y): Sh(H) = Sh(H’) on the induced geometric morphisms. It remains to show
that these 2-cells satisfy the necessary commutativity condition that, if 7tg * f ~ y * mtp,
then C,, * Sh(B) = Sh(y) * f. We can essentially perform the same construction as
in Lemma [T9 — transforming the morphisms of sites into comorphisms of sites,
and natural transformations of morphisms of sites into natural transformations of
comorphisms of sites, and then appealing to the bifunctoriality of the comorphism of
sites to geometric morphism construction.

We now construct the converse functor

7: Sh(CXP,K) (CXP,K) (SNT/f*chan)
Topos lf , icnp —— RelMorph lnp , lﬂg
& Sh(C, ) C.)) (&, Jean)

Given a square of geometric morphisms

F —2% Sh(C=P,K)

1 L

& —L % Sh(C,))
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that commutes up to isomorphism, by precomposing the inverse image functor /"
with the canonical functor {¢: C — Sh(C, ]), as in the standard Diaconescu’s equiv-
alence ([33), a morphism of sites H: (C,]) — (&, Jcan) is obtained. Constructing the
complementary morphism of sites

G: (CxPK) — (EXF/f, Toan)
is more involved.
We wish to construct a (pseudo-)natural transformation
P
“ CAT.

Ny A

F/fH

Cp

That is, we need, for each object ¢ € C, a functor g.: P(c) — ¥ /f"H(c) such that, for
each arrow ¢ — d € C, the square

P(d) O p()
94 = 8¢ (I.V)
\L F/f*H(a) \L

F/fH(d) ——— ¥ /f'H(o)

commutes up to coherent natural isomorphism.
Recall from Lemma that for each object y € P(d) there is a natural transforma-
tion

Sy Fexpld, y) —> Leld) o mp,

CxP)°P

i.e. an arrow of Sets' . By applying g"ax to 5(,), we obtain an arrow

S'ak(Say) = 8a(y): gak ewr(d, y) — gax(Lc(d) o p)
of . Recall that C; , acts by sending a J-sheaf F: C°P — Sets to
ag(F o mtp): C = PP — Sets.
In particular, C; ,(€c(d)) = ax( &c(d) o 1tp). Therefore,
g ax(&eld) o mp) = &°C leld) = fh'le(d) = fH(A).

Thus, a4(y): g"ak &exp(d, y) — g ak(&c(d) o mp) is indeed an object of F/f*H(d). That
this choice of object in ¥/f*"H(d) extends to a functor P(d) — ¥ /f*H(d) follows by
Lemma [20(i).

To show that the square ([3) commutes, we use Lemma [2T(ii). Since

(ﬂ id -1 )O—

Yowr(c,aly) ——— Youwp(d, )

|
6(5,1171 y)\L \Lg dy)

Fele)omp —=—— Xe(d) o mp
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is a pullback, and g*ax preserves finite limits, the square

gag Fewp(c,a™ly) ——— gax fewr(d, y)

a
gc(u‘ly)\L \L@d(y)

*H(a)
fHE) : > fH(@)
is a pullback too. Thus, there is a coherent natural isomorphism

F/fH@)(8a(y)) = ga(ay).

We define G: C <P — &> F/f" to be the functor H >~ g. Immediately, the pair
(G, H) yields a morphism of fibrations

CxP —2% ExF/f*
”P\L = iy
= ]
C—— &
By the way we have constructed G, the square

G

C=P > ExF/f*
t’cxP\L \Lffmf /f*
Sh(CPK) —— F ~ Sh(ExF/f*, Jour)

commutes, from which we conclude by Proposition [3 that the functor G is a mor-
phism of sites

G: (CXP,K) — (quj/f*/jcan)'

Having constructed the action on objects of the functor

& Sh(CxPK) (C=PK) (ExF/f Jcan)
Topos \Lf , icnp —— RelMorph lnp , \Lﬂs /
& Sh(C,]) (C.)) (&, Jean)

we now demonstrate that this can be made functorial. Given 2-cells f: ¢ = ¢’ and
y: h = I’ between geometric morphisms for which the 2-diagram

/\
F Mﬁ Sh(C = P,K)
g/
f Crp

S Y Sh(C,))

\/

/4

45
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commutes, we immediately obtain a natural transformation y": H = H’ between the
induced morphisms of sites H, H': (C, J) =3 (&, Jaan) by taking the horizontal composite

-
f /ﬂ\
C —=—3 Sh(C,)) y E.

N

/i

The 2-cells f and y also yield a natural transformation ’: G = G’ between the
induced morphisms of sites G, G’: (C = P, K) =3 (E = F/f*,]..n)- The component

a4 'B,d,y gy
(@, g0~ FHD) =2 (H@,g 0@y > FH@)

of " at (d,y) € C < P is given by the pair of morphisms

94(y)

H(d) §lerd,y) — fH() =gCr (Lc(d))

\LV; ¢ ﬁ[CxP(d/y)\L \Lﬁc;P @

%W .
H'(d) g lemp(y) —— FH/(d) = g“C:, (bc(d)

The naturality of f and y ensures that ' is a natural transformation too.
Finally, it remains to show that the two functors we have constructed define an
equivalence of categories. Given a square

F —2 5 Sh(C=DP,K)

f\L = \LCHP (T.vi)

& — % Sh(C,]),

of geometric morphisms that commutes up to isomorphism, we wish to show that
Sh(G) = g and Sh(H) = h. We use the property from Proposition [3 that, for
a morphism of sites K: (D,L) — (2,L’), there is a unique geometric morphism
k: Sh(9,L") — Sh(D, L) for which the square

D —~X 9y

o) 2

Sh(D,L) —— Sh(D,L’)

commutes. By this property, or equivalently the standard Diaconescu’s equivalence
([3xd), we obtain the latter required equivalence Sh(H) =~ h.

For the former, we note that the equivalence Sh(E= ¥/ f*, ] .,) = ¥, being induced
by the projection tg: ExF/f* — F,

(E,F LS f*E) - F
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acting as a morphism of sites 7t : (ExF /f*, Jean) = (F, Jean), identifies a representable
Loy £ (E,F—) f* E) € Sh(E = F/f*,]n) With the object F € F. Thus, there is a

commutative diagram

CxP S ExTF/f

fcxpl \Lfaxsv/ &

Sh(G)*

Sh(CNPK) % Sh(axfc/f ]can ’

¢

and so we obtain the second desired equivalence Sh(G) =~ g¢. This is evidently nat-
ural, and demonstrates that one composite of our constructed functors, where we
begin with a pair of geometric morphisms (g, 1) as in ([3d) and obtain a second pair
(Sh(G), Sh(H)), is naturally isomorphic to the identity. Anidentical argument demon-
strates that the opposite composite is also naturally isomorphic to the identity, thus
completing the equivalence. m|

Remark 1.22. The functor

F Sh(C = P,K) C=BK)  (E*F/f]can)
Topos lf , icnp —— RelMorph \Lﬂp / \Lﬂs
& Sh(C,)) (o)) (&, Jean)

witnessing the equivalence from Theorem 7T can also be constructed by appealing
to [8, Theorem 3.6]. Given an object of

# Sh(C = P,K)

Topos lf p lcnp

&  Sh(C,))

there is a triangle
F ———~ % Sh(C~P,K)

Nl

Sh(C,])
to which we can apply [8, Theorem 3.6], yielding the triangle

(C=PK) —S—3 (F/f e, Teun)

Ny

(o))
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that factors as
(C=P,K) —= (F/f" Jean)

e
C ) — (& Jean),

which gives the action on objects. Given an arrow of

# Sh(CP,K)

Topos lf , lcnp

&  Sh(C,))
there is a lax triangle
8
¥ ﬂﬁ Sh(C = P, K)
~_ ¥
7
Wof i Crp
Sh(C,])

to which we canalso apply [8, Theorem 3.6], which yields, after a similar manipulation,
the action on arrows.

The relative Diaconescu’s equivalence. The specific statements of the relative Dia-
conescu’s equivalence given in [?4] and [8], without change of base category, can be
recovered by restricting the equivalence in Theorem 21 to the relevant subcategories,
as described below.

Corollary 1.23 (Theorem 3.3 [4], Theorem 3.6 [8]). Fora topos & ~ Sh(C, ]) and a relative
site over (C, ]), there is an equivalence of categories

F  Sh(CxPK) C=PK) ExF/f]can)
Topos/id_g l/f , \LCHP ~ RelMOI‘ph/fC \an , l/ng ’
&E Sh(C,]) (o)) (&, Jcan)
where
F  Sh(C = P,K) F  Sh(C = P,K)
Topos/idg lf , lcnp C Topos \Lf / icnp
& Sh(C,]) E Sh(C,])

is the subcategory
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(i) whose objects are squares of geometric morphisms

7 —2 5 Sh(C=PK)

fl = icnp

) Sh(C,])

that commute up to isomorphism,

(i) and whose arrows g — g’ are 2-cells B: g = g for which the 2-diagram

1=

F g Sh(C = P,K)
7
f Cﬂp
& Sh(C,])
commutes,
and
(C=PK) (ExF/f]can)
RelMorph/{¢ lnp , lns

(C/ ]) (8/ ]can)

denotes the subcategory of

C=PK) (EXF/f]can)
RelMorph lnp , \Lﬂg

(C’ ]) (8/ ]can)

(i) whose objects are morphisms of fibrations

CxP —S % ExF/f

C—% s shC =&

for which G: (C=P,K) = (E=F/f*, ] an) is @ morphisms of sites,
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(ii) and whose arrows G % G are natural transformations B: G = G’ for which the

2-diagram
G
/\
(C>PK) ﬂﬁ E=F/f) Tcan)
\_/(
e
(e3) 5 (& Jem)
commuites.

When (C = P, K) is an internal site of Sh(C, J), Corollary 23 coincides with the
internal version of Diaconescu’s equivalence.

1.4.1 Fibred preorders

Suppose that, in the statement of Diaconescu’s equivalence ([id), we assumed C to
be a preorder (and therefore Sh(C, J) is a localic topos — see [67, Theorem 5.37]). Then
every flat functor F: C — & factors through the subcategory of subterminals Subg(1),
and so Diaconescu’s equivalence ([ix) becomes

Topos(&, Sh(C, ])) = MorphSites((C, ]), (Subg(1), Jean)).
The relativised version also holds whenever our relative site takes values in PreOrd.

Notation 1.24. Below, Sub#(f*—) denotes the composite of the opposite of the inverse
image functor f*?: &P — F°P of a geometric morphism with the subobject doctrine
Subg: F°P — PreOrd of the topos F .

Corollary 1.25. Given a site (C, ]), a pseudo-functor P: C? — PreOrd and a Grothendieck
topology K on C > P that contains the Giraud topology, there is an equivalence of categories

# Sh(C=DPK) (CxP,K) (ExSubs(f =), ean)
Topos lf , lcﬂp ~ RelMorph lnp , lnr
& Sh(C, ) (&) (&, Jean)

Proof. It suffices to show that, for every square

F —% Sh(C » P,K)

f\L = \LCH p
& —— Sh(C,))
of geometric morphisms that commutes up to isomorphism, and every (d,y) € C = P,

the arrow

94(y)

§ax fexp(d, y) — g ak(&e(d) o mp) = f*H(d) € ExF/ f*H(d)
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defined in Theorem [2ZTis a monomorphism since then the induced morphism of sites
G: (C=P,K) > (ExF/f*,].n) factors through the subcategory

ExSubg(f'-) CEF/f".

As P takes values in PreOrd, the natural transformation
Duy: Fowr(d,y) — e(d)omp

constructed in Lemma [20 is pointwise injective and thus a monomorphism in
Sets©*P™. Hence, as ¢* and ag preserve finite limits, g,(y) is a monomorphism as
desired. a

I.4.2 Relatively subcanonical sites

Finally, we generalise two results about subcanonical topologies to the canonical
setting.
Recall that every natural transformation between morphisms of sites

F
T
(o)) ﬂﬁ (D,K)

NS

G
induces a 2-cell of geometric morphisms

Sh(G)
/_\
Sh(D, K) ﬂsmw Sh(C, ).

~_"v

Sh(F)

As observed in [h3, Remark C2.3.5], the converse is also true if K is a subcanonical
topology, i.e. the canonical functor {5: O — Sh(D, ]) is fully faithful.

We will often encounter relative sites 11g: (D < Q,K") — (D, ]’) where we would
desire an analogous reasoning to apply, except that the topology K’ is not truly sub-
canonical. For example, the topology J .. on the canonical fibration & < F/ f* is not a
subcanonical topology. See Remark [TT3 for another related example.

We therefore desire an extension of the notion of subcanonical topology to the
relative setting.

Definition I.26. Let (C > P,K) — (C, ]) be a relative site. We will say that the topology
Kis relatively subcanonical if, for each object d € C, the canonical natural transformation

ia: P(d) —— Sh(C = P, K)/C7,lc(d),
is full and faithful, where j; is induced as in Theorem 7T by the commutative square

Sh(C = P,K) =— Sh(C = P,K)

o | Lew

Sh(C,]) == Sh(C,)),
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i.e. is is the functor that sends an object y € P(d) to the arrow

ak(5(d,y))

lewp(d, y) ———— G le(d).

Corollary 1.27. Let (C = P,K) and (D = Q, K’) be relative sites over, respectively, (C, ]) and
(D,]). Let

(CxPK) —53 (D~Q,K) (CxPK) <3 (D=Q,K)

| foooe s L
H/

C ) — D)) <€) —— D))

IR

T

be two morphisms of relative sites and let y: H = H'’ be a natural transformation. If K’ is a
relatively subcanonical topology, then there is a bijection between the natural transformations
B: G = G’ for which the 2-diagram

qE

(C = P,K) B (D=Q,K)
\_/
e
Ttp e}
H
/\(
(o) JJj’ D,])
\_/(
I

commutes, and the 2-cells of geometric morphisms p’: Sh(G) = Sh(G’) for which the 2-
diagram
Sh(G)

A

Sh(D = Q,K’) p Sh(C = P, K)
Sh(G)
Crg Crp
Sh(H)

Sh(D,]) Sh(y) Sh(C,])

\/

Sh(H’)

/P

commuites.

Proof. For notational convenience, leta: P = Qo H® and a’: P = Q o H°P be a pair
of pseudo-natural transformations such that G = H<a and G’ = H' ~< a'.

One of the maps establishing the bijection comes from the functoriality of tak-
ing the induced geometric morphisms of a morphism of relative sites as demon-
strated in Theorem [CZ1l. It remains to show that every 2-cell of geometric morphisms
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B’: Sh(G) = Sh(G’), for which Cr, # " =~ Sh(y) * Cy,,, induces a natural transformation
B: G = G, for which mtp * f = y * 1.

The pair of 2-cells f': Sh(G) = Sh(G’) and Sh(y): Sh(H) = Sh(H’) induce, by
Theorem [771], a natural transformation

C =P " Sh(D=Q,K)/Cy,

N

G/
whose component at (c, x) € C > P is the pair

8c(x)

Sh(H)'tc(c)  Sh(G)lewp(c,x) — C5 toH(c)

\LSh(V)ZC(C) ’ ‘chxp(frxi \L‘B,C%pgc(c)

’

9¢(x)

Sh(H’)"€c(c) Sh(G') lewp(x) —— C, {pH'(c)

We first note that the arrow Sh(y).( is induced by the arrow H(c) 5 H’(c) in that
there is a commuting square

toH(c) = Sh(H)*Cc(c)

KD()/C)\L \LSh(V)fc(C)

tpH'(c) = Sh(H")*{c(c).
Next observe that there is an equality
Sh(G)*KCNP(C/ x) = KDXQG(C/ x) = fDXQH > a(cl X) = KZ)*‘Q(H(C)I (,YC(X))-

Similarly, we have that Sh(G’) €c.p(c, x) = Lp.o(H'(c), al(x)). By the definition of j, for
each (c, x) € C = P there is a commutative diagram

iH() (@c(x)

/\

ac(x)

Lpug(H(c), ac(x)) = Sh(G) lewp(c, x) —— C3,{pH(c)
ﬁl[cxp(c,x)\L \L‘BE:;TP[/C(”):C;QKD(%) (IVII)

gc(x)

Loma(H'(©), a4(x) =Sh(G) eun(c, x) —25 Co LoH'(c).

\/{

ir (o (ac(x))
Since the functor ip): QH(c) = Sh(D=Q,K")/ C;Qé’ pH(c) is fully faithful forall c € C,

the pair (ﬁ;c S Pe: é,C@) yields an arrow
p(c)’ PCr,

(H(©), ae(x)) <25 (H'(0), (x).
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The naturality of f” ensures that this the component at (¢, x) of a natural transformation
B:Hxa = G = G = H xa'. By the equivalence ﬁ/C;Pé’c(c) ~ 7 lo(yc) and the
commutativity of the diagram ([3zd), the constructed natural transformation f makes
the 2-diagram

G=Hx>«
(CxPK) JF (D=QK)
G'=H'>a’
Tip Q
H
() MV D, )
Hl
commute up to isomorphism as required. O

Relative morphisms for cartesian valued relative sites. Given two cartesian cate-
gories C and D respectively endowed with Grothendieck topologies | and K, a left
exactfunctor F: C — D defines morphism of sites F: (C, ]) — (D, K) ifit sends J-covers
to K-covers. In other words, by virtue of being left exact, F satisfies conditions [ii] to
of Definition [3 automatically. Recall from [07, Corollary 4.14] or Remark [4 that
the converse is true if K is a subcanonical topology. We will observe that this result
generalises to the relative setting, thus yielding a more manageable description of the
relative morphisms of sites in special cases.

We first recall the definition of a modification. Just as 1-categories C, D yield 2-
categorical functor categories [C, D], given a pair of 2-categories U, B the 2-functor
category [, B] is naturally 3-categorical. These 3-cells

are modifications. A modification consists of the data, for each object A € U, a 2-cell

aa
/\
FA ﬂm GA,

N A

Ba

where the choice of 2-cell 04: s = 4 satisfies the coherence condition that, for every
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morphism A i> B of ¥, the cylinder diagram

FA il s IB
s <%> Ba o < Br o <%> Bs
GA o > GB

commutes.

Proposition 1.28. Let (C = P,K) and (D = Q, K") be relative sites over, respectively, (C,])
and (D, ]'), for which the associated pseudo-functors

P:CP —— QAT and Q: PP —— CAT

both factor through the category CURT of (large) cartesian categories and cartesian functors.
Suppose further that K’ is a relatively subcanonical topology. Then there is an equivalence of
categories

(C=PK) (D=Q,K)
RelMorph i , an ~ RelMorph,,((C,],P,K),(D,]',Q,K))),
C.)) D,])
where RelMorphcart((C, J,PK),(D,],Q, K’)) is the category

(i) whose objects are pairs (F,a) consisting of a functor F: C — O and a pseudo-natural
transformation a: P = Q o F°P, as in the diagram

Cop
\
Fop aﬂ CART,
/
Pep

such that
a) the functor F defines a morphism of sites F: (C,]) — (D,]’),
b) for each object ¢ € C, the component a.: P(c) — Q(F(c)) preserves finite limits,
c) and the induced functor F < a: C > P — D > Q sends K-covers to K'-covers.

(a,

(ii) and whose arrows (F,a) o, (F’,a") are pairs consisting of a pseudo-natural transfor-
mation «: F = F’ and a modification 0: a = a’, as in the diagram

Ccop

FoP | ==> CART.

\\
F/oP g (%) a
/

DOP



I.4. A CYLINDRICAL DIACONESCU’S EQUIVALENCE 37

Proof. By [?6, Corollary 2.2.6] (generalised to the setting with a change of base), the
datum of a morphism of fibrations

CxP — D=Q

npl L

C—— 9D

IR

e

is equivalent in datum to a functor F: C — D and a pseudo-natural transformation
a: P = Qo F°?, and furthermore a 2-cell between morphisms of fibrations

F>a
S
CxP ﬂ D=Q
\P/

Tip g
F
P/PQ

is equivalent in datum to a pair of a natural transformation a: F = F’ and a modifi-
cationo:a = a’'.

Thus, to exhibit the desired equivalence it suffices to demonstrate an equivalence
on objects, i.e. we wish to show that the pair

(FF=a): [CxPK) ™ (€,)] — |(©=Q.K) ™ (@,

defines a morphism of relative sites if and only if
(F.a) € RelMorph,.((C, ], 2, K), (D, ], Q,K)).

We deduce that it is enough to show that F < a: (C =< P,K) — (D = Q,K’) satisfies
conditions to from Definition [3 if and only if, for each ¢ € C, the component
a.: P(c) — Q(F(c)) preserves finite limits.
We begin with the ‘left to right” proof. Suppose that (F,F > a) is a morphism of
relative sites. By Lemma [[TY, there is a morphism of relative topoi
Sh(F>a

Sh(C = P,K) 22 sh(D = Q,K’)

Cr P\L =~ \LCT{Q

Sh(C,]) «—2_ Sh(D, ]).

Let 1. denote the terminal object of P(c) for an object ¢ € C. For any other object

(e, x) € C= P, there is an arrow (c’, x) U3, (c,1.) € C > P, which must necessarily factor

as
(ide,g) (fidppyae)

(6, X) % (6, 1e) = (6, P(f)(lc)) % (C/ 1c)/
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ifand only if thereis an arrow e Leec ,and so we deduce that there is anisomorphism
Fewp(c, 1) = &e(c). Thus, we deduce further that

Cr,ple(c) = ak(aj &c(c) o mp),
ax(&e(c) o mp),
ag( Lewr(c, 10) = ewp(c, 1o),

and similarly that C7 {n(d) = lpuo(d,14). Therefore, by chasing the object c € C
around the commuting diagram

IR

IR

C - > D
{’C\L lt’@
Sh(C,]) —~—% Sh(D, )
Cnp\L = \LC"Q
SMCme%£3$MDXQKO
we conclude that Sh(F = a)*€c.p(c, 1) = Cpno(F(c), 1r)-
The inclusion P(c) — C = P/(c, 1,),

d.,
x(c,x) — e,

(¢ 1),

can easily be shown to preserve finite limits. Therefore, in the commutative diagram

Cowp/(c/1c)

P(c) — C=P/(c,1,)

? Sh(C > P/ K)/fop(C, 1C)

\LSh(an)*/ Lewp(c1e)

Sh(D = Q,K")/Sh(F = a)Lc.p(c, 1c)
2
Q@) — D= Q/(F(), 1r0) gty SMD 2 Q, K') [ Lpo(F(c), 1r())

Lo/ (F(e)1p(e) .

> Sh(D = Q,K")/C, lo(F(c)),

1R

ac

ir (o)

the composite jr) o a.: P(c) = Sh(D < Q,K")/ C;QKD(F(C)) preserves finite limits too.
By hypothesis, K’ is a relatively subcanonical topology, meaning that the composite

ire: Q(F(c)) — Sh(D < Q,K")/C;, ln(F(c))

is fully faithful. In particular, jr reflects finite limits. Hence, if (F, F <a) is a morphism
of relative sites, then a, must preserve finite limits as required.

For the converse direction, it is easily shown directly that if each component
a.: P(c) = Q(F(c)) preserves finite limits, then F < a: (C = P,K) — (D = Q, K’) satisfies
conditions [ii) to from Definition 3. We complete the proof that condition [Gii) of
Definition [3 is satisfied. The others follow a similar pattern.

Let (d, x) be an object of D>~ Q. Since F: (C,]) — (D, ]’) is also a morphism of sites,
there is a J’-covering family of arrows

iel}

s:{mid
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for which each d; has an arrow d; LiN F(ci). Asig: (D> Q,K") = (D, ]') has the cover
liftting property, the family S is lifted to a K’-covering family of arrows

iel}.

We need only conclude that, for each i € I, there is a morphism

{ (di, xi) G, (d, x)

(i x) =22 (F(c), Tpey) = (F(@), ac,(1s)

to realise that Definition [3[ii) is satisfied. O






Chapter II

Internal locale theory

Pointless topology. By and large, the topologically interesting data of a space or a
continuous map is contained in the algebra of open sets and the inverse image map.
This prompted the shift to ‘pointfree’ topology, as exposited in [61], [62], where locales
replace spaces and locale morphisms replace continuous maps.

Internal locales. Abstracting further, each topos & has a rich internal language in
which locale theory can be internalised. The internal locales of a topos can be studied
by re-externalising the internal constructions, treating them as relative sites as studied
in Chapter I. As suggested by Examples [I5, the internal locales of many topoi can be
of interest outside of topos theory.

Therefore, for applications it is beneficial to have a well-developed dictionary
externalising notions for internal locales. Examples of external accounts of internal
locale theory can be found in [68], [63, §C1.6] and [?4].

Contributions of this chapter. Akin to [?4], we study internal locales in the language
of relative sites, as reviewed in Chapter . We aim to recreate an internal version of
the treatment of localic topoi and their morphisms found in [79, §IX]. We will observe
that the most commonly considered properties of internal locale morphisms admit
satisfying externalisations, namely that:

(i) surjections of internal locales,

(ii) embeddings of internal sublocales,

(iii) and the co-frame operations on the co-frame of internal sublocales

can all be computed ‘pointwise’.

Overview. The chapter is divided as follows.

(A) A brief recount of the basic theory of (set-based) locales is given in Section [Tl
Further results from locale theory are introduced when needed.

(B) In Section L2, a review is given of the classification of internal locales for the
topos Sh(C, ]) as established in [68, Proposition V1.2.2] and [?4, Proposition 5.10].
We also recall the construction of the relative topos of internal sheaves Sh(LL) — &
on an internal locale IL of & as described in [b3, Examples C2.5.8(c)] and [?4,
Definition 5.2].

41
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(C) Some examples of internal locales whose base categories are not cartesian are
presented in Section [L3, including internal locales of topoi of monoid actions.

(D) Our study of internal locale morphisms begins in Section I[T4. It is well-known
(see [B8, §VL.5], [A9, §2], or [?4, Corollary 3.5]) that, given internal locales IL
and 1L’ of a topos & =~ Sh(C, ), there is an equivalence between internal locale
morphisms f: L — IL” and geometric morphisms g for which the diagram

Sh(L) —— Sh(L’)

N

commutes. We give a direct using Corollary [73.

It is further shown in Proposition I[LZ78, that the geometric morphism Sh({)
induced by an internal locale morphism f: I — 1L’ is surjective if and only if
each component f.: IL(c) — IL’(c), for c € C, is a surjective locale morphism, i.e.
surjections of internal locales are computed ‘pointwise’.

(E) The internal locale morphisms that induce embeddings of subtopoi are the sub-
ject of Section [CH. We show that internal locale embeddings coincide with ‘point-
wise” locale embeddings. We also introduce the notion of an internal nucleus on
an internal locale, a mild generalisation of a Lawvere-Tierney topology, and show
that these too correspond bijectively with internal sublocale embeddings.

(F) Finally in Section [TH, we study the co-frame Subropes(Sh(IL)) of subtopoi of
Sh(IL) (see [h3, §A4.5] or [22, §4]). We show that the co-frame operations of
Subtopes(Sh(IL)) can be computed ‘pointwise” via the co-frame operations on
Subyo(IL(c)), the co-frame of sublocales of IL(c), for each c € C.

II.1 Background on locales

If we forget about points, topology is the study of algebras of open sets O(X) and the
action of continuous maps f~': O(X) — O(Y) on these open sets. The notions of frame
and frame homomorphism capture these purely algebraic aspects of topology.

Definition II.1. A frame Lis a complete lattice satisfying, for eachsubset{U; |i € [} C L
and V € L, the infinite distributivity law

V/\\/LLc\/V/\U,;

iel i€l

A frame homomorphism is any map between frames that preserves arbitrary joins and
finite meets. We denote the resultant category by Frm.

Our motivating examples, the algebra of opens O(X) of a topological space X
and the inverse image map f': O(Y) — O(X) of a continuous map f: X — Y, are
both examples of, respectively, a frame and a frame homomorphism. To strengthen
the analogy with topological spaces, one often works with the category of locales
Loc =~ Frm*" instead.
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Notation II.2. For a locale morphism f: L — K, we will use f™': K — L to denote
the corresponding frame homomorphism. Additionally, each frame homomorphism
f': K - L has aright adjoint f,: L — K, since K is complete.

Frames are equivalently complete Heyting algebras (see [97, Proposition 7.3.2, Ap-
pendix 1]). The Heyting implication in a frame L is given by

U—V= \/{WeLlW/\U<V}.
However, frame homomorphisms need not preserve the Heyting implication.

Definition I1.3 (§V.1 [68]). A frame homomorphism f: L — K is said to be open if
either of the following equivalent conditions are satisfied:

(i) f:L — Kisacomplete Heyting algebra homomorphism,
(ii) f7': K — Lhas a left adjoint 3y which satisfies the Frobenius condition:

U A FV) =) AY,
forallUeLand V € K.

Open frame homomorphisms generalise open continuous maps (as can be seen
by [79, Proposition IX.7.5]). We will use Frmpe, to denote the category of frames and
. . Op
open frame homomorphisms, and Loc,pen to denote the opposite category Frmep.
In [b4], Isbell promulgates the use of Loc as a constructive alternative to topolog-
ical spaces, since many desirable properties hold (constructively) for locales whose

topological analogies do not (see, for instance, [56]).

I1.2 Internal locales

An internal locale of a topos & is an object that, according to the internal language of
&, carries the structure of a locale (equivalently, a complete Heyting algebra).

Examples IL.4. (i) Unsurprisingly, the internal locales of Sets, the topos of sets, are
just locales.

(ii) (Theorem C1.6.3 [b3]) An internal locale of a localic topos Sh(X) is a locale
morphism Y — X.

(iii) For any topos &, the subobject classifier ()¢ is an internal locale of &. In fact, we
will see in Corollary that Qg is the terminal internal locale in &.
More examples will be presented in Section [T3.

We devote this section to a review of the external treatment of internal locales:
that is, given a Grothendieck topos & with a site of definition (C, J), a classification
for which J-sheaves IL: C°? — Sets correspond to internal locales of & ~ Sh(C, J). An
externalised treatment of internal locales can be found in [68, §VI] and [63, §C1.6]
for the special case when C is cartesian (i.e. C has all finite limits). When C is non-
cartesian, [24, §5] establishes a classification of internal locales of Sh(C, ), which will
form the basis of our treatment.

Notation IL5. Given a functor IL: C°? — Frmp.,, an object ¢ and an arrow g of C,
when there is no confusion we will use the shorthand IL. for IL(c), ¢! for IL(g) and 3,
for the left adjoint to IL(g).
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II1.2.1 Internal locales of a presheaf topos

We begin with an overview of the classification of internal locales of a presheaf topos
Sets®”, where C is an arbitrary category, as calculated in [24, §5]. We will also observe
that this characterisation subsumes the previous characterisation of Joyal and Tierney
[68, §VI] for internal locales over a cartesian base category.

Localic geometric morphisms. The ‘keystone” property used in [?4] for the clas-
sification of internal locales is the connection between internal locales and localic
geometric morphisms.

Definition I1.6. A geometric morphism f: F — & is localic if every object F of  is a
subquotient of f*(E) for some E € &, i.e. there exists F’ € ¥ and a diagram

< F — f(B).

Localic geometric morphisms f: ¥ — & correspond bijectively (up to isomor-
phism) to internal locales of & via the following result.

Theorem II.7 (Theorem 5.37 [67] or Lemma 1.2 [5Y], cf. also Proposition 4.2 [?4]). For
a geometric morphism f: F — &, the following are equivalent:

(i) f is a localic geometric morphism,

(i1) F is the topos of internal sheaves on an internal locale of &, and moreover this internal
locale can be taken as f.(Q).

This bijection can be visualised with the ‘bridge” diagram

?’
¥ fe

- ~

277 8=Sh(C,]) S~
e localic morphism N

f(Qy) s
direct image of _
subobject classifier internal locale.

Let L be an internal locale of & =~ Sh(C,]). It appears as the direct image of
the subobject classifier f.(Q#) = IL for some localic geometric morphism f: ¥ — &.
Considered as a sheaf f.(Q)g): EP — Sets on the canonical site (&, J.an) for &, there is
the chain of isomorphisms

f(QF) = 8(-, £.(QF)),
= ?(f*_l Q‘]:)/
= Subg(f"-)
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(here, the first isomorphism is by the Yoneda lemma). Hence, by composing with the
canonical morphism £¢: C — Sh(C, J), we obtain the isomorphism of J-sheaves:

L = Subg#(f* 0 €c—=): CFP — Sets. (IL1)
Thus, we can observe some basic facts about the internal locale 1L:
(i) for each object ¢ of C, IL(c) is a complete Heyting algebra, or frame, by [79,
Proposition I11.8.1];
(ii) foreacharrow f: ¢ — dofC,L(f): L(d) — LL(c)is an open frame homomorphism
by [79, Proposition II1.8.2].

Although not every such functor IL": C°° — Frm., will yield an internal locale, it is
possible to characterise when they do.

The relative Beck-Chevalley condition. Given any functor
L: CP —— Frmgpey,

we define Ky, as the function that assigns to each object (d, V) of C > LL the collection
Ky (c) of sieves in C = IL that contain small families

iel }
such that V =/, d,U,.

Thus defined, Ky, is not necessarily a Grothendieck topology on C < L. The
assignment of sieves Ky, clearly satisfies the maximality and transitivity conditions,
but Ky, does not always satisfy the stability condition (see [79, Definition III.2.1]).

When K, does define a Grothendieck topology, the topos Sh(C >~ I, Ky) is also
definable and moreover the geometric morphism

{ (ci, Uy) N V)

Cr, : Sh(C <L, Ky) — Sets®”,
induced by the projection 7ty : C = IL — C, considered as a comorphism of sites

oL (C > ]LI KIL) H (C/ ]triV)l

is localic by [23, Proposition 7.11]. Since each fibre has a top element, the functor my,
has a left adjoint f;,: C — C>=1L that sends c € C to the object (c, T.) € C<LL. Therefore,
the direct image functor C,, , of the induced geometric morphism acts as — o ty, by [79,
Theorem VII.10.4]. It is not now difficult to calculate, as is done in [24, §5], that

L = Cry (Qsh(owrkp)) = Qshexl ky) © -

Remark IL.8. In the language of [?4, Definition 5.1], if Ky, does define a Grothendieck
topology on C > I, then the site (C = IL, Ky ) is an example of an existential site, Ky, is
an existential topology and Sh(C = IL, K ) is an existential topos. Existential topoi will be
discussed in more detail in Section M3
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Thus, we arrive at the classification of internal locales in the topos Sets®” estab-
lished in [24, §5].

Definition I1.9 (Definition 5.1(e)(i) [24]). A functor IL: C°° — Frm,,, is said to satisfy

the relative Beck-Chevalley condition if, given an arrow e %, dof C,and a sieve S of CxIL
on the object (d, V) for which V =V fes ArU, then

vy =\ AW

g€l (S)

where /1*(S) denotes the sieve on (¢, 1! (V)) containing those arrows (¢, W) EN (e, " 1(V))
for which the composite

(€, W) =2 (e, P(V)) — (d,V)
isin S.

Theorem II1.10 (Proposition 5.10 [24]). Let IL: C°P — Frmpen be a functor. The following
are equivalent:

(i) 1L is an internal locale of Sets®”,
(i1) 1L satisfies the relative Beck-Chevalley condition,
(iii) Ky is a Grothendieck topology on C = L.

Definition I1.11 (Theorem 5.1 [?4]). Let L be an internal locale of Sets®". The topos
Sh(C = IL, Ky) is called the topos of internal sheaves (or just topos of sheaves) on L.

Remark IL12. Let IL be an internal locale of Sets”. It is not hard to recognise that the
isomorphism of frames

{(VeEL | VT =L =Cq, (Qsh(]L)) (c) = Qgnry © tr(c) = Qspy(c, To).
can be extended so that, for each object (c, U) of C >~ I, there is an isomorphism

{(VelL.|V<U} = Qghylc U),

and that, for each morphism (c, U) i> (d, W) of C = L, the transition map

QSh(lL)(f ): QSh(lL)(d/ W) - QSh(]L)(C, U)
sends V € Qgnay(d, W) to f1(V) AU € Qsnay(c, U).

The classification of internal locales of Sets®” originally given in [68, Proposition
VI1.2.2] for the case where C is a cartesian category can be recovered via the above
classification by noting, as is done in [?4, Proposition 5.3], that the Beck-Chevalley
and relative Beck-Chevalley conditions coincide when C has all finite limits (in fact, a
study of the proof of [?4, Proposition 5.3] reveals that only pullbacks are necessary).
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Corollary II.13 (Proposition 5.3 & Corollary 5.4 [24]). Let C be a category with all
pullbacks. A functor IL: C°? — Frmpe, satisfies the relative Beck-Chevalley condition, and

thus defines an internal locale of Sets®” , if and only if IL satisfies the Beck-Chevalley condition:
for each pullback square

cx,d —23 d
L
f
c—— ¢
of C, the square
3
Lo —— Ly
T,
s
L.—— L,
commuites.

The topology K;. We complete this discussion with some observations concerning
the Grothendieck topology K .

Proposition I1.14 (Remark 5.1 [?4]). Let IL be an internal locale of Sets®”. The Grothendieck
topology Ky, on C = 1L is generated by the following two species of covering families:

(A) {(c, u) J, (d,3,U) }for each arrow ¢ ER dofCand U € L,

id,

B) { € U) = (¢ Vig U

iel}foreach object cof Cand each {U;|i € 1} C L.

Proof. We immediately have that both species are Ky -covering. For the converse, note

that, given a Ky -covering sieve S on (d, V), each morphism (c, U) ER (d,V) of S can be
written as the composite

Uy —L5 @ 3,u) 2 [d,\/afu -, V).

fes

Hence, any Grothendieck topology | for which both species [A] and [B] are J-covering
contains the Grothendieck topology K. |

Remark II.15. Let IL be an internal locale of Sets®”.

(i) We have refrained from naming the Grothendieck topology K, the ‘canonical
topology’ to avoid confusion, despite it being a generalisation of the canonical
topology on a locale. Unlike a locale L of Sets, the Grothendieck topology K,
is not necessarily a subcanonical topology. Recall from [63, p. 542-3, §C1.2]
that a Grothendieck topology ] on a category D is subcanonical only if every
J-covering sieve S on an object D is effective-epimorphic, in the sense that D is the
colimit of the (potentially large) diagram

S —— p/D L3 D,
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where U: D/D — D is the forgetful functor. Observe, however, that the sieve
generated by a Ky -covering family

{(c, L@, 3fU)}

of species [A] is not effective-epimorphic for any non-invertible arrow f of C
since the colimit in C = IL is given by (c, U).

(ii) In contrast, the topology Ky is a relatively subcanonical topology in the sense of
Definition since, for each c € C, there is an isomorphism

IL(c) = Subshcar k) (Cr, £elc)) € Sh(C <L, Ky)/C, &clo),
i.e. the functor j.: IL(c) = Sh(C < IL,Ky)/C;,, &c(c) is full and faithful.

II.2.2 Internal locales of sheaf topoi

In this final subsection, it is demonstrated how a classification of the internal locales
of the presheaf topos Sets®” yields a classification of the internal locales of the sheaf
topos Sh(C, )).

Let (C,]) be a Grothendieck site. The embedding Sh(C, J) »> Sets®” is a localic
geometric morphism (see [b63, Example A4.6.2(a)]), and thus, for any localic geometric
morphism ¥ — Sh(C, ]), the composite

F — Sh(C,]) > Sets®"

is still localic since localic geometric morphisms are closed under composition (see
[6Y, Lemma 1.1]). Therefore, our understanding of the internal locales of the presheaf
topos Sets®” can be leveraged to describe the internal locales of Sh(C, ).

Lemma II.16 (Proposition 5.10 [24], Corollary C1.6.10[63]). Let IL.: C°? — Frmpe, be
a functor indexed over a category C with a Grothendieck topology J. The following are
equivalent:
(i) IL is an internal locale of Sh(C, ]),
(i) 1L is an internal locale of Sets®” and a J-sheaf,
(iii) Ky, is stable and contains the Giraud topology J,,

(iv) Ky, is stable and there exists a factorisation

Sh(C ~ L, Ky)

-
_-
-7 lcn]L
-
L/

Sh(C,]) > Sets“”.

Proof. The equivalence of statements [i) and is a consequence of the fact that the
direct image of a geometric morphism (in this case the inclusion Sh(C, J) — Sets“™)
preserves internal locales (see p. 528 [63, §C1.6], c.f. [63, Corollary C1.6.10] as well).
The equivalence of [ii) and is proved in [?4, Proposition 5.10] (cf. Remark 5.3(b)
[74] too). The final equivalence of and follows by definition of the Giraud
topology. m|
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II.3 Examples of internal locales

We now consider some examples of internal locales over non-cartesian base categories.

II.3.1 Gluing internal locales

What can prevent a functor IL: C°P — Frmpe, from being an internal locale of Sets"?

What goes wrong when Ky, is not stable? We give an example of such a functor, over a
category C without all pullbacks, which is not an internal locale, despite IL satisfying
the Beck-Chevalley condition for those pullbacks in C that do exist. Inspired by this
counterexample, we develop in Corollary [ITT8 a method for identifying the internal
locales of the presheaf topos Sets”” when D is obtained by ‘gluing’ certain constituent
subcategories together.

Example I1.17. Let L be any locale in Sets. For any category C with pullbacks, the
constant functor IL: C°P — Frmpe, for L, i.e. IL(c) = L and IL(f) = id; for all objects c
and arrows f of C, satisfies the Beck-Chevalley condition and so defines an internal
locale of Sets“" .

Now consider the category

° > o < L)
i idy ids

with all arrows displayed (we will refer to it as ¢ — e « e), which clearly lacks a
pullback for the diagram
o3
12
f
o —> o).
The constant functor IL: (e — e < e)°® — Frmg, for a non-trivial locale L is not

(o—)o(—o)op

an internal locale of Sets . We can observe that the relative Beck-Chevalley
condition fails. For instance, the set

S= { (.1/ u) i) (.2/ T'z)

UEL}

is a sieve of the category (¢ — o « @) < IL on the object (e;, T.,) for which have that
T., = VsdsU but also that T,, # \/ ¢*(S), as g'(S) is empty (here T, denotes the top
element in IL,,). Thus, IL does not satisfy the relative Beck-Chevalley condition and
therefore does not define an internal locale of Sets*~**".

The subobject classifier (g, @—s wr is, of course, an internal locale of the presheaf

topos Sets*”**". Recall (from [79, §1.4], say) that the subobject classifier Q
considered as a diagram in Locypen, is given by

Sets( -----

2y 250

where 2 denotes the 2 element locale (i.e. the terminal locale) and 2+2 is the coproduct
in Loc. This is because there are two sieves, @) and {id; }, on e, etc. Observe that the
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arrows i; and i, are disjoint open embeddings of locales, by which we mean that the
following equations are satisfied, forall V € 2,

i'3,v=V '3,v=1, ;'A,V=V, '3,V =1,

where L represents the bottom element of 2. We show that this property characterises
the internal locales of Sets®~**". We present this as a consequence of a wider theory
regarding ‘gluing’ internal locales together.

Corollary I1.18. Let {C;|i € I} be a set of categories where, for each i € I, C; has a terminal
object 1;. Let D be the category obtained from the disjoint union [[,.; C; by freely adding a new

terminal object 1. For each i € I, we denote by 1; EA 1 the newly added morphism connecting
the respective terminal objects. A functor IL: D — Frmgpen defines an internal locale of

Sets”” if and only if
(i) foralliel,

L
Lic,: CiP < D% — Frmgpe,

. . op
is an internal locale of Sets®i

(ii) and, for each pair i, j € I with i # j, the locale morphisms

Mﬁ)) L, <]L(fj) Ly,

]

Ly,

1

are disjoint open embeddings of locales, by which we mean that, forall V € 1Ly, V' € 1Ly,

V=V, f3V=1, 3V =V, 13,V =1,

1 1

where L; (respectively L;) represents the bottom element of 1Ly, (resp. LLy,).
Proof. For each object (d, V) of D = L, with d being an object of C; say, a sieve S on
(d, V) consists only of morphisms contained in C; < Llc;, € D > L, and any arrow

e %5 d of D is also contained in the subcategory C; € D. Therefore, we have that
i (V) =V qer(s) JgU for each such V, § and £ if and only if Lic, satisfies the relative
Beck-Chevalley condition. We can thus limit our attention to the second criterion of
the corollary and sieves on objects of the form (1, V) € D < L.

Suppose that IL satisfies the relative Beck-Chevalley condition. For each i € [ and

U € IL,,, the principle sieve S generated by the arrow (1;, U) N (1, A U) is Ky -covering.

Therefore
frau=\ aw=u
8Ef;(S)
and so f; is an open embedding. For each j € I with i # j, we have that
fagu=\/ 3w
3<f(9)
which, as f] *(S) is empty, is equal to L; as required.

Conversely, suppose that IL|¢, is an internal locale of Sets®”, for each i € I, and
that IL(f;) and IL(f;) are disjoint open embeddings for each pair i,j € I with i # j. It



I1.3. EXAMPLES OF INTERNAL LOCALES 51

remains to show that, if S is a sieve on (1, V) for which V =/ ges 3gU, then we have
that

vy =\/ 3w

g€h*(S)

for any arrow e %, 10f D. Tt suffices to consider the case when /1 is the arrow 1 j EIN 1, for
some j € I, and S is generated by arrows of the form (1;, U) LR (1, V). This is because

any arrow h’ can be factored ase — 1; 2, 1and any such sieve S can be rewritten as
{cwsa,amban|ier)

where T generates a Ky -covering sieve of the desired form. But now the thesis follows
since IL(f;) and IL(f)) are disjoint open embeddings for each pair i, j € [ withi# j. O

Example I1.19. Using Corollary [LT8, we are instantly able to recognise that a functor
L:(e— o« @)% — Frmype,

(e—e—e)°P

defines an internal locale of the topos Sets if and only if the diagram in Loc

L., — 3 L., <&

L.,
is a pair of disjoint open embeddings, and thus confirm using Corollary [LTS that the
constant functor IL: (¢ — e « ¢)°? — Frm,., considered in Example [LTZ does not
define an internal locale of Sets*~**".

More generally, if T is a tree (see [T, p. 26]), then the internal locales Sets' are
equivalently functors IL: I'°? — Loc where, for each x € I, the locale morphisms
L, — I, corresponding to the covers of x (in the sense of [31, §1.14]) are disjoint open

embeddings.

I1.3.2 Internal locales for monoid actions

Although every topos has a site whose underlying category has pullbacks (e.g. the
canonical site), there are many topoi which have a natural choice of site that lacks
pullbacks. The classification of internal locales given in Section IT2 is most aptly
applied when studying these topoi. An important example of such a topos is BG,
the topos of representations of a discrete group G on sets. This is the presheaf topos
Sets®”, where the group G is viewed as a one-object category.

Therefore, applying Theorem IT21, we know that an internal locale of Sets“” is a
functor IL: G — Frm,., satisfying the relative Beck-Chevalley condition. But it is
easily calculated that any action by G on a locale L by homeomorphisms, i.e. a group
homomorphism G — Autye(L), also yields a functor

L: G® —— Frmgpe,

that satisfies the relative Beck-Chevalley condition (this can be deduced as a corollary
of the result for monoids below). Thus, by purely computational means we have
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recovered the correspondence between internal locales of Sets®” and G-actions on
locales that was also observed in [63, Example C2.5.8(d)].

However, for a monoid M, it is not true that any action by M on a locale L, i.e.
a monoid homomorphism M — Endi(L), yields an internal locale of the topos of
M-sets Sets™”. Nor will it suffice to restrict to open actions, those homomorphism
that factor as M — Endyoc,,, (L) € Endie(L). Instead, an internal locale of SetsM”
must interact stably with respect to the set of divisors {k € M |nk = m}, for n,m € M,
as described below.

Proposition I1.20. Let M be a monoid. An open action of M on a locale L constitutes an
internal locale of Sets™” if and only if, for each U € L and each pair n,m € M,

n~1(3,U) = \/ U

keM
nk=m

Proof. We must show that the functor IL: M°? — Frm,pe, induced by the open action
of M on L satisfies the relative Beck-Chevalley condition if and only if, for each U € L
and each pair n,m € M,

Assuming the relative Beck-Chevalley condition, the Ky -covering sieve R gener-
ated by the single arrow (, U) 5 (x,3,,U) must be stable under the map

(+,n7'3,U) —— (+,U)
We readily calculate that

n*(R) = {(*, V)5 (+,n713,,U) ‘ nk=mand V < k‘ln‘13mu}.

Hence, we have that
n1(3,,U) = \/ AV
ken*(R)
By the inequality
V<k'n'3,U=kw13,3U<U
we deduce that 3,V < 3 U. Simultaneously, the equality 3,3,U = 3,,U implies that
I U < n @3, U). Combining the two inequalities, we conclude that

@ =\ wv=\/Fu

ken*(R) kkeM
nK=m

as required.
For the converse, let Sbe asieve in M>IL on the object (+, V) forwhich V = \/, . 3(U.
Then we calculate that

nY(V) = \/ n13,U
mesS

=\/ \/ 3U

meS keM
nk=m
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We need only finally note that
7(S) = {(*, )5 (V)| 3m e S, nk = m}

to deduce the result. m|

Example II.21. For the monoid (IN, +, 0), Proposition 20 recovers the characterisation
of difference locales given in [[[T6, Propositoin 13.10].

II.4 Internal locale morphisms

In this section we begin our study the morphisms of internal locales and their prop-
erties. We aim to provide a parallel to the treatment of locale morphisms and the
geometric morphisms between localic topoi that is found in [/9, §IX]. Therein it is
shown that, given two locales X, Y (of Sets), there is an equivalence

Loc(X, Y) ~ Geom(Sh(X), Sh(Y)) (ILii)

between the category of locale morphisms X — Y and the category of geometric mor-
phisms Sh(X) — Sh(Y). The morphisms of internal locales were first characterised in
[68, §VI.2].

Definition I1.22 (Proposition VL.2.1 [68]). Given a pair IL;,IL;: CP? =3 Frmgpe, of in-
ternal locales of the topos Sh(C, J), an internal locale morphism §: IL; — I, consists of

a frame homomorphism f;!: IL,(c) — LL;(c), such that, for each morphism ¢ A dofc,
the diagram

(

]LQ d) ]Lz(C)

b
3JL1

Li(d) — <— LLi(c)

is a morphism of adjunctions: i.e., the equations
Li(g) ofy' =1c' o lLa(g) and T o fc' = 13" © Try
are both satisfied.

Our first task is to extend the equivalence ([Lii) between internal locale morphisms
and geometric morphisms for set-based locales to the internal setting, as demonstrated
concretely in [?4, §4]. We construct a bijective correspondence between

(i) the internal locale morphisms f: IL; — IL,;

(ii) the morphisms of relative sites

€=k ™5 )] — [C ki) 2 €],
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i.e. the morphisms of fibrations

'dcxf_l
Cx1l, - > Cx1,

C

where {!: L, = LL; denotes a natural transformation, for which the induced
functor idg<{™! yields a morphisms of sites ide<{™: (C=1L,, K]Ll) — (C=LL,, Ky,)
— for notational convenience, we denote the functor idg > f~ by i

(iii) finally, the geometric morphisms f: Sh(IL;) — Sh(IL,) for which the triangle

Sh(L;) ——— Sh(L,)

\ / (ILiii)
Cry,, Cry,,

Sh(C, )
commutes.

Thereby, we will recover the biequivalence
Loc (Sh(C, ])) = £o¢/Sh(C, ]) (ILiv)
(as seen in [?4, Corollary 3.5]).
(i) Here, Loc (Sh(C, J)) denotes the bicategory of internal locales of Sh(C, J), their
internal locale morphisms and natural transformations between these.

(ii) By Loc¢/Sh(C,]) we denote the bicategory whose objects are localic geometric
morphisms f: & — Sh(C, J), whose 1-cells are commuting geometric morphisms

E—=2 &

N

Sh(C,)),

(the geometric morphism g is also localic by [69, Lemma 1.1(ii)]) and whose
2-cells are the commuting 2-cells of geometric morphisms

Sh(C, ).

Having related internal locale morphisms and geometric morphisms, we turn to
a study of their properties. In Proposition [T78, we will extend, to the to internal
setting, the result [/9, Proposition IX.5.5(i)], which states that a locale morphism
f: L — Kis an surjective locale morphism if and only if the induced geometric mor-
phism Sh(f): Sh(L) — Sh(K) between localic topoi is surjective. Further properties
of internal locale morphisms shall be studied in Section [TH and Section ITA.
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Internal locale morphisms and geometric morphisms.

Proposition I1.23. Let IL;,IL;: CF =3 Frmyge, be internal locales of Sh(C, ]). There is an
equivalence of categories

Loc(Sh(C, J))(ILy, ILz) =~ Loc¢/Sh(C, J)(Sh(IL,), Sh(IL>)).

Proof. By Corollary [Z3, Corollary [73 and the isomorphism IL; = S1.1b5h(]Ll)(C;]L1 ),
there is an equivalence of categories

Lo¢/Sh(C, )(Sh(ILL,), Sh(IL,))
Sh(lLl) Sh(]LZ)
~Topos/idg lcnll , lcnlz ,
& &

(C > H_Q, K]LZ) (8 ~ SU-bSh(]Ll)(C*mL1 _)/ ]can)

~RelMorph/{c inlz , iﬂs ,
(&%) (&, Jean)
(C > 1Ly, K]Lz) (C > SubSh(]Ll)(C:z]Ll ZC_)/ Tcan)
~RelMorph/id¢ l/nlz , TSty Cry, )
(&) (o))
(C> Ly Ky,) (€I, Ky,)
~RelMorph/id¢ l/mLZ , inll
(&) C.))

By a restriction of the equivalence in Proposition [78, the latter is also equivalent to
the category

RelMorph,. /idc((C, ], Lo, K1,), (C, ], IL1, K,)),

the category whose objects are morphisms of relative sites of the form

(Fide): [€ Lo Ke) ™5 € ])] — [€© LK) ™5 €1,
and whose arrows are natural transformations between these, or equivalently the
category:

(i) whose objects are natural transformations f': IL, = IL;, where each component
fol: ILy(c) — Ly(c) preserves finite limits (ie. meets) and for which the induced
natural transformation

fiCxl, —> Cx1,

sends Ky ,-covers to Ky ,-covers,
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(i) and whose arrows are modifications between these.
Hence, to establish the equivalence
Loc(Sh(C, J))(ILy, ILz) =~ Loc¢/Sh(C, J)(Sh(IL,), Sh(IL,)),

it remains only to show that the induced functor { of a pointwise cartesian natural
transformation §~': L, = L, is cover preserving if and only if f~! defines an internal
locale morphism.

To that end, it suffices to consider the two generating species of Ky,-covering
families identified in Proposition [TT4. Let

{ALEYCE WY

be a Ky,-covering family of species [A}. The family

({ews e |)={ S e Gueu |
is Ky ,-covering if and only if {,! (I, U) = I, f. (U). Let

{(C,U;’) ﬂ) (C,\/Uj) ZEI}
be a Ky,-covering family of species [B). The family

i€l
{«suofﬁ(a\/uqieI}]={@ﬁf«L»3%[aﬁT\/uq]iel}
i€l

i€l
is Ky ,-covering if and only if Tc‘l preserves joins, and hence is a frame homomorphism,
thus completing the proof. O

)

f

Theorem I1.24 (Corollary 3.5 [?4]). There is a biequivalence
Loc(Sh(C, ])) = Loc/Sh(C, )).

Proof. By Proposition [L73, the action on objects that sends a localic geometric mor-
phism f: & — Sh(C,]) to the internal locale f.(CQ)g) can be extended to a bifunctor
£: Loc¢/Sh(C, ]) = Loc(Sh(C, ])). Similarly, the action on objects that sends an inter-
nal locale IL to the localic geometric morphism

Cry : Sh(C <L, Ky) — Sh(C,])

also extends to a bifunctor T: Loc (Sh(C, J)) — Loc¢/Sh(C,)).
By Proposition 73, the isomorphism IL = Cg,, (QShUL)) and the isomorphism
f = Cry ) the bifunctors £ and T are mutually inverse. O

Notation II.25. Given an internal locale morphism f: IL; — IL,, we use
Sh(f): Sh(L;) ——> Sh(IL,)
to denote the corresponding localic geometric morphism.
Corollary I1.26. The subobject classifier Qg of a topos is the terminal object of Loc(E).
Proof. The identity idg: & — & is the terminal object of Loc¢/& . |
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II.4.1 Surjective internal locale morphisms

We now turn to characterising some properties of the geometric morphisms induced
by internal locale morphisms. Recall that a locale morphism f: L — K is a surjection
if the corresponding frame homomorphism f~': K — L is injective. Recall also that a
geometric morphism f: ¥ — & is a surjection if the inverse image functor f*: & = F
is faithful. In [I79, Proposition X.5.5(i)], it is shown that a locale morphism f: L — Kis
surjective if and only if the corresponding geometric morphism Sh(f): Sh(L) — Sh(K)
is surjective. We extend this to the internal setting, and show that surjections of internal
locales can be characterised “pointwise’.

Definition I1.27. Let f: IL; — L, be an internal locale morphism of Sh(C, J). We say
that f is a surjective internal locale morphism if {-1: Ly(c) — LLy(c) is injective, for each
object c € C.

Proposition I1.28. Let f: IL; — 1L, be an internal locale morphism of Sh(C, ]). The following
are equivalent:

(i) the geometric morphism Sh(f) is a surjective,

(ii) T is a surjective internal locale morphism.

Proof. By [23, Theorem 6.3], the geometric morphism Sh({) is surjective if and only if
the corresponding morphism of sites

f: (C> Ly, Ky,) — (C>ILy,Ky))

is cover reflecting. Suppose that each f, is injective. Let S be sieve of C =1L, on (d, V)
such that §(S) is K, -covering, i.e. f;}(V) =/ ges A, (pf: ' (U). We have that

i7'V) = \/ J e W),

g€S

= \/ 3wl

g€Ss
\/ U
g€S

= f;l

Thus, since ! is injective V = \/ ges iU and so S is Ky ,-covering.
Conversely, if f is cover reflecting and {-}(U) = f.1(V) for a pair of elements

U,V € 1L,(c), then f reflects the maximal cover. Hence, we conclude that U = V. O

II.5 Internal embeddings and nuclei

This section is dedicated to the study of internal locale embeddings. Their study is
continued in Section [TA. Recall that a locale morphism f: K — L is said to be an
embedding if the corresponding frame homomorphism f': L — K is surjective — or
equivalently if the right adjoint f.: K — L is injective (see [/9, Lemma IX.4.2]). Just
as with surjective internal locale morphisms, we define internal locale embeddings as
the ‘pointwise” generalisation.
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Definition I1.29. Let {: IL; — L, be an internal locale morphism of the topos Sh(C, ]).
We say that f is an internal locale embedding if f-: Ly(c) — IL1(c) is surjective, for each
object c € C. We will also refer to IL; as an internal sublocale of IL, and f as the inclusion
of this internal sublocale.

Recall also that a geometric morphism f: F — &is said to be a geometric embedding
(and F a subtopos of &) if the direct image functor f, is full and faithful. By [79,
Proposition IX.5.4], geometric embeddings generalise embeddings of sublocales in
the sense that, given a locale morphism f: K — L, the induced geometric morphism

Sh(f): Sh(K) —> Sh(L)

between the topoi of sheaves is a geometric embedding if and only if f is an embedding
of locales.

The aim of this section is to prove an analogous result for embeddings of internal
locales: that, given a morphism of internal locales f: I’ — IL of Sh(C, J), the geometric
morphism Sh(f): Sh(IL’) — Sh(LL) is an embedding if and only if { is an internal locale
embedding. To this end, we develop a study of internal nuclei. These are the internal
generalisations of the nuclei on a locale, and will appear reminiscent of Lawvere-Tierney
topologies (a similarity that will be made concrete in Theorem [T34). Nuclei are a useful
tool when studying sublocales since many properties of sublocales are more readily
proven using nuclei than directly. In particular, that the sublocales of a locale L form
a co-frame is often proved via nuclei, as discussed in Section [LA below.

Overview. We proceed as follows.

— In Section LA, the notion of an internal nucleus on an internal locale IL is intro-
duced and it is shown that internal nuclei correspond bijectively with internal
sublocales of L.

— We show in Section [[52 that internal nuclei on I, and thus by extension internal
sublocales of IL, correspond bijectively with Lawvere-Tierney topologies on
Qgn), and hence subtopoi of Sh(IL).

— Finally, in Section 53, we conclude that the surjection-inclusion factorisation
of a localic geometric morphism is calculated ‘pointwise’.

I1.5.1 Internal nuclei

Recall from [60, §I1.2] that a nucleus on a locale L is a function j: L — L satisfying, for
allx,y €L,

x < j), j(j(x) < jx), jxeAy) = jx) A jy)-

These properties are referred to as j being, respectively, inflationary, idempotent, and
meet-preserving. Any function satisfying these properties must also be monotone.

It is well-known (see [60, Theorem I1.2.3]) that there is a bijective correspondence
between nuclei on L and sublocales of L. In one direction, the nucleus associated to
a sublocale f: K »> L is given by the function f.f™!: L — L (here f. denotes the right
adjoint to f~!, see Notation I7). Conversely, given a nucleus j: L — L, the image
of j as a subset of L, which we denote by L/, can be given the structure of a frame.
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The meets are computed as they are in L while the join of a subset {U; | i € [} C L
is computed as j (\/,; U;), where \/;, U, is the join in L. It is then clear that j: L — L/
constitutes a surjective frame homomorphism, and hence the inclusion of a sublocale
(see [B0, Lemma I1.2.2] or [79, Proposition IX.4.3]).

Definition I1.30. Let L: C°? — Frmgpen be an internal locale of Sh(C, J). An internal
nucleus is a natural transformation j: L — L (as a functor into Sets) such that each
component j.: L. — L, for ¢ € C, is a nucleus on the locale LL..

When the subobject classifier Qgp(c,j) of Sh(C, ]) is considered as an internal locale,
the definition of an internal nucleus j: Qshe)) — Qsn,) coincides with that of a
Lawvere-Tierney topology (see [63, Definition A4.4.1]). For alocalic geometric morphism
f:F — & weobservebelow thatinternal nuclei on f.(Qg) correspond bijectively with
Lawvere-Tierney topologies on Q.

First, we establish a bijective correspondence between internal nuclei and internal
sublocales that generalises the bijective correspondence for locales (see [60, Theorem
11.2.3]).

Lemma I1.31. Let j: L — L be a nucleus. For each subset {U; | i € I} C L, we have that
iel iel

Proof. The first inequality j (Ve U;) < j(Vie jU;) is a consequence of j being infla-
tionary as U; < jU; for each i € I. The converse inequality is achieved by applying j
to both sides of the canonical inequality

vfu«(v u]
iel iel
O

Proposition 11.32. Each internal nucleus j on an internal locale IL of Sh(C, ]) defines an
embedding of internal locales I/ < IL.

Proof. By the above discussion, for each object c of C, the nucleus
jc: ]Lc —> ]Lc

induces a sublocale lLZ of IL.. As jis anatural transformation, for each arrow c 3 dof
C, ¢! IL; — L, restricts to a function g7': ]Lé - le which, by the definition of meets
and joins in IL; and I/, can easily be shown to be a frame homomorphism. We must
therefore show that each g7': ]L; — 1L, is also open.

A left adjoint is given by j;3p) since, for each U € ILi and V € L/,

JadU SV =ju(V) & FpU<V & U<g'(V),
and furthermore the Frobenius condition is satisfied:

jaFgU AV = ja3gU A iV = ju(@ugl) A V) = jaTigU A g7H(V)).
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We thus conclude that each internal nucleus j induces a functor
IL/: C°P — Frmgpen.

Moreover, we observe that the square

38
ILc —> H—Jd

L

jdag

SN
commutes for each ¢ > d € C. For each U € L., we have that U < j.(U) and so
jdagu < ]dag]c(u)
For the converse inequality, as U < g'3,U, it follows that

U<g AU = jo(U) < jag ' Tg(U),

= Ja(U) < g jed,(U),
- ngd(u) < jcag(u)/
= jedgja(U) < jedg(U).

<
<

Therefore, we have a natural transformation j: I. — IL/, where each component is
a surjective frame homomorphism and, moreover, j commutes with the respective
left adjoints, i.e. jgd¢j. = jud, for each arrow d % ¢ of C. Hence, j would define an
embedding of internal locales if I/ were also an internal locale of Sets®" .

To show that IL/ is an internal locale, it remains only to show that the functor IL/
satisfies the relative Beck-Chevalley condition. Let S be a sieve on (d, V) € C < 1L/ such

that
V= [\/ jaFueU

g€S

4

which, by Lemma I3, is equal to j4 (\/ ges Ji(g) U), and let e = d be an arrow of C.
For notational convenience, let W denote \/ s Ji(U. Since L is an internal locale of
Sh(C, )),
W)= \/ el
g€ (S)
Thus, by Lemma [T31, we have the desired equality
= Je

7

\/ JedupU

geh*(S)

(V) = B GaW) = b (W) = je[ \/ Heu

geh*(S)

and therefore IL/ is an internal locale of Sets®" . Since Sh(IL/) — Sets®” factors as

Sh(L/)) — Sh(L) — Sh(C,]) = Sets“”,

we conclude that I/ is an internal locale of Sh(C, J) as well by Lemma [LTA. O
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Corollary I1.33. Let IL: C°P — Frm e, be an internal locale of Sh(C, ]). There is a bijective
correspondence between internal sublocales of IL and internal nuclei on IL.

Proof. By the theory of standard locales, there is a bijective correspondence between
collections of nuclei
{jo: Le > L. |ceC}

and collections of sublocales
{feLi—L.|ceC},

where both are indexed by the objects of C. Our bijection will be a restriction of this
correspondence.
We have already seen in Proposition [L32 that if the collection

{joo L. > L. | ceC}

of nuclei is natural in ¢, i.e. it defines an internal nucleus, then the corresponding
collection of sublocales yields an internal sublocale embedding. It remains to show
the other direction: that if

{(fo:L.»—>L.|ceC}

are the components of an internal sublocale embedding, then the corresponding
collection of nuclei is natural.

Let f: I’ — IL be an embedding of an internal sublocale. Since each component
f-l: IL. — L, is surjective, it induces a nucleus f..f-': IL. — L, for each object ¢ of C.

We wish to show that, for each arrow ¢ 3 dof C, the square

-1
L, = L,

f*df;ll lm;l

g—l
Ly — L.
commutes. Since the square

E|
L & L
=
. .
o T L
L, ﬁl L.,

8

is a morphism of adjunctions, taking the respective right adjoints also yields a mor-
phism of adjunctions

-1

8
L, gﬁmc

f*dT T\f*c
g—l
8

L, Z— L.
Hence we have the desired equality

fofilg™ =g 'y = &7 afy
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I.5.2 Geometric embeddings

We now establish a bijective correspondence between internal nuclei and Lawvere-
Tierney topologies, and hence between internal sublocales and subtopoi. Let ¥ be a
topos. Recall, from [63, §A4.4] say, that a Lawvere-Tierney topology is a endomorphism
j: QF — Qg on the subobject classifier of the topos ¥ such that the diagrams

1— Qf Q?‘%’QT QrF X Qr —5 OF
DN A
Qg, Qg, QrF X QF — Qf

commute. Recall also that there is a bijection between Lawvere-Tierney topologies
and subtopoi of ¥. As observed in [[79, Corollary IX.6.6], given a locale L, there is a
bijection between Lawvere-Tierney topologies on Qgp() (and hence subtopoi of Sh(L))
and nuclei on L (and hence sublocales of L). The following result extends this bijection
to the internal setting.

Theorem I1.34. Let IL: C°P — Frmgpe, be an internal locale of & ~ Sh(C,]). There is a
bijective correspondence between the following

(i) the subtopoi of ¥ ~ Sh(IL);
(ii) the internal nuclei on IL;
(iii) the internal sublocales of IL.

In particular, if f: I” — IL is an internal locale morphism, Sh(f) is a geometric embedding if
and only if f is an internal locale embedding.

Proof. The bijective correspondence between internal nuclei and internal sublocales
was shown in Corollary [C33. We now demonstrate a bijective correspondence be-
tween the internal nuclei on IL and the Lawvere-Tierney topologies on QOgp(r).

Let j: Qsnay — Qsny be a Lawvere-Tierney topology and let f: Sh(L) — Sets“"
be the localic geometric morphism such that f.(Qspr)) = L, ie. f = Cy. By now
applying the direct image functor f.: Sh(IL) — Sets®”, we obtain an endomorphism

feJ: f(Qsnay) =L —— £.(Qsnay) = L.

By the description of Cy, , afforded by [79, Theorem VII.10.2], we have that

TUL +

(fef)e = (Crpof)e = (o tL)e = jie)-

We claim that f.j is an internal nucleus.
Since j is a Lawvere-Tierney topology, f.j makes the following diagrams

L -y LxL —3 L

L
p if*]' f*ij*Jl lﬂj

L, LxL —23 1L
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commute. Thus, f.j: L — L is a natural transformation such that, for each c € C, the
component (f.j).: L, — L. is idempotent and preserves binary meets. It remains to
show that (f.j). is inflationary.

LetU € IL.. As jisa Lawvere-Tierney topology and natural, there is a commutative
diagram of sets

Teu

1(C U) —_— QSh(IL)(C U) % QSh(]L) C, T)

% i(c u) i(f De=le

Qsny(c, U) Vil Qsnmy(c, T).
The displayed morphisms act as follows:
(i) the map T uy: 1(c, U) = Qgna)(c, U) picks out the top element
U € Qgpay(c, U) = Subspy(fe-r(c, U)),

(ii) while the map Qgna)(c, T) = Qsn)(c, U) is induced by pulling back subobjects
along the monomorphism €c.p.(c, U) > €e.r(c, T). In other words, it acts by

Ve VAU

Thus, by chasing the element U € Qgpy(c, T) through the diagram, we deduce that
UA(fij)(U) = ju(U) = U. Thus, U < (f.j)(U) as desired. Hence, f.j: L — Lis a
natural transformation in which each component is a nucleus, i.e. f.j is an internal
locale.

Conversely, given an internal nucleus

k: L = f(Qshay)) —> L = £(Qsnwy),

we define a natural endomorphism kf on the subobject classifier Qgyr), viewed as a
sheaf on the site (C = IL, Ky.), by

K W) =k AL,

for each (c,U) € C <L and each V € Qgyuy(c,U) = {V € L, | V < U}. We now
demonstrate that k/ defines an Lawvere-Tierney topology.

As k is an internal nucleus, by a simple diagram chase it is clear that, for each
object (c, U) € C = L, the diagrams

K
1(c, U) & QSh(]L) c, U) Qgsnay(c, U) 2 Qsny(c, U)
QSh(]L)(C u), ’ Qsny(c, U),

Qsnay X Qshay(c, U) —> Qsnary(c, U)

f
k(c,u>><k(fc,u¢ \L )

Qsnay X Qsnay(c, U) —= Qsnqy(c, U)
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all commute. It remains to observe that k/ is natural. Since each arrow (c, U) EN d,V)
of C =< IL can be factored as
W)= 87 (V)5 @, V),

it suffices to show that both squares in the diagram

Qshay(d, V) — Qgnay(c, §7H(V)) — Qsnay(c, U)

f
\Lkw,‘/) ik{c,gflwn \Lk{c,w

Qsnayd, V) — Qsnay@d, §71(V)) —— Qsnay(c, U)
commute.

(i) The left-hand square commutes since, for each W € IL;,
k(8 W) A g1 (V) = g7 (ka(W)) A g1 (V) = g7 (ka(W) A V).
(i) Meanwhile, the right-hand square commutes since, for each W € I,
kWAU) AU =kW)AU=k(WAZ (V)AL
Finally, the bijection is completed by noting that the two constructions are mutually
inverse. Thatis, foreachce Cand U,V € L,
(FI)(V) =K, (V) =k(V) A T = ke(V)

(cT)
and

(F-Dew™) = fen (W) AU = (V)
for each internal nucleus k on IL and each Lawvere-Tierney topology j on Qgpr). O

II.5.3 The surjection-inclusion factorisation

Recall that every locale morphism f: L — K can be factored uniquely (up to isomor-
phism) as a surjection of locales followed by an inclusion of locales (see [I79, §IX.4]).
The same is true for geometric morphisms: every geometric morphism f: ¥ — &
can be factored as a geometric surjection composed with an inclusion of a subtopos
(see [b3, Theorem A4.2.10]). If f is induced by an internal locale morphism, a simple
application of Proposition and Theorem 34 yields the following.

Corollary I1.35. Let f: I” — IL be an internal locale morphism of Sh(C, J). The surjection-
inclusion factorisation of the geometric morphism
Sh(f): Sh(IL") — Sh(L)
is induced by the “pointwise’ surjection-inclusion factorisation of f.
Proof. Let
Sh(L’) — Sh(L*"') >—> Sh(L)

denote the surjection inclusion factorisation of Sh(f). By Proposition and Theorem
[34, the factor Sh(IL’) - Sh(IL*") is induced by a surjective internal locale morphism
L' - LM, while Sh(L*) »> Sh(L) is induced by an internal embedding of locales
IL*™ > IL. Since internal surjections and embeddings are computed ‘pointwise’, the
component at ¢ € C of these internal locale morphisms must agree with the ‘pointwise’
surjection-inclusion factorisation of the locale morphism f.: L. — L.. O
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I[1.6 The frame of internal nuclei

In this final section, we consider the poset of internal nuclei on an internal locale.
It is well-known that this forms a frame, but we show additionally that the frame
operations can be computed ‘pointwise’.

Let L be a locale and let N(L) denote the set of nuclei on L. We can order N(L) by
setting j < kif j(U) < k(U) for all U € L. Recall, from [0, Proposition 11.2.5] say, that
so ordered N(L) is a frame. The set of sublocales of L, written as Suby (L), can also be
ordered with [K > L] < [K’ > L] if and only if there is a factorisation

K— K

N/

L.

Under the bijection between nuclei and sublocales, this is precisely the order dual
N(L) = Suby(L)°P, and hence Suby (L) is a co-frame.

Definitions I1.36. Let IL: C°? — Frmpe, be an internal locale of Sh(C, ]), and let & be
a topos.

(i) By N(IL) we denote the poset of internal nuclei on IL ordered by j < k if and only
if, foreachc € Cand U € L, j.(U) < k(U).

(ii) By LT(E) we denote the poset of Lawvere-Tierney topologies for &, ordered by
j < kif and only if j = j A k (this poset is denoted as Lop(E) in [63, §A4.5]).

(iii) By Subropes(E) we denote the poset of subtopoi of & which have been ordered
by [F’ » &] < [F »» &] if and only if there is a factorisation of geometric
morphisms

F— F

N/

&.

(iv) By Subpecsnc,y(IL) we denote the poset of internal sublocales of IL ordered by
[L" > L] < [IL” »» L] if and only if there is a factorisation of internal locale
morphisms

:[]'_/ ; ]]'_//

N

L.

Under the bijections established in Theorem [L33, there is an isomorphism of
posets

N(IL) = LT(Sh(IL)) = Subrepes(Sh(IL))P = Subyecsnc, ) (IL)F

We know already that Subropes(Sh(IL)) is a complete co-Heyting algebra, i.e. a co-frame
(see [b3, §A4.5]). We will give an alternative proof using internal nuclei that N(IL)
is a frame. Our construction demonstrates that the frame operations of N(IL) can be
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computed ‘pointwise’. That is, for each subset {j' | i € I} € N(IL) and each object c of
C, there are equalities

(N‘] = A\ b (W] =\/ i
i€l c iel i€l c iel

where A\, j. and V., j. are the meets and joins as computed in N(IL,). The first of
these equalities is easily shown.

Lemma I1.37. The meet of a subset {j' | i € I} C N(LL) is given by

( A J'i) W= A jiw, (ILv)

i€l i€l
foreachce Cand U € L.

Proof. If (ITM) defines a valid internal nucleus on L, it must clearly be the meet of
the subset {j' | i € I} € N(IL). Recall from [0, Proposition I1.2.5] that A, . yields a
nucleus on L., for each object c € C. We must show naturality. As g‘lz L, - L. is

g )
open, for an arrow ¢ = d of C, it preserves all meets and so

g (A j;<U>) = \giw = /\ jig .

i€l i€l i€l
Thus, /\,; j' defines an internal nucleus on L. O

We will demonstrate that N(IL) is a frame by generalising the notion of a pre-
nucleus on a locale, recalled below, to the internal setting.

Remark I1.38. We give some justification as to why the frame operations can be
computed ‘pointwise” as described in Theorem [TZ2 below. Recall that the subtopoi
of Sh(®, ]) correspond to Grothendieck topologies |" on D that contain J. In the case
of a Grothendieck topology |’ on C = IL that contains Ky, we observe that the added
data is generated by new covering families on the fibres IL.. Specifically, adding a new
covering family

ieI}

{(c,aﬁui) ey (c,Ll)’ieI}

{ (ci, U;) £, (c, U)

to Ky, is equivalent to requiring that the family

is covering.

I1.6.1 Pre-nuclei of locales

There are many proofs of the fact that N(L) is a frame for each locale L. For example,
the proof found in [bl, Proposition I1.2.5] shows that N(L) is a complete Heyting
algebra by defining the Heyting operation. Alternative approaches using pre-nuclei
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are considered in [108] and [35]. We will follow the argument of [T08] when developing
our internal generalisation. We briefly repeat the argument for locales below.

Recall from [I08, §2] that a pre-nucleus on a locale L is a (necessarily monotone)
map p: L — L that is inflationary and finite-meet-preserving, i.e. forall U,V € L,

U<pl), pUAV)=pl)ApV).

Thus, a nucleus on L is an idempotent pre-nucleus. Unlike nuclei, pre-nuclei are
evidently closed under composition.

We denote by PN(L) the poset of pre-nuclei on L ordered by p < g if p(U) < q(U)
for all U € L. Tt is clear that PN(L) is a complete lattice. For each subset {p' | i € I} of
PN(L)and each U € L,

( A\ pf] W = /\ v, [V pf) w=\/pw,
i€l i€l i€l i€l
where A, p'(U) and V. p'(U) are calculated as in L. It follows by the infinite dis-
tributive law for L that PN(L) is also a frame.

The inclusion of nuclei into pre-nuclei N(L) < PN(L) has a left adjoint

(=)®: PN(L) = N(L),

which we call the nucleation (the nuclear reflection in [B5] and idempotent closure in [108]),
constructed as follows. For each ordinal a and limit ordinal A, we define inductively

P =4, pU) = pirt W), pru) = \/ P,

a<A

At each stage, the resultant map p*: L — L is a pre-nucleus. Necessarily, as L is
small, there is a sufficiently large ordinal x such that p* is idempotent and therefore a
nucleus. We label this by p™. We observe that if p < g then p* < g%, thatp < p®, and if
j is a nucleus then j = j*. That is, nucleation is functorial, and has units and counits
yielding the adjunction

N(L) —— PN(L)
witnessing N(L) as a reflective subcategory of PN(L).

Thus, the poset N(L), in addition to the meets constructed in Lemma [137, has all

joins. For a subset

{j'liel} S N(L),
the join in N(L) is given by (\/iel ji)oo. The infinite distributive law for N(L), and hence
the fact that N(L) is a frame, is a consequence of the distributive law for PN(L) and
Lemma below (the lemma is equivalent to [108, Lemma 3.1]).

Lemma I1.39. Let L be a locale, n a nucleus on L, and let {p' | i € I} be a collection of
pre-nuclei on L. The infinite distributive law

(m vpf)w :nA[vpf)w

iel iel

holds.
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for each ordinal x, and thereby deduce the result. The base case

ra W)O Cid = nn (vpf]o

iel i€l

is trivial, since U < n(U) forall U € L.
We now perform the inductive step. Suppose that

] =nn ()

then there is a chain of equalities

[n A \/;wi]a+1 = [n A \/pi) (n A \/pi]a,

i€l i€l i€l

Ayl vl

i€l iel iel

(o] )2V )

i€l i€l i€l

Using that nn = n,n < n ((\/iel pi)a), and n < p'n, for all i, we have that

(n A \/ p’)m =nA \/ pnAp [[v pi]a],

iel iel iel

S\ nnpnny [[vp]]

i€l i€l

]}

iel i€l

=nA [\/ pl)aﬂ .

iel
Finally, we perform the limit inductive step. If A is a limit ordinal such that

(n A \/pi)a =nA (\/pi]a

iel iel
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for each ordinal a < A, then there is a chain of equalities

[mvpf)lv[mvpf)“,

iel a<A i€l

_ Vn/\(\/pi)a,

a<A iel

nA [\/pl)A.

i€l

Hence, by transfinite induction, the result holds. O

I1.6.2 Internal pre-nuclei

We now extend the theory of pre-nuclei and nucleation to the internal context. In
doing so we will observe that N(IL) is a frame for every internal locale.

Definition II.40. Let IL be an internal locale of Sh(C, ]). An internal pre-nucleus is a
natural transformation p: L — L such that p.: L, — L. is a pre-nucleus, for each
c € C. The set of internal pre-nuclei, denoted by PN(IL), can be ordered by p < g if
p(U) < g.(U) forallce Cand U € L..

It is easily checked that the poset of internal pre-nuclei PN(IL) on an internal locale
L of Sh(C, ]) has all meets and all joins, which are computed ‘pointwise’. Thus, by
the infinite distributivity law for IL., for each c € C, PN(L) is a frame. We show that
an internal nucleation can also be performed ‘pointwise’.

Lemma I1.41. Let p: IL — 1L be an internal pre-nucleus on an internal locale 1L, fibred over
a category C. The pointwise nucleations p°: I — 1L, of each component p. of p are the
components of an internal nucleus.

Proof. For each object c € C, the nucleationp?: IL, — L. of p. is a nucleus, so it remains
only show that they are natural in c. This is easily shown by transfinite induction. We

will perform the case for a limit ordinal A. Let ¢ 2, dbe an arrow of C. If, foralla < A,
the square

¢!
ld ____% Hw

Pﬁl ip?

-1
L, = L

commutes, then we have the desired equality

g [V P?) =\/ g =\/pig

a<A a<A a<A
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As a result, we obtain a left adjoint to the inclusion N(IL) < PN(IL),

SN
1o
N(L) —— PN(IL),

just as we did for locales. The functor (-=)*: PN(IL) — N(IL), the internal nucleation,
sends internal pre-nuclei to their pointwise nucleation.

Theorem I1.42. Let IL be an internal locale of Sh(C, J). The poset N(IL) of internal nuclei is
a frame whose frame operations can be computed “pointwise’, by which we mean that, for each
subset { j' | i € I} € N(IL) and each object c of C, there are equalities

[A fl = N\ Ji and [V J")C =\/ i, (ILvi)

i€l i€l i€l i€l
where N\ j-and \/ i j- are computed as in N(IL,.).

Proof. We saw in Lemma [I32 that N(IL) has all meets and that these are computed
pointwise. The join of {j' | i € I} € N(L) is the nucleation of the join of { j' | i € I} as
internal pre-nuclei. Since the nucleation of internal pre-nuclei is computed pointwise,
as are joins in PN(IL), the joins in N(IL) are also computed pointwise in the sense of
(ITxd). Finally, as N(IL.) satisfies the infinite distributivity law for each c € C, we obtain
the infinite distributivity law for N(LL). O

Since every topos & is the topos of sheaves Sh(IL) for some internal locale IL (see,
for example, [68, Proposition VIL3.1]), and also because Subrypes(E) = N(IL)P, we
have recovered the well-known fact that the poset of subtopoi of a topos is a co-frame.

Remark I1.43. Let IL: C°? — Frm,p., be an internal locale of Sh(C, J). Since the frame
operations of N(IL) are computed “pointwise’, for each object ¢ of C, the projection
1.t N(L) — N(IL.) that sends an internal nucleus j: . — L to its component j. at ¢
preserves all joins and meets. Therefore,

me: N(IL) —— N(IL.)

is an open frame homomorphism.



Chapter II1

Classifying topoi via doctrines

What is doctrine theory? Doctrines (also called indexed or fibred preorders), as
introduced by Lawvere in [77] and expanded upon in [/8], are a natural categorical
setting in which to study first-order logic, as evidenced by the prototypical examples
derived from theories recalled in Section I below. Their relation to logic can be
summarised as: doctrines are to first-order theories as Lindenbaum-Tarski algebras
are to propositional theories.

Doctrines are a powerful tool within categorical logic as the doctrine of a theory
can be seen to express certain logical syntax, interpreted by categorical constructions,
even when this is not present in the explicit symbolic syntax of the logic. An example
is given in Example [TLT2.

What is the classifying topos of a doctrine? In addition to the syntax of a theory,
there is an intuitive notion of the semantics of the theory as well — the mathematical
objects, and their morphisms, described by the theory. The notion of model for a
theory extends naturally to a notion of model for a doctrine P (once some choice
about the pertinent structure of P is made).

Models do not need to be set-based. The notion of model for a doctrine P can
be extended to any arbitrary topos &, yielding a category P-mod(E) of models of P
internal to &. Just as for theories, a classifying topos for a doctrine P is defined as a topos
&Ep for which there is a natural equivalence Geom(&E, Ep) ~ P-mod (&) for each topos
&. Evidently, whenever a classifying topos exists for P, it is unique up to equivalence.

Our goal. This chapter exposits a doctrinal approach to classifying topos theory. We
aim to show that, if a theory T has a classifying topos &, then the process T +— &t can
be factored by first sending the theory to its associated doctrine, and then sending
said doctrine to its classifying topos, as displayed in the schematic

Doctrine associated
with a theory

Theories 5 Doctrines
\\) / (IIL1)
Classifying topos T0P01 Classifying topos
of a theory of a doctrine.

71
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Note that these are “processes’ or ‘constructions” and not functors. Indeed, we will
not seek to make sense of a ‘morphism of theories” here (although the latter process
Doctrines — Topoi can be made suitably functorial).

However, in Example [ T2 we give an example of a doctrine obtained two in-
equivalent theories over two different syntaxes. Thus, the process of sending a theory
to its associated doctrine forgets logical structure. We must keep track of this syntax if
we are to hope to build the classifying topos of a theory from its associated doctrine.

Our remedy is to use Grothendieck topologies to encode this further logical syntax.
We therefore elect to work with doctrinal sites rather than doctrines, and our schematic
(IT3) becomes

Doctrinal site
Theories associated with a theory Doctrinal

+ syntax sites
Classifying to\pN TOpOl (43%5 ona
of a theory doctrinal site.

Focusing exclusively on geometric theories, the above processes restrict to

Doctrinal site
Geometric associated with a theory N Internal

theories ” locales
Classifying topos\—> TOPOi é/Sheaves onan
of a theory internal locale,

thereby witnessing a connection between geometric theories and the theory of internal
locales studied in Chapter . Our study of properties of internal locale morphisms
in Chapter [ will yield elegant alternative proofs of previously known facts in topos
theory.

Philosophical motivation. Classifying topos theory can be tersely summarised as:
every geometric theory has a classifying topos, and every topos is the classifying
topos of some geometric theory. However, this summary can somewhat obfuscate the
fact that many non-geometric theories also have classifying topoi (though the latter
statement prefigures the geometric completion we will study in Chapter V).

Our purpose in pursuing a doctrinal approach to classifying topos theory is mainly
philosophical: we aim to demonstrate how, in an intuitive manner, a classifying topos
can be associated with almost any system of predicate reasoning, without prejudice
as to the underlying syntax. Moreover, although we won’t investigate it here, by
Theorem [T the classifying topos of a doctrine satisfies a stronger ‘relative’ universal
property than the property we will prove.

Overview. The chapter proceeds as follows.

(A) Varied definitions of doctrine are used in the literature depending on the frag-
ment of logic being interpreted. We fix our terminology in Section IT1. We
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recall the ‘theory to doctrine” construction

Theories ——> Doctrines

and recall how, as observed by Lawvere [/7], categorical structure on the doctrine
corresponds to logical syntax, a relationship made precise in the theorems of
Seely [T06].

(B) Section I first recalls from [IZ3] the definition of a model of a doctrine. We
demonstrate the existence of classifying topoi for a wide class of doctrines.
During our discussion on the use of Grothendieck topologies to encode logical
syntax, the 2-category of doctrinal sites is also introduced.

(C) In Section M3, we compare the doctrinal approach to classifying topos theory
from Section M2 to the standard construction using syntactic sites found in [87].

(D) Finally, Section T4 focuses on the relationship between geometric theories,
geometric doctrines and internal locales. We show that our study of properties
of internal locale morphisms from Chapter M yield elegant proofs of known
results on geometric theories.

III.1 Doctrine theory

Doctrines have appeared in many guises throughout the literature, with various
assumptions on their structure.

Definition III.1. For us, a doctrine is simply a pseudo-functor

P: C? —— PreOrd.
Being fibred categories, doctrines naturally form a 2-category Doc as follows.

(i) The objects of Doc are doctrines P: C°? — PreOrd.

(i) Anarrow of Doc from P: C°? — PreOrd to Q: D°? — PreOrd consists of a pair
(E a), where F is a functor F: C — D and a is a pseudo-natural transformation
a: P = Qo F°, as in the diagram

C°p
\
FoP aﬂ PreOrd.
/
PeP

(iii) A 2-cell a: (F,a) = (F',a’) is a natural transformation a: F = F’ such that
a.(x) < Q(ac)(a.(x)) for each object c € C and x € P(c), i.e.

Cep
\
| == |pora <<> a PreOrd.
/

Dov
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Remark II1.2. Each morphism of doctrines (F,a): P — Q induces a functor
Fxa:CxP —— D=Q.

We could have chosen the natural transformations F xa = F’ x4’ as the 2-cells of Doc.
In the non-pathological cases, the two coincide.

Firstly, every 2-cell a: (F,a) = (F',a’) of Doc induces a natural transformation
a: F>xa = F =a’, with components &y : (F(c),a.(x)) — (F'(c),a.(x)) named by the
arrows a,: F(c) — F'(c).

Conversely, if P: C°? — PreOrd has non-empty fibres (P(c) # 0 for all c € C),
then any natural transformation f: F xa = F’ x4’ yields a natural transformation
p’': F = F for which a.(x) < Q(.)(a.(x)) by taking B.: F(c) — F’(c) as the D-arrow
B : (F(c), ac(x)) — (F'(c),al(x)), for some x € P(c).

Example III.3. We can always obtain a doctrine from a cartesian category C by taking
its doctrine of subobjects

Subc: C°! — MSLat C PreOrd,
the doctrine where:

(i) for each object c of C, Sub¢(c) is the meet-semilattice of subobjects of c,

(ii) for each arrow d ER c of C, Sub¢(f): Sube(c) — Sube(d) is the map which sends
a subobject e > ¢ to the pullback

file) —> e
d % C.

In particular, taking the subobject doctrine for the category Sets yields the powerset
doctrine & : Sets®® — CBool C PreOrd.

The formal definition of a doctrine is motivated by the ‘theory-to-doctrine’ con-
struction
Theories ——> Doctrines

of the schematic (IIL1) presented below, which assigns a doctrine to every first-order
theory. The central conceit behind the doctrine of a theory is to collect formulae accord-
ing to their context and then perform a fibred Lindenbaum-Tarski construction. Thus,
doctrines are the natural algebraic framework with which to study first-order theories
in the same way that Lindenbaum-Tarski algebras relate propositional theories with
preorders/posets.

I11.1.1 From theories to doctrines

Let T be a theory in a fragment of infinitary first-order logic over a signature X with
N sorts. We describe how to assign a doctrine FT to the theory T. We first describe
the base category of ‘contexts’ for the sorts of . Then, we will describe how to add
the doctrine structure on top. Finally, following this, we give some examples of how
the presence of logical syntactic features can be detected by algebraic properties of
the resulting doctrine.
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The category of contexts.

Definition III.4. Let X be a signature with N sorts. We denote by Cony the category of
contexts for the sorts, the category

(i) whose objects are finite tuples of free variables X or contexts, i.e. a finite set where
each element x; € ¥ is assigned a sortin %,

(ii) and whose arrows are relabellings o: §j — %, i.e. any function of finite sets such
that y; and o(y;) have the same sort for all y; € ¥.

If X is a single sorted signature, then Cony =~ FinSets. If X has a finite number N
of sorts, then Cony ~ N X FinSets. More generally, Cony is the full subcategory of
N x FinSets on objects (Zi)ren Where only finitely many Z; are non-empty.

Immediately we deduce that Cony has all finite limits and colimits, since the
category N X FinSets has all finite limits and colimits (these being computed point-
wise) and the full subcategory Cony C N X FinSets is closed under these. A simple
generalisation of [79, §VIIL.4] yields the following observations about Cony.

Proposition II1.5 (§VIIL.4 [79]). Let X be a signature with N sorts.

(i) The category Cony is the free category with finite colimits and N generators.

Cony

(ii) The presheaf topos Sets classifies the theory N - O of N objects, i.e. the empty
theory over the signature with N sorts.

The doctrine of a theory.
Definition I11.6. We denote by F': Cony — PoSet the functor that acts as follows.

(i) For each context ¥, FT(¥) is the poset

a) whose elements are T-provable equivalence classes of formulae in the con-
text ¥ (we will abuse notation and not differentiate between a formula and
its equivalence class),

b) and the order relation is given by provability in T, i.e. ¢ < 1 if and only if
T proves ¢ 3 1.

(i) For each relabelling of contexts 0: i — %,
F'(0): F1(y)) — F'(%)

denotes the monotone map that acts by sending a formula ¢ € F'(#) to the for-
mula [¥/,¥], the formula obtained by simultaneously replacing each instance
of the variable y; € i by a(y;) € ¥ (since contexts are assumed to be disjoint, we
can simultaneously replace free variables).

Notation IIL7. In Definition [ILA, we have left implicit from which fragment of logic
we are taking the formulae which make up the elements FT(¥). For the most part, we
will infer the fragment from the theory. When there could be some confusion, we will
denote the fragment in subscript. For example, given a coherent theory T, we denote
by

FE . : Cony —— DLat C PreOrd
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the doctrine whose elements of each fibre are the T-provable equivalence classes of
coherent formulae, and use

FT . Cony — Frm C PreOrd

Geom *

to denote the doctrine where we have used geometric formulae instead.

Remark IIL.8. Let T be a theory over a signature ¥ with N sorts. We have chosen to
tibre the doctrine of a theory T over the category of contexts and relabellings Cony.
Many other choices are also used in the literature. For example, in [30], the following
category Termy is used as a base category instead:

(i) the objects of Termy, are pairs <J?,§ = 1?>, where § and f are terms in X (of the
same type) whose free variables occur in the context X;

(ii) an arrow <3?, S = F> — (y,i =7) of Termy is a tuple of terms W, whose free
variables are contained in ¥, of the same sort as ¥, for which T proves the
sequent

3="Treil[@/7] = B[D/].

Ultimately, these other choices of base category yield Morita equivalent doctrines, in
the sense that they have equivalent classifying topoi, defined below.

As aforementioned, the simplicity of doctrine theory allows us to encapsulate
within our framework not only those theories from familiar fragments of first-order
logic, but any system of predicate reasoning. We intuit that a “first-order formal
system” ¥ ought to be simply a set of rules regarding the manipulation of some (po-
tentially infinite) strings of symbols, which we suggestively call well-formed formulae.
The key aspect that identifies a formal system as first-order is that each well-formed
formula is assigned a context, and for each transformation of contexts, there is a sub-
stitution map that sends well-formed formulae in the domain context to well-formed
formulae in the codomain context (normally by replacing certain sub-strings of sym-
bols by other symbols).

It is then clear how to assign a doctrine to the formal system §, in a manner
analogous to the above (though we may wish to refrain from taking equivalence
classes of well-formed formulae — see Remark [MTY), under the further assumptions
that:

(i) the contexts of § and their transformations constitute a category;

(ii) in &, the order +. on the well-formed formulae in context ¢, where ¢ +. 1 if and
only if the string 1) is derivable in § from the string ¢, is reflexive and transitive.

(iii) for this order, each substitution map is monotone.
Remark II1.9. In the literature, a doctrine P: C°°? — PreOrd is often assumed to factor
through the subcategory PoSet C PreOrd. In this case, P is a genuine functor, not

only a pseudo-functor.
Of course, PoSet is a reflective subcategory of PreOrd,

PoSet n PreOrd,
—
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and so by post-composing a doctrine P: C°? — PreOrd with the posetal reflection
PreOrd — PoSet yields a universal way of turning P into a PoSet-valued doctrine.

In Definition [MTA, the doctrine associated to a first-order theory thus obtained is a
PoSet-valued doctrine because the elements of each fibre are taken as the T-provable
equivalence classes of formulae. If simply the formulae are taken instead, the resultant
doctrine would be PreOrd-valued, not PoSet-valued.

We have deliberately left the possibility for PreOrd-valued doctrines open for those
readers who wish the fibres of their doctrine to be endowed with operations that do
not respect provable equivalence. For example, some modal logics possess operators
0O where the equivalence of two formulae ¢ = 1 does not imply that O¢ = 0. These
are examples of so-called non-algebraisable logics (see [12, §5.2]).

III.1.2 Categorically interpreting logical syntax

As currently formulated, an arbitrary doctrine P: C°® — PreOrd does not interpret
any particular logical syntax. To model a certain logical syntax, we can require a
doctrine to possess the appropriate categorical structure. This can appear as structure
on the fibres, as is the case for the logical connectives { L, A, V, T }, or as properties of
the substitution maps, in the case of the symbols {3,=,V }.

Examples II1.10. (i) For any theory T in a fragment of logic in which conjunctions
of formulae and truth are expressible, each fibre of FT has finite meets. We
thus define a primary doctrine, a doctrine capable of interpreting the symbols
{A, T}, as a doctrine P: C°? — PreOrd that factors through the subcategory
MSLat C PreOrd of meet-semilattices and meet-semilattice homomorphisms.
Following the standard terminology found in the literature (say, for instance,
[81]), we also assume that C is a cartesian category (this also ensures that C >~ P
is a cartesian category too).

A morphism (F,a): P — Q in Doc, between primary doctrines, is said to
be a morphism of primary doctrines if the finite limit data are preserved, that is
to say: F: C — D is left exact and a.: P(c) — Q(F(c)) is a meet-semilattice
homomorphism for each c € C. We denote by PrimDoc the 2-full 2-subcategory
of Doc of primary doctrines and primary doctrine morphisms (by 2-full we
mean that the 2-subcategory is full on 2-cells).

(ii) As detailed in [77] and [78], if existential quantification or equality are also
expressible , then certain transition maps of the doctrine FT have left adjoints.

a) Let : ¥ — X,y denote the inclusion of a sub-context (i.e. a coproduct
inclusion X — ¥ + i/ in Cony). The rules of existential quantification ensure
that the map

BFT(L): FT(J?/ 9)) - FT(J_C))/
e Ije,

defines a left adjoint to the substitution map FT(z).

b) Let 6: ¥, ¥,,J, — X,§ denote the relabelling that identifies two identical
copies of the tuple / (i.e. § is a co-diagonal X + jj + j - X + i in Cony). The
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(iii)

(iv)

(v)
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map
Jery: FYE, 1, 7,) = FH (& 5),
P @AY=,
defines a left adjoint to F*(5).

Note that, since every relabelling of contexts can be expressed as a composite of
a coproduct inclusion and a co-diagonal, every transition map of F! has a left
adjoint.

An existential doctrine, a doctrine capable of interpreting the the logical sym-
bols { A, T, 3,=}, is a primary doctrine where, in addition, P(f) has a left adjoint

dp(s), for each arrow d L cec Wealso require that these left adjoints sat-
isfy both the Frobenius and Beck-Chevalley conditions, which express how
existential quantification/equality interacts with, respectively, conjunction and
substitution under relabellings.

A morphism of existential doctrines (F,a): P — Q is a morphism of primary
doctrines which also preserves the interpretation of the new symbols {3, =}, i.e.
a morphism for which the square

B
P(c) +—2— P(d)

Jop

Q(F(c)) «<—— Q@)

commutes for each arrow d i> ¢ of C. We denote the resultant 2-full 2-
subcategory of Doc by ExDoc.

A coherent doctrine is an existential doctrine that takes values in the category DLat
of distributive lattices and lattice homomorphisms, and thus interprets the sym-
bols {A, T,3,=,V, L}. Morphisms of coherent doctrines are those morphisms
(F, a) of existential doctrines where a is a natural transformation of DLat-valued
functors. We denote the resultant 2-full 2-subcategory of Doc by CohDoc.

Heyting (intuitionistic) doctrines are coherent doctrines that take values in the
category Heyt of Heyting algebras and Heyting algebra morphisms, and so
interpret (intuitionistically) the symbols { A, T,3,=,V, L, — }. Analogously with
coherent doctrines, we can define a subcategory HeytDoc of Doc of Heyting
doctrines and their morphisms.

A Boolean (classical) doctrine is a coherent doctrine that takes values in the cate-
gory Bool of Boolean algebras and Boolean algebra homomorphisms, and for

each arrow d 5 ¢ € C, P(f) also has a right adjoint Vp(s) expressing universal
quantification. Hence, a Boolean doctrine interprets classical first-order logic.
A morphism of Boolean doctrines is a morphism (F, a) of coherent doctrines that
preserves the interpretation of classical first order logic. We denote the resultant
2-tull 2-subcategory of Doc by BoolDoc.

Remark III.11. We have required existential and coherent doctrines to be examples
of primary doctrines, but we shall observe in Example [ML31 how one might define
existential doctrines, etc., over non-cartesian base categories.
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Example IIL.12. By phrasing a study of logical theories algebraically, we are able to
recognise the existence of logical structure even when this is not present in the explicit
syntax of the theory. We now give a simple example.
Let [Ey; be the theory with no axioms over the single-sorted signature with a single
unary relation symbol U. The doctrine
Fru : FinSets ——) PreOrd

{LAvTEH

associated with the theory and the fragment { L, A, v, T } can be visualised as

TK\ /\

T
Ux) v U(y) -
U(x) U(y) «—— ¢ U(y) I

1
Ux)yaUd ’

(x) A U(y) N \_/

1 \_/
where we have truncated the doctrine F]{Ef’ nv 1 to the subcategory

0 — 1 < 2 C FinSets.

The displayed arrows represent the action on each fibre by the substitution maps
E E
Fi 0= Dand FT | (1= 2) o N
We are now able to observe that both of these substitution maps have left adjoints.

The action of these left adjoints is represented in the diagram

AT/_\AT/\

U(x) v U(y) T
U(x) U(y) — o U(y) I

U(x) A U(y) L
L¥/ J_\_/

The elements of each subset are sent by the left adjoints to the target of the corre-
sponding arrow. One can calculate that this defines the action of a pair of left adjoints
to the substitution maps.

In fact, for every injective relabelling ¢, the map FJ{EE, v 110 has aleft adjoint. More-
over, these left adjoints satisfy Frobenius reciprocity and the Beck-Chevalley condition
(wherever appropriate). Therefore, the doctrine FI{Ef, v, categorically interprets ex-
istential quantification, even though our theory is not in a fragment of logic involving
quantifiers.

Indeed, there is an isomorphism of doctrines

FI{EJL_I,A,V,T} = F?FJ_,/\,V,T,EI}
where T is the theory over the same signature as [Ey, in the fragment of first-order
logic now also including existential quantification, with the single axiom T ¢ Jx U(x).
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II1.1.3 From doctrines to theories

What does it mean to say a doctrine ‘interprets’ a certain logical theory? The precise
relationship between doctrines and logical theories was elucidated in [T06, Theorem
6.1 & Theorem 6.2]. In one direction, given a theory T over a signature X in a certain
fragment of logic, the doctrine F' as defined in Definition [ITA is of the appropriate
form. For example, if T is a coherent theory, i.e. a theory in the fragment of intuition-
istic first order logic containing the symbols { A, T,3,=,V, L}, then FT is a coherent
doctrine.

The converse relationship is provided by associating a theory to each doctrine
fibred over the base category Cony as elaborated below. The outputted theory can
be chosen to be of the appropriate fragment of first-order logic. For example, if
P: Cony — Bool is a Boolean doctrine, then the associated theory Tp can be chosen
to be a theory in the full fragment of (finitary) classical first-order logic.

Definition II1.13. Let X be a signature with N sorts and let P: Cony — PoSetbe a doc-
trine. We will also assume that P is of an appropriate form, e.g. primary/existential/etc.
The theory associated to P is the theory Tp over a signature Xp defined in the following
way.

(i) The sorts of Lp are the same as the sorts of ~ and, for each U € P(%), there is a
relation symbol R;; with the same type as .

(ii) The theory Tp has as axioms all those sequents expressible in the appropriate
fragment of logic (e.g., if P is an existential doctrine, those sequents expressible
in regular logic, i.e. using the symbols { A, T, d,=}) which are satisfied by the
doctrine P. For example, Tp contains as an axiom the sequent Ry +z Ry[X/,¥/] for
each relabelling / % % € Cony and pair U € P(¥), V € P() such that U < P(o)(V).

These two constructions, i.e. sending a theory T over L to its associated doctrine
FT: Cony — PoSet and a doctrine P: Cony — PoSet to its theory Tp over Lp, are
mutually inverse in the sense of the following theorem.

Theorem III.14 (Theorem 6.1 & Theorem 6.2 [106]). Let T be a theory over a signature ©
with N sorts and let P: Cony — PoSet be a doctrine that interprets the underlying syntax
of T.

(i) There is a natural isomorphism P = F7,

(ii) The theories T and Trr are equivalent in the sense that:

a) for every formula ¢ over ¥. in the context X, there exists a canonical choice of
formula @ over Ler in the context ¥ where, if T proves the sequent ¢ +z P, then
Ter proves the sequent @ vz 1,

b) foreach formula x over Lgr in context X, there exists a formula x’ over ¥ in context
X such that x and x’ are Trr-provably equivalent and moreover, if Trx proves the
sequent x vz &, then T proves the sequent X' +z &'.

III.2 The classifying topos of a doctrinal site

In Section I, we were required at times to be unsatisfactorily vague as to which
fragments of first-order logic our theories belonged, or which properties we required
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of our doctrines. Although imposing certain algebraic and categorical structure on
our doctrines is the most intuitive method to model particular logical syntax, it is too
ad hoc for our purposes. We would prefer instead a unified language with which we
can simultaneously treat first-order theories from various underlying syntaxes.

In this section, we will observe that, in many cases, it is possible to encode further
structural properties of a doctrine P: C°® — PreOrd, representing logical syntax, by
a particular choice of Grothendieck topology on the category C < P. We are therefore
motivated to work with doctrinal sites:

Definition II1.15. A doctrinal site (also called a fibred preorder site in [?4]) consists of a
doctrine P: C°? — PreOrd and a Grothendieck topology ] on the category C > P.
A doctrinal site (P, ]) is equivalent in data to a relative site of the form

[7tp: (C = B, ]) = (C, Juiv)]

where 7p is a faithful fibration. Our reasons for restricting to base categories endowed
with the trivial topology are discussed in Remark [V.T8.

The philosophical interpretation. As aforementioned, our overarching goal in pur-
suing a doctrinal foundation to classifying topos theory is to yield a notion of clas-
sifying topos for as many systems of predicate reasoning as possible, without any
prejudice on what the syntax of the system may be.

We already saw in Section [T how any formal system of predicate reasoning,
with only the mildest of conditions, can be assigned a doctrine. However, we gave in
Example an example of a doctrine that simultaneously represented two inequiv-
alent theories in different fragments of first-order logic. In order to differentiate the
intended syntax of a doctrine, we must therefore encode further information about
the doctrine.

This is the role played by the Grothendieck topology in a doctrinal site. It is
intended to capture

(i) further syntactic properties of the doctrine — such as to which fragment of first-
order logic the associated theory belongs,

(i) and information of the desired semantics of P.

The formalism of doctrinal sites is inherently flexible, being able to capture the (set-
based) semantics of theories from a wide class of syntaxes.

The relative topos of a doctrinal site. Since a doctrinal site (P, ]) is an example of a
relative site, it is natural to contemplate the induced relative topos

Sh(C <P, ]) — Sets"”.

The principal observation of this section is that the relative topos Sh(C > P, ]) satisfies
the universal property of the classifying topos of the doctrine —i.e. for each topos 7,
there is an equivalence of categories

Geom(F,Sh(C = P)) ~ P-mod(¥),
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natural in ¥, where P-mod(¥) denotes the category of desired models of P in the
topos ¥ . Hence, we will have demonstrated the final process

Doctrines/Doctrinal sites —— Topoi,

completing the schematic (ITL3).

Suppose that T is a theory with a classifying topos. By the fact that the models of
a theory T coincide with the models of the doctrine FT, the classifying topos of the
doctrine FT coincides with the classifying topos Er of the theory T. A comparison with
the usual construction of the classifying topos of T, involving syntactic categories, is
performed in Section IMT3.

Overview. The section is divided as follows.

— At the suggestion of Kock and Reyes [73], the model of a doctrine P in a topos
¥ can be described as a morphism of doctrines P — Subg that preserves the
necessary categorical structure. We begin in Section M2 by constructing the
classifying topos of a primary doctrine.

— We then discuss the classifying topoi of doctrines modelling richer logical syntax
in Section MLZ2. We will observe that, for many of the most widely considered
doctrines, the additional syntactic structure present can be encoded by a choice
of Grothendieck topology.

— Thus motivated, we define the 2-category of DocSites and observe that many of
the notable classes of doctrines mentioned in Examples [0 form full and faith-
ful 2-subcategories of DocSites. We define the classifying topos of a doctrinal
site and note its universal property.

Finally, we discuss how, even if the syntax of a doctrine cannot be encoded
by a choice of Grothendieck topology, it is possible to make a ‘best approxima-
tion” that generalises the notion of the sobrification of the space of models of a
propositional theory.

II.2.1 The classifying topos of a primary doctrine

We first focus on primary doctrines and describe their classifying topoi. A natural
definition for the model of a primary doctrine is adapted from [73].

Definition III.16 (Definition 3.5 [73]). A model of a primary doctrine P is simply a
primary doctrine morphism

(Fa): P — 27,

where &7: Sets® — CBool is the powerset doctrine.
We further define the category of models P-modp;im(Sets) of a primary doctrine P
as the category PrimDoc(P, &) of primary doctrine morphisms P — .

If T is a first-order theory involving only the symbols { A, T}, the models of T
are easily seen to coincide with the models of the primary doctrine FT. For a model
(G,a): F' — 2 of F¥, the functor G: Cony — Sets picks out the interpretation of each
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context in the model, while the meet-semilattice homomorphism az: FT(X) — 2(G(¥))
sends a proposition in context X to its interpretation as a subset of G(X).

Of course, we could also replace the powerset doctrine with the subobject doctrine
Subg: &P — Frmgpe, of a topos & to obtain a category P-mod(E) of models of a
doctrine P in any topos.

Theorem IIL.17. Let P: C°° — MSLat be a primary doctrine. The presheaf topos Sets©*P™
classifies the doctrine P, i.e. there is a natural equivalence

Geom(E, Sets D) =~ P-modpyim(E)
for each topos &.

Proof. By the relative Diaconescu’s equivalence Theorem [ZT and the version for
PreOrd-valued relative sites in Corollary [75, there is an equivalence

f(q: SetS(CXP)Op (C > P/ ]triV) (8 ~ SUby—‘(f*—), jcan)
Topos lf , \Lcnp ~ RelMorph im, , lﬂf
S SetsCOp (C/ J triv) (8/ J can)

In particular, for each topos &, there is an equivalence

8 SetS(Cxp)Op (C > P/ ]triv) (8 > SUbS(—)/ jcan)
Topos ’ , icnp ~ RelMorph \an , lng ,
& Sets¢” (C, Jeriv) (&, Jean)

which is moreover natural in &.
There is an evident equivalence

E  Sets©N”

, lcnp

& Sets®”

Geom (8, Sets©" >°P) ~ Topos

C=P)°P

The equivalence acts on objects by sending a geometric morphism & — Sets' to

the composite
Cn

E — Sets @ s GetsC”

while, in the converse direction, a morphism of relative topoi

E — Sets @™

H - lcnp

E — Sets®”

is sent to the factoring geometric morphism & — Sets©*"™.
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By Proposition [[78, the category

(C > P/ ]triv) (8 > SUbg(—), jcan)
RelMorph inp / lﬂa
(C/ ] triV) (81 ] can)

is equivalent to the category

RelMorphcart((Cl ]triV/ P/ ]triv)/ (8/ ]can/ SubSI jcan))

whose objects are pairs (F,a) of a left exact functor F: C — & and a (pseudo-)natural
transformation a: P = Subg where each component a.: P(c) — Subg(F(c)) preserves
tinite meets. In other words, it is equivalent to the category

PrimDoc(P, Subg) = P-mod(&)

(for the equivalence on arrows, see Remark [IT2). Thus, the topos Sets“"" satisfies
the universal property of the classifying topos of the primary doctrine P. m|

III.2.2 Classifying topoi for richer syntaxes

What if our doctrine interprets a richer syntax? If T is a theory of a fragment of logic
containing at least the symbols { A, T }, the models of T coincide with those primary
doctrine morphisms F' — Subg that preserve the additional categorical structure
that interprets the further necessary logical syntax. Therefore, just as with primary
doctrines and following [73], we define a model of an existential/coherent/etc. doctrine
P in a topos & as a morphism of existential/coherent/etc. doctrines (F,a): P — Subsg.
We denote the resultant categories of models by P-modg(E)/P-modcon(E)/etc.

Encoding syntax with Grothendieck topologies. As aforementioned, we can evade
this ad hoc approach to logical syntax, which is unsatisfactory for our desired holistic
treatment, by encoding logical syntax using Grothendieck topologies. Note that, if P
and Q are, say, existential doctrines, then there is a chain of inclusions

CohDoc(P, Q) € ExDoc(P, Q) € PrimDoc(P, Q).

This suggests that the progressively more expressive syntaxes can be captured by
a chain of Grothendieck topologies Jprim € Jex € Jcon. The following proposition
expresses precisely this fact (the topology Jprim is simply the trivial topology on C > P).

Proposition III.18. Let P: C°°* — MSLat and Q: D°° — MSLat be primary doctrines,
and let (F,a): P — Q be a morphism of primary doctrines.

(i) If P and Q are existential doctrines, the morphism (E,a) also preserves the existential
structure if and only if the induced functor F < a: C =P — D > Q sends Jpc-covering
sieves in C > P to [gc-covering sieves in D > Q, where Jgy is the Grothendieck topology
on C > P (respectively, D = Q) generated by covering families of the form

d,x) == (¢, 3),

for each x € P(d) and d AcecC (resp., each x € Q(d) and d L cem).
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(ii) If P and Q are coherent doctrines, (F, a) is a morphism of coherent doctrines if and only
if the induced functor F < a: C =P — D > Q sends Jcon-covering sieves in C > P to
Jcon-covering sieves in D = Q, where Jcon denotes the Grothendieck topology generated
by covering families of the form

(d,x) == (¢, Ax v Ay) <— ().

(iii) If P and Q are Boolean doctrines, (F, a) preserves the Boolean structure if and only if it
is a morphism of coherent doctrines.

Proof. Suppose that P and Q are existential doctrines. Recall that the morphism of
primary doctrines (F,a): P — Q is also a morphism of existential doctrines if and only

if, for each x € P(d) and d A ceq,

acpig) (%) = Jg(r(g)aa().

This is precisely equivalent to requiring that the image under the induced functor
F>xa: C>xP — D=Q of the Jg-covering arrow

(d,) —= (¢, Frg¥)

in C x P, i.e. the arrow

(F(d), 24()) —L3 (F(0), a:Ap(e) (),

is also Jpc-covering in D = Q. This completes the proof of [i). Part [ii] is similarly
demonstrated.

We turn to iii). In one direction, every morphism of Boolean doctrines is necessar-
ily coherent. Conversely, suppose that (F,a): P — Q is a coherent doctrine morphism.
We deduce that, since complements are unique (see [BT, §4.13]), and we have that, for
each x € P(c),

a(x A—x)=a(Ll)=1, a(xV-x)=a/(T)=T,

the lattice homomorphism a.: P(c) — Q(F(c)) must also preserve negation and hence
is a Boolean algebra homomorphism. Then, using that, for a Boolean doctrine,

Vo) = —dp— for each arrow d L cof C, we conclude that (F,a) also preserves

the interpretation of universal quantification, completing proof of [iii). |

Corollary III.19. (i) Given an existential doctrine P, the topos Sh(C = P, Jg,) classifies
the doctrine P.

(ii) Given a coherent/Boolean doctrine P, the topos Sh(C = P, Jcon) classifies the doctrine P.
Proof. Let P: C°® — MSLat be an existential doctrine. By Theorem [IT7, there is an
equivalence

Geom(S, Sets©D™) ~ P-modpim(E),
= REIMOI‘Phcart((C, ]triV/ P/ ]triv)/ (8/ ]can/ SUbSI 7can))‘
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To obtain the existential models P-modg,(E) of P, by Proposition LTS, it suffices
to restrict the above equivalence to the subcategory of Jg,-continuous morphisms of
relative sites as follows

1R

P'mOdEx(a) RelMorPhcart((Cr ]triV/ P/ ]Ex)/ (8/ ]Can/ SubS/ jcan))

l [

P-mOdPrim(S) = RelMorphcart((C/ ]‘[riV/ P/ ]triv)/ (8/ ]can/ SUbS/ jcan))'

Thus, the equivalence Geom(E, Sets©*"™)

alence

~ P-modp;im (&) also restricts to an equiv-

Geom(E, Sh(C > P, [gy)) =~ P-modg,(E).

Hence, Sh(C>P, Jg) classifies the existential doctrine P. The proof for coherent/Boolean
doctrines is near identical. O

Remark III.20. After defining them in Examples [MLT0(iv), Heyting doctrines have
been neglected in our subsequent discussion. This is because intuitionistic logic
resists a unified treatment using Grothendieck topologies. Namely, the behaviour
of Heyting implication — cannot, in general, be captured by an exactness property as
enforced by a Grothendieck topology.

Despite this, if we focus exclusively on set-based models — or more generally
models in Boolean topoi, then it becomes possible encode the structure of intuitionistic
logic using a Grothendieck topology in the sense that, for a Heyting doctrine P, there
exists a Grothendieck topology Jiey: such that a morphism of primary doctrines

(Fa): P — &
is a morphism of Heyting doctrines if and only if the induced functor
Fxa:CxP —— Sets < &

sends JHeyt-covering sieves to Jcan-cOVering sieves.

Let P be a Heyting doctrine and let (F,a): P — & be a model of P as an existential
doctrine. The model (F, a) is also a model of P as a Heyting doctrine if and only if, for
each ¢ € C, the lattice homomorphism a.: P(c) — Z(F(c)) also preserves the Heyting
implication —. Since &(F(c)) is a Boolean algebra, this is equivalent to requiring that,
for each x, y € P(c),

—|IZC(X) \4 ac(y) = lZC(X) - ac(y) = IZC(X - y)

In particular, as complements in &?(F(c)) are unique, a. preserves pseudo-complements
(i.e. Heyting negation — — 1) if and only if, for each x € P(c),

ac(—x Vx)=a(-x)Va(x)=T =aT)

Thus, we deduce that (F,a) is a Heyting model of P if and only if the induced
functor Fxa: C =P — Sets < & is JHeyt-continuous, where [y is the Grothendieck
topology on C > P generated by following three species of covering families:
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(i) firstly, families of the form
(d, x) L} (c, dex vV uy) # (e, y),

for x € P(d), y € P(e), and arrows d LN c,e Ieec (ensuring that (F, a) preserves
the coherent structure of P);

(ii) secondly, families of the form

(C, %) —3 (¢, T) = (¢, %),

for all c € C and x € P(c) (ensuring that a, preserves pseudo-complements);

(iii) and finally, families of the form

id,

(C, _'x) l;dc> (Clx - ]/) % (Cly)/
for all c € C and x, y € P(c) (ensuring that a. preserves Heyting implication).

Requiring that a morphism (F,2): P — £, as primary doctrines, is JHeyt-continuous
is equivalent to requiring that (F, a) factors through the Boolean completion of the Heyt-
ing doctrine P from [46, §2.3]. However, if we wish to consider the semantics of an
intuitionistic theory in non-Boolean topoi, we cannot expect to find a Grothendieck
topology that encodes the semantics of the theory, as evidenced in Example [IT2T
below.

Example II1.21. We give a simple example of a Heyting doctrine whose models in a
pair of topoi cannot simultaneously be captured by the choice of a single Grothendieck
topology. For simplicity, we will consider a Heyting algebra H (i.e. the Heyting doc-
trine for a propositional intuitionistic theory) since a morphism of primary doctrines

H — Subg is equivalent in datum to a finite meet preserving map H — Subg(1).
Let 3 denote the 3-element Heyting algebra

T
#

1.

Equivalently, 3 is the frame of opens for the Sierpinski space 5. As a Heyting algebra,
there is a unique 2-valued model of 3, the homomorphism of Heyting algebras

T ™
# \/I
16~

T

1,
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which corresponds to the open point of S. It is the unique finite meet preserving map
f: 3 = 2 for which both the sieve { L < T,# < T} on T and the empty sieve ) on L are
sent by f to J.n-covering sieves in 2 (here J.,, denotes the canonical topology on the
frame 2).

Therefore, the category of models of 3 as a Heyting doctrine in the topos of sets
Sets ~ Sh(2) can be encoded by a Grothendieck topology Js_,+ in the sense that there
is an equivalence

1 =~ HeytDoc(3, 2) = 3-modpeyt(Sets) ~ Geom(Sets, Sh(3, Jx_.1)),
where J4_,1 is the Grothendieck topology whose covering sieves are:
@) Joor(M ={{L<THSTHL{LLT#<T, T<T}},
(i) Joor(®) = {{L<##<H)],
(i) and Joor(L) = {0, (L < L}},

This is precisely the topology Jiey: suggested in Remark above.
However, there are two 3-valued models of 3, the Heyting algebra homomor-
phisms

To——0o T To——0o T

#o— 0 # and #/#

1l o—o 1, 16— —o L

— corresponding to the two open continuous endomorphisms of 5. Of these two maps,
only the latter sends J4_,+-covering sieves to J..n-covering sieves in 3. Hence, there is
no longer an equivalence

2 ~ HeytDoc(3, 3) = 3-modpeyt(Sh(3)) # Geom(Sh(3), Sh(3, Js-1)) = 1.

In other words, we cannot simultaneously describe the models of 3 (as a Heyting
algebra) in arbitrary topoi using a single Grothendieck topology on 3.

III.2.3 The 2-category of doctrinal sites.

Our use of doctrinal sites as a formalism is motivated by a desire to exploit the unified
treatment of doctrines and syntax afforded by assigning a Grothendieck topology. We
now describe the 2-category of doctrinal sites, and observe, as well, that taking the
classifying topos of a doctrinal site is bifunctorial.

Definitions II1.22. (i) Given two categories C, D, a functor F: C — D is said to be
flat if it defines a morphism of sites

F: (C/]triv) —> (Z)/ ]triv)

when both C and D are endowed with the trivial topology. We note that this
generalises the definition of flat as synonymous with left exact we have used
previously — indeed, a flat functor F: C — D preserves any finite limits that
exist in C (see [107, Corollary 4.14] or Remark [4).
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(ii) We denote the 2-category of doctrinal sites by DocSites.

a) The objects are doctrinal sites.

b) An arrow (P,]J) — (Q,K) of DocSites is a morphism of the associated
relative sites, i.e. a pair (F,a) consisting of a flat functor F: C — D and a
natural transformation a: P = Q o F°P such that the induced functor

Fxa: (CxPJ]) —> (D=Q,K)

is a morphism of sites.
c) A 2-cell between two morphisms of doctrinal sites

(Ea)
S N
&) ﬂ“ (Q,K)

N A

(F'a")
is a natural transformation a: F = F’ such that

ac(x) < Qlac)(ac(x))
for each object c € C and x € P(c).

Example II1.23. Although the definition of a morphism of doctrinal sites may appear
initially unmotivated within the context of standard doctrine theory, we note that, for
many of the examples of doctrines that we have encountered, the definition coincides
with the pre-existing notions we have for morphisms of doctrines.

If P: C°° — MSLat and Q: D°°* — MSLat are both primary doctrines, then a
morphism (Fa): (P,]) — (Q,K) € DocSites of doctrinal sites, where K is a rela-
tively subcanonical topology, is a morphism of primary doctrines in the sense of
Examples ITTO(T) such that, in addition,

Fxa:(CxP]) — (D=Q,K)

is cover preserving. In particular, the morphisms (P, Juiv) — (Q, Juiv) of DocSites
are precisely morphisms of primary doctrines. Thus, there exists a full and faithful
2-embedding

PrimDoc «—— DocSites

that sends a primary doctrine P: C°? — MSLat to the doctrinal site (P, Juiv).
Similarly, by Proposition ILTH, there exist full and faithful embeddings of 2-
subcategories

ExDoc
CohDoc «—— DocSites

BoolDoc
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which send an existential (respectively, coherent/Boolean) doctrine
P:C® —— MSLat
to the doctrinal site (P, Jx) (respectively, (P, Jcon)).

Definition III.24. For a doctrinal site (P, J), we will call the relative topos

Sh(C>P,]) — Sets®”
the classifying topos of (P, ]).

This is the classifying topos of a doctrinal site (P, ]) in the sense that, for any topos
&, by Corollary 73 and in a similar fashion to Theorem MTT7 and Corollary [ILT9Y,
there is an equivalence

& Sh(C>=PK)

, lcﬂp ,

Geom(&, Sh(C = P, ])) ~ Topos

&  Sh(C,))
(C=PK) (E = Subg(-), Tcan)
~ RelMorph inp ’ lﬂs !
(o) (&, Jean)

~ DocSites((P, ]), (Subg, ] ...))-

Since doctrinal sites are examples of relative sites, morphisms of doctrinal sites are
morphisms of relative sites (see Definition [T18), and the 2-cells of DocSites induce
2-cells between morphisms of relative sites Remark M2, there is an evident bifunctor

DocSites ——> RelTopos.

The map on objects RelTopos — Topos that sends a relative topos ¥ — & to the
domain topos ¥ is also bifunctorial, and the composite

DocSites ——> RelTopos —— Topos

is the bifunctor that sends a doctrinal site to its classifying topos.

This completes the last process Doctrinal sites — Topoi in schematic (ITL). Since
the models of a theory T, in a suitable syntax, coincide with the models of the doctrine
FT, the triangle of processes

Theories T (FT,K) . Doctrinal
+ syntax © sites

qr.}&r\ Topoi %HSI\(CXP, )

commutes in that Sh(Con,} > FT,K) ~ &y, where K is the appropriate Grothendieck
topology on Con;! < FT corresponding to the underlying syntax of the theory T.
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Sobrifying the desired models

Definition III.25. Following the above discussion, the following are equivalent:

(i) The syntactic rules of a theory concern exactness properties, by which we mean
that the syntactic rules can be encoded by a Grothendieck topology as above;

(ii) The theory has a classifying topos.

Since such a theory is therefore Morita equivalent to a geometric theory, we might call
such theories geometrizable.

Even when a theory is not geometrizable, there is a ‘best approximation” by a
geometrizable theory that generalises the notion of the sobrification of the space of
models of a propositional theory.

Sobrifying the space of models of a propositional theory. Let T be a propositional
theory over a signature L, and let T-mod(2) denote the set of 2-valued models of T.
Each formula ¢ over X defines a subset of T-mod(2) —

[ol={MeT-mod@2)|ME e},

the set of models that satisfy ¢, otherwise called the interpretation of ¢. Using set-
theoretic operations, the definable subsets can be manipulated in a manner consistent
with the logical operations of intuitionistic logic, e.g. the interpretation of the con-
junction of two formulae is expressed by the intersection as in the diagram

J T-mod(2).

With these subsets as the basic opens, it is possible to generate a topology on the set
T-mod(2). We call the resultant topological space the space of models.

The frame of opens O(T-mod(2)) is the Lindenbaum-Tarski algebra for a geometric
propositional theory T’. Hence, if T-mod(2) is a sober space, then

T-mod(2) ~ Loc(2, O(T-mod(2))) ~ T’-mod(2),

i.e. if T-mod(2) is sober, then T is geometrizable. Even when T is not geometrizable,
the sobrification of the space T-mod(2) evidently yields the ‘best approximation” of T
by a geometrizable theory.

Example II1.26 (Cofinite naturals). What would an ungeometrizable propositional the-
ory look like? Let IN®f denote the space of the natural numbers endowed with the
cofinite topology. The frame of opens O(IN) is the Lindenbaum-Tarski algebra for
the following geometric propositional theory Tyeo.
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(i) For each natural number n € IN, there is a basic proposition [x # n].

(ii) The axioms of Ty« consist of the sequents
Tr[x#n]V[x#n]
for each pair n,n” € N with n # n’.

For each n € IN, there is a 2-valued model p,, of T« that evaluates basic propositions
as

T ifn#n,

1 ifn=n".

pu(lx £ 1)) = {

But there is a further 2-valued model p., ‘at infinity” where p..([x # n]) = T for all
n € N. In other words, there is an extra point in the sobrification PtO(IN®*) of INf,

The only model of Ty« that satisfies the infinite conjunction A,n[x # 1] iS P
Therefore, the models for the theory

T’zTNcofU{/\[xin]l—J_}

nelN

correspond to the points of the inebriated™ space IN®' C PtO(IN¥).

However, we cannot simply consider T’ as a theory over the syntax of infinitary
propositional logic since then we would introduce new definable subsets to the space
of models T’-mod(Sets) ~ IN, and therefore change the topology. Instead, we must
make the unnatural restriction that the only well-formed formula involving an infinite
conjunction is the formula A, [x # n].

The desired models of a primary doctrine. The same intuition observed in the
propositional case extends to the predicate setting. Let P: C°? — PreOrd be a primary
doctrine representing a predicate theory that interprets the symbols { A, T }. By the
desired models of P, we mean a specified subcategory

P-mod(Sets) C PrimDoc(P, &2).

The category P-mod(Sets) represents those set-based models of P as a primary doctrine
that also preserve unspecified further syntactic structure. We might be tempted
to make natural assumptions about P-mod(Sets), such as that it ought to be a full
subcategory or replete under isomorphisms, but these will prove unnecessary.

The pair (P, P-mod(Sets)) of a doctrine and a category of its desired set-based
models is said to be geometrizable if P-mod(Sets) is of the form

P-mod(Sets) ~ DocSites((P, ]), (2, ] ...)) € PrimDoc(P, &)

for some Grothendieck topology | on C = P. In other words, the syntactic rules that
specify our desired models P-mod(Sets) can be encoded by a Grothendieck topology.
When this is the case, the doctrine P has a classifying topos (for set-based models)
since, just as in Corollary [ITTY, there is an equivalence

P-mod(Sets) ~ DocSites((P, ]), (2, ] ...)) =~ Geom(Sets, Sh(C = P, ])).

!That is to say, not sober.
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Evidently, a ‘best approximation’ to P-mod(Sets) by a category of the form
DocSites((P, ]), (2, ]can))

can be obtained by setting | as the Grothendieck topology where a sieve

iel}

in C < P is J-covering if and only if, for every desired model (F, a) € P-mod(Sets), the
image
iel}

is jointly surjective (i.e. F < a sends J-covers to | ,,-covers).
This is evidently the ‘best approximation” of the pair (P, P-mod(Sets)) by a ge-
ometrizable pair (P, DocSites((P, ), (2, ]..,))) in that it describes an adjunction

{@w 5@y

F(fi)lacj (x;)
ac,(x;)) —— aq(y)

DesiredModels(P) L Geomtrizable(P)
%)

where DesiredModels(P) is the poset of subcategories of PrimDoc(P, &) ordered by
inclusion, and Geomtrizable(P) is the subposet of geometrizable categories of desired
models.

III.3 Syntactic categories

The standard textbook accounts of classifying topos theory [87], [22, §2], [63, §D3],
[79, §X] construct the topos Er using the syntactic category Ct of a theory T. In order
to express the syntactic category construction, the theory T must exist in a fragment
of first-order logic that interprets regular logic (i.e. the fragment whose permissible
symbolsare { A, T, d,=1}). Thus, as previously emphasised, our framework of doctrinal
sites enables the construction of classifying topoi for theories from weaker logical
syntaxes.

When the necessary regular structure is present, the two approaches, i.e. using
doctrines and syntactic categories to represent classifying topoi, evidently yield equiv-
alent topoi by the universal property of the classifying topos. In this section, we will
compare the two approaches in more detail.

Overview. We proceed as follows.

— We first recall the necessary background on existential sites from [?4], in which
language we phrase our development.

— An existential doctrinal site whose underlying doctrine is also a primary doctrine
has enough expressive power to construct a ‘syntactic category’. We recall this
construction in Section [M32, as well as the pseudo-adjunction Syn 4 Sub_) be-
tween the syntactic category construction and taking the doctrine of subobjects.

— In Section MI33, the pseudo-adjunction Syn 4 Sub(, is extended to give an
pseudo-adjunction between existential doctrinal sites and regular sites.
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The two topoi of sheaves we can now associate with an existential doctrinal
site — Sh(C = P, ]..) and Sh(Syn(P), Jsyn) — are compared in Section ML34. For
an existential doctrine P, we exhibit a functor C’: C < P — Syn(P) that yields a
dense morphism of sites

CP: (CNP,]X) — (Syn(p)/]Syn)

and hence an equivalence Sh(C = P, ]..) = Sh(Syn(P), Jsyn).

I11.3.1 Existential doctrinal sites

First,

we recall some definitions from the theory of existential fibred sites [?4, §5]. Note

that the exposition in [?4] exists in the more general framework of indexed categories
F: C°? — QAT, whereas we have elected to restrict to indexed preorders (or doctrines
in our language).

Definition II1.27 (Definition 5.1 [?4]). Let P: C°? — PreOrd be a doctrine such that,

for each arrow d J, ¢ € C, the map P(f): P(c) — P(d) has a left adjoint d¢. Suppose
we are also given, for each c € C, a Grothendieck topology J. on the preorder P(c) for
which d¢: P(c) — P(d) sends J.-covers to J;-covers.

(i)

We say that the pair (P, (J.)cec) satisfies the relative Frobenius condition if for each
sieve S on the object (d, y) € C = P for which the sieve

{yz<y @gyi(¢y)es}
is J;-covering then the sieve

{Hfz<x

@@£u4m5z<mm@}

is J;-covering too, for any x € P(d) with x < y.

We say that the pair (P, (J)ccc) satisfies the relative Beck-Chevalley condition if for
each sieve S on (d, y) € C > P for which the sieve

@@LM#NS}

{3f2<y

. . . h .
is J;-covering, given an arrow e — d € C, the sieve

{3z<Piw|ca5 @y eshog=r]|

is J;-covering too.

The pair (P, (J)cec) is said to be a existential doctrinal site if the relative Frobenius and
relative Beck-Chevalley conditions are both satisfied.
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Let P: C°? — PreOrd be a doctrine such that each fibre P(c) has a Grothendieck

topology J. and, for each arrow d Lce C, the map P(f): P(c) — P(d) has a cover-
preserving left adjoint d¢. In light of Proposition IIIT8, we would want to define a
Grothendieck topology J.. on the category C = P for which a sieve

iel}

{ (ci, x;) N d,y)

is J.-covering if and only if

{(d,af,.xi) N (d,y)‘ie[}

is J4-covering. Such an assignment of sieves to objects is reflexive and transitive, but
not necessarily stable. We observe that the stability of J.. under arrows of the form

(d, x) i, (d,y) (respectively, (e, P(h)(y)) LN (d,v)) is precisely given by the relative
Frobenius condition (resp., the relative Beck-Chevalley condition), and since any

arrow (e, x) KA (d,y) € C > P can be factored as

id,
(e,x) —=% (e, P)(y)) —— (d,y)
we obtain the following proposition.

Proposition I11.28 (Theorem 5.1 [?4]). For the doctrine P: C°? — PreOrd above, |. defines
a Grothendieck topology on the category C = P if and only if the pair (P, (J.).ec) satisfies both
the relative Frobenius and relative Beck-Chevalley conditions.

Definition II1.29 (Theorem 5.1 [24]). Let (P, (J.).cc) be an existential doctrinal site. We
call the Grothendieck topology J.. on C < P, where a sieve

iel}

{@w 5@y

is J.-covering if and only if

{@35) 2 @ylicr)
is J;-covering, the existential topology for the pair (P, (J.)cec)-

The relative Frobenius and relative Beck-Chevalley conditions are related to the
usual Frobenius and Beck-Chevalley conditions by the following proposition.

Proposition II1.30 (Proposition 5.3 [?4]). Let (P, (J)ccc) be an existential doctrinal site.

(i) If P(c) has all finite meets for each c € C, then the pair (P, (J.)cec) satisfies the relative
Frobenius condition if and only if P satisfies the Frobenius condition - i.e.

drz A x = Jp(z A P(f)(x)).
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(ii) If C has all pullbacks, then the pair (P, (J.)cec) satisfies the relative Beck-Chevalley
condition if and only if P satisfies the Beck-Chevalley condition - i.e. for each pullback
square

X
[

c

e

k h

d—3
f
—

a
3N

of C, the square
Pe x,d) — P(d)

TP(k) p(h)T
P(e) —— P(e)
commutes.
Hence we note that, for any existential doctrinal site (P, (J.).ec), if P is a primary
doctrine, then P is automatically an existential doctrine, and the existential topology

J contains the topology Je«. Such an existential doctrinal site should be understood
as a doctrine which interprets at least regular logic, if not further, richer syntax.

Examples I11.31. Let P: C°? — PreOrd be a doctrine such that, for each d i) c € C, the
map P(f): P(c) — P(d) has a left adjoint J;. Of particular interest is the case where
the Grothendieck topology J. assigned to each fibre P(c) of an existential doctrinal
site (P, (Jc)cec) is subcanonical, i.e. a family {x; < y | i € I} of inequalities in P(c) is
Jc-covering only if the join \/;; x; exists and y < Vzez x; (if P(c) is a poset, v = /¢ Xi).

For each arrow d 2> ¢ of C, being a left adjoint, d¢ preserves all joins that exist in
P(d) and so dy is automatically cover-preserving if J; and ], are both subcanonical.
Consideration of certain cases will allow us to generalise existential doctrines and
coherent doctrines to non-cartesian base categories, as mentioned in Remark [TCTT.

(i) There exists an existential doctrinal site (P, (Juiv)ccc), Where each fibre P(c) has
been given the trivial topology Juiv, if and only if:

a) (relative Frobenius condition) for each arrow d J, cofC,x,y € P(c) withx <y
and z € P(d) such that
drz < yand y < dyz,

there exists some w € P(d) with w < z such that

Jw<x and x < dsw;

b) (relative Beck-Chevalley condition) for each pair of arrows
e
I
d f
H c
of C, y € P(c) and z € P(d) such that
diz<yand y < dsz,
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there exists a commutative square

8
e ——

e
I
f
c

d ——>

>~

in C such that
31,P(k)(z) < x and x < ,P(k)(2).
Note that if P: C°? — MSLat is an existential doctrine, (P, (Jiiv)cec) iS an existen-
tial doctrinal site.
We denote by Jg the existential topology on C > P induced by the existential

doctrinal site (P, (Juiv)cec), i-€. the Grothendieck topology generated by covering
families of the form

(d,x) == (¢, 3),

forx € Pd) and d 5 ¢ € C, in analogy with Proposition ILTH(i). We de-
fine RelExDoc, the 2-category of relative existential doctrines, as the 1-full 2-
subcategory of DocSites on objects of the form (P, Jg), where (P, (Juiv)cec) is an
existential doctrinal site. The category ExDoc of existential doctrines is thus
now a 1-full 2-subcategory of RelExDoc.

(ii) Suppose that we can endow each fibre P(c) with the Grothendieck topology Jcoh,
where a sieve S on y € P(c) is Jcon-covering precisely if S contains a finite family

(xi<yliel}C$

such that y < /¢ x;. If P(c) is a lattice, Jcon defines a Grothendieck topology on
P(c) if and only if P(c) is a distributive lattice. The pair (P, (Jcon)cec) defines an
existential doctrinal site if and only if:

a) (relative Frobenius condition) for each pair x,y € P(c) with x < y, and each

finite collection of pairs d; L candze P(d;), indexed by i € I, such that

\/ drzi<yand y < \/ sz,

i€l iel

for each i € I there exists some w; € P(d;) with w; < z; such that

\/ Hﬁwi <xand x < \/ Hfiwi/'

iel i€l

b) (relative Beck-Chevalley condition) for each arrow e o of C, y € P(c), and

each finite collection of pairs d; LR c and z € P(d;), indexed by i € I, such
that

\/ drzi<yand y < \/ drz;,

i€l iel
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for each i € I, there exists a finite collection of pairs of arrows g; and k]-,
indexed by j € J;, such that there is a commutative square

e;. i} e
| l
d L} c
of C, and secondly
\/ V 3 Pk(z) < xand x < \/ \/ 3y P(k))(z).
i€l jej; iel jej;

Just as above, by analogy with Proposition IILT8(ii), we denote the existential
topology on C = P induced by the existential doctrinal site (P, (Jcon)cec) bY Jcoh,
i.e. the Grothendieck topology generated by covering families of the form

(d, x) —g> (c, dgx V Ipy) # (e, y),

for x € P(d), y € P(d), and arrows d LN c,e L, ¢ € C. We call the resultant doctrinal
site (P, Jcon) a relative coherent doctrine and denote the 1-full 2-subcategory of
DocSites on relative coherent doctrines by RelCohDoc. We once again have
that CohDoc is a 1-full 2-subcategory of RelCohDoc.

II1.3.2 Syntactic categories

Recall that each cartesian category C yields a primary doctrine via the doctrine of
subobjects Subc: C°? — MSLat. Taking the doctrine of subobjects of a cartesian
category naturally defines a 2-functor

Sub(y: Cart ——> PrimDoc.

(i) Each cartesian functor F: C — D restricts to a meet-semilattice homomorphism
al: Subc(c) = Subgp(F(c)) natural in ¢ € C. Hence, the pair (F,a’) defines a
morphism of primary doctrines (F,a’): Subc — Suby,.

(i) Each natural transformation a: F = F’ defines a 2-cell

(Ea")
Sl.lbc H'a Sub D

A

(F ")
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of PrimDoc. The required inequality af (x) < Sub¢(a.)(a (x)), for each ¢ € C and
each x € Subg¢(c), follows by the universal property of the pullback

Qx

F(x) ~=-% Subc(ac)(F'(x)) —— F'(x)
Flc) —=— F(o).

Moreover, the 2-functor Sub_) can easily be checked to be full and faithful on 1-cells.

From a doctrine P: C°? — PreOrd with sufficient structure, it is possible to con-
struct a syntactic category Syn(P). This construction is converse to taking the doctrine
of subobjects in the sense that Syn(Subc) =~ C for a certain subclass of cartesian
categories, namely regular categories. It is only possible to construct the syntactic
category of a doctrine P when P is rich enough to interpret provably functional relations.
These are predicates that, according to the internal logic of a doctrine (see [b5, §4.3]
or below), encode the graph of a function between two other predicates. For that, we
need at least regular logic. In this subsection we review material found in [98], [99]
and [T00] regarding the syntactic category construction. Our exposition is similar to
the explanation found in [30, §3].

The internal language of a doctrine. As explicated in [b5, §4.3], we can transliterate
the structure of an existential doctrine into a more familiar logical language.
Let P: C°? — MSLat be an existential doctrine.

(i) If U € P(c; X ... Xc¢,), we will write U(xy, ... ,x,).
(i) For U,V € P(c), we will write U(x) A V(x) instead of (U A V)(x).

(iii) For an arrow d ER c € Cand U € P(c), we will write U(f(x)) in place of P(f)(U).
(iv) Given objects ¢,d € C and W € P(c x d), we will write dy : d W(x, y) in place of

Ap(pr,) W, where pr, is the projection
cxd —2% d.

(v) Given U € P(c), we will write U(x1) A x1 = x, in place of 5 U, where A, is the
diagonal

c i} cXc.
(vi) More generally, for any arrow 4 ER cand V € P(d), we will write
Jy:dVy) A fly) = x

for 4 P(f) V.
(vii) Finally, given U, V € P(c) with U < V, we will write

U(x) ke V(x).
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Inequalities in the fibres of a doctrine are thus lent a logical intuition when rewritten as
sequents in this manner. For example, is it easier to intuit the validity of the equation

HAcxdTCXd = P(pr],3)(3AcTC) A P(pr2/4)(3Ade)/

where pr, , and pr, , are the projections

IV cxXxdxcxd Y

cXc dxd,

or the validity of the equivalence (x, y) = (X', ¥') Hrxxcypa X =X Ay = y'? (See [IZ8]
for an entirely categorical proof of the former).

In fact, this transliteration can be formalised into a sequent calculus, as is done in
[65, §4.3], in which the symbols used in the transcription can be manipulated as one
would expect them to be, and the calculus has a complete and sound interpretation
in existential doctrines — meaning that a sequent can be proven in the calculus if and
only if the corresponding inequality is satisfied in every existential doctrine.

In this section, we will at times use the internal language of an existential doctrine
to intuit results whose explicit demonstrations would be tangentially tedious to our
exposition. Elementary proofs, without the use of the internal language of a doctrine,
are provided in Appendix Al

Building a syntactic category. It seems superfluous to recall that, given two subsets
A C Xand B CY, the graph of a function f: A — B consists of a subset f C X XY such
that
(x,y)ef = x€AyeEB,
wy, y)ef = y=y,
x€A = dyeB(xy) € f.

The conceit behind provably functional relations is to translate these implications into
the internal language of a doctrine.

Definition I11.32. Let P: C°? — MSLat be an existential doctrine. The syntactic cate-
gory Syn(P) of P is the category:
(i) whose objects are pairs (c, U) where c is an object of C and U € P(c),
(ii) and each arrow (c,U) — (d,V) is given by some W € P(c X d) that defines a
provably functional relation, i.e. the sequents
W(x, ¥) Frgya UX) A V(Y),
W(X, y) A W(x/ y/) I'x:c;y,y’:d y= y//
U(x) bye dy :d W(x, y)
are derivable in the internal language of P, or more concretely the inequalities
W < P(pr,)(U) A P(pry)(V),
P(Prl,z)(w) A P(pr1,3)(w) P(przl3)3Adez

<
U< 3 W
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are satisfied, where pr, and pr, are the projections

e oxd 22y g

pry,, pr; ; and pr, , are the projections

Pris c X d X d Pry3

cxXd cxd dxd,

and A;: d — d X d is the diagonal.

The identity morphism on (c, U) is given by J, U € P(c X c), while the composite of
two arrows

c,U) 25 d,v) L (¢, V")

is given by the composite of W and W’ as relations, i.e.

Tor,, (P(pr, ,)(W) A P(pr, ) (W),
which is dy : d W(x, y) A W'(y, z) in the internal language.

Remark III.33. We have presented the syntactic category construction for an existen-
tial doctrine. This is analogous to the category of maps construction for an allegory (see
[39, §2.132]). Indeed, for each existential doctrine P, the two constructions coincide
in that Syn(P) ~ MAP(A(P)), where A(P) is the allegory of relations on P, i.e. the
allegory whose objects are elements U € P(cxd) (note that P must be a regular doctrine
in order to express the relational composite of U € P(c X d) and V € P(d X ¢)).

ExampleIIl1.34. Let T be a theory in a fragment of first order logic that contains regular
logic, i.e. the symbols { A, T,3} (see [b3, Defintion D1.1.3]). The syntactic category
Syn(FT) of the existential doctrine FT: Cony — MSLat, by definition, coincides with
the usual syntactic category Cr for T as described in [63, §D1.4].

The syntax-subobject adjunction. Taking the syntactic category of an existential
doctrine yields a left inverse to the restriction of the 2-functor Sub_y: Cart — PrimDoc
to a suitable 2-subcategory — the 2-category of regular categories.

Definition III.35 (§A1.3 [63]). By Reg, we denote the 2-category:

(i) whose objects are reqular categories — categories with finite limits and image
factorisations that are stable under pullback (we will also require that a regular
category is well-powered — i.e. each object has a small set of subobjects),

(ii) whose 1-cells are reqular functors (also called exact functors in [6] and [?8]) — finite
limit preserving functors that also preserve regular epimorphisms,

(iii) and whose 2-cells are natural transformations between regular functors.
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For each regular category C, the subobject doctrine Subc: C? — PreOrd is an
existential doctrine (see [65, Theorem 4.4.4]). The left adjoint to Sub¢(f), for an arrow
f of C,is given by the existence of images (see [63, Lemma A1.3.1]). Thus, the subobject
2-functor Sub_y: Cart — PrimDoc from above restricts to a 2-functor

Sub(_): Reg ——> ExDoc.

The syntactic category construction also induces a 2-functor Syn: ExDoc — Reg.
For an existential doctrine P, the category Syn(P) is regular: it has finite limits and the

image factorisation of an arrow (c, U) , (d,V) € Syn(P) is given by
(€, ) —=% (d, I, W) —> (d,V)

(see [98, §2.4 & 2.5]). A morphism of existential doctrines (F,a): P — Q preserves
the interpretation of regular logic, and therefore (F,a) induces a regular functor
Syn(F,a): Syn(P) — Syn(Q).

The two functors form a pseudo-adjunction

Syn
—_—
ExDoc L Reg. (TIL.1i)
Sub(_>

By pseudo-adjunction we mean that, rather than there being a natural isomorphism of
hom-categories, there is instead only a natural equivalence. Since Sub., is full and
faithful on 1-cells, the counit is a natural equivalence of categories Syn(Sub¢) =~ C
for each C € Reg. The pseudo-adjunction ([IL1i) can be deduced from the analogous
pseudoadjunction found in [99, Proposition 1.3] and [0, Theorem 3.6].

II1.3.3 Syntactic sites

We desire a version of the pseudo-adjunction (IIT5d) that also incorporates Grothendieck
topologies. To that end, we introduce the 2-category of reqular sites and a particular 2-

category of existential doctrinal sites which we denote by ExDocSites. We then extend

the 2-functors Syn: ExDoc — Reg and Sub(_): Reg — ExDoc to these 2-categories

by showing that for each existential doctrinal site (P, (J.)ccc) € ExDocSites (respec-

tively, regular site (C, K)) there exists a natural choice of Grothendieck topology Jsyn

on Syn(P) making (Syn(P), syn) a regular site (resp., a natural choice of Grothendieck

topology Klsub.() on Sube(c), for each ¢ € C, making (Subg, (Klsub,())cec) an existential

site). Finally, we demonstrate that these extended 2-functors are pseudo-adjoint.

Definition III.36. (i) Let RegSites be the 2-category whose objects are regular sites,
which are sites (C, K) where C is a regular category and K is a Grothendieck
topology on C such that the sieve generated by each regular epimorphism ¢ - d
is a K-cover. The 1-cells of RegSites are cover preserving regular functors and
the 2-cells are all natural transformations between these.

(ii) By ExDocSites we denote the the 1-full 2-subcategory of DocSites on objects
of the form (P, J..) for an existential doctrinal site (P, (J.).cc) whose underlying
doctrine P is also a primary doctrine (and therefore, by Proposition I3[, an
existential doctrine).
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Remark II1.37. Let (C, K) € RegSites be a regular site. As every morphism d Leec
can be factored as a regular epimorphism followed by a monomorphism

d —» fd) —> ¢,

the Grothendieck topology K on C is entirely determined by which families of subob-
jects {e; > c | i € I} are K-covering for each c € C.

For a regular site (C, K), by endowing each subobject lattice Sub¢(c) with the
Grothendieck topology Klsub.(), We obtain an existential site (C, (Klsube())cec). We note
that the left adjoint

3;: Sube(c) — Subc(d),

for each arrow ¢ 5 d € C, preserves covers. If a family of arrows {a; > bli €]} in
Subc(c) is K-covering then, using the diagram

T T

a —> b f(a) — f(b)
J\I C N

the fact thata; - f(a;) and b - f(b) are both K-covers, and the fact that K satisfies the
transitivity condition, we observe that { f(a;) > f(b) | i € I}is a K-covering family too.

We denote the resulting topology on C = Sub¢ by Ksp. It is easily checked that,
given regular sites (C, K) and (D, K’) and a regular functor F: C — D, F sends K-covers
to K’-covers if and only if the induced morphism of doctrines (F,af): Subc — Subygp
sends Ksy,-covers to K{ , -covers. Thus, we obtain a 2-functor

Sub(_: RegSites ——> ExDocSites

which, moreover, is full and faithful on 1-cells since Sub_): Reg — ExDoc is full and
faithful on 1-cells.

Conversely, for each existential site (P, (J.).cc) € ExDocSites, we can endow the
syntactic site Syn(P) with the Grothendieck topology Jsyn where a family of arrows

{@uy s @wlier)
is Jsyn-covering if and only if the family
(T, WiV ]iel}

is J;-covering. Recall that the image factorisation of an arrow (c, U) LR (d,V) € Syn(P)
is given by

(c, U) —=% (d, I, W) —> (d,V),
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whose left factor (c, U) , (d, pr,W) is trivially a Jsyq-cover. Thus, regular epimor-
phisms are Jsy,-covers and so (Syn(P), Jsyn) is a regular site. It is equally trivially
observed that if (F,a): (P, J.) = (Q,].) is a morphism of ExDocSites then the induced
functor Syn(F, a): Syn(P) — Syn(Q) sends Jsyn-covers to ]’Syn-covers, and hence there

is a functor
Syn: ExDocSites —— RegSites.

Proposition I11.38. The pseudo-adjunction ([ILi1) extends to give a second pseudo-adjunction
and a morphism of adjunctions

ExDoc # ExDocSites

Syn\[ e TSub() Synl 4 TSubU

Reg «— T RegSites,

ie. SynoU = U’ o Syn and Sub_y o U’ = U o Sub), where U and U’ are the forgetful
2-functors.

Proof. For each pair of a regular site (C, K) € RegSites and an existential doctrinal site
(P, (Jo)cec), the necessary equivalence

RegSites((Syn(P), Jsyn), (C,K)) = ExDocSites((P, |..), (Subc, Ksu)) (I1Liii)

is easily obtained by restricting the equivalence Reg(Syn(P), C) =~ ExDoc(P, Sub¢) to
those regular functors Syn(P) — C (respectively, morphisms of existential doctrines
P — Sub¢) which are cover preserving (resp., for which the induced functors D =P —
C > Subg are cover preserving). O

III.3.4 Syntactic sites versus doctrinal sites

For each existential doctrinal site (P, (J.).cc) € ExDocSites, there are now two choices,
Sh(C = P, ]..) and Sh(Syn(P), [syn), for the topoi we can associate with the doctrinal
site. In particular, if T is a theory in a fragment of logic that contains regular logic,
then there are two choices of site for the classifying topos of T — one built from the
doctrine associated to T, and the other built from the syntactic category.

However, already by the natural equivalence ([IIiii), we can deduce a natural
equivalence

Geom(S, Sh(Syn(P)/ ]Syn)) = RegSiteS((Syn(P)/ ]Syn)/ (&, Jean)),
~ ExDocSites((P, |..), (Subg, Ksup,,)),
~ Geom(&E, Sh(C =P, ],.))

for each topos &. Hence, there is an equivalence of topoi
SR(C » P, ].) = Sh(Syn(P), Jsyn), (IMLiv)

and so it is equivalent, at the level of topos theory, to represent a theory using a
doctrinal site or a syntactic site.
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Despite this, it is instructive to see where this equivalence comes from. For each
(P, (J.)eec) € ExDocSites, we will construct a functor {¥: C x P — Syn(P) and then
demonstrate that

CP: (C ~ P/ ]><) - (SYH(P)/ ]Syn)

is a dense morphism of sites, from which we deduce the equivalence (ITid) by
Lemma [8.

Since C = P and Syn(P) share the same objects, it is obvious how we would wish
C" to act on objects. Our first task therefore is to conjure a provably functional relation

from an arrow (¢, U) % (d, V) of C » P.
LemmaIII.39. Let P: C°? — MSLat be an existential doctrine. For an arrow (c, U) ER d,V)
of C = P, i.e. whenever U < P(f)(V), the proposition
Hidcxfu € P(c xd)
is a provably functional relation (c, U) — (d, V) € Syn(P).

In the internal language of P, Jig.xsU is written as U(x) A f(x) = y, while the
inequality U < P(f)(V) becomes U(x) Fy. V(f(x)). Written this way, the sequents

U(X) A f(x) =Yy "x:c;y:d V(y)/
U@ A fx) =y AU A Q) =Y bxcyya Y = Y
U(X) A f(x) =Yy l'x:c;y:d Hy/ o d u(x) A f(X) = yl

required for Jig.xsU to be provably functional are evidently satisfied.
The assignments

(c, U) = (c, U),

FigexfU

W)L @ V), U) =25 @, V)

define a functor {”: C < P — Syn(P). By definition, (" preserves identities. That C”
preserves the composite

€U —= @ V) —= W)
is expressed by the equivalence

Ay :dUX) A f(xX) =y AV(Y) AY) =2) Hrrcze UX) Ago fx) =2

in the internal language of the doctrine P. Elementary demonstrations of Lemma
and the functoriality of C” are given in Appendix Al

Intuitively, the functor {¥: C < P — Syn(P) is ‘adjoining those arrows that ought
to exist’ (i.e. those for which a provably functional relation exists) and ‘identifying
those arrows that ought to be the same’ (i.e. those for which the internal language of
P proves an identity of arrows).

Proposition I11.40. Let (P, (J.)cec) be an existential doctrinal site. The functor C* defines a
dense morphism of sites

CP: (C ~ P/ ]x) — (Syn(P)/ ]Syn)/
and hence there is an equivalence of topoi Sh(C < P, ]..) = Sh(Syn(P), Jsyn).
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Proof. We check the four conditions of Definition L one by one.
(i) The first condition, Definition [A[i], is immediate once we recall that a family of

morphisms

{(Cz‘,ui)&(d,V) iel} inCxP

is J.-covering if and only if
{3 = 3y, B g Us —> Vi€ I} in P(d)

is J;-covering, if and only if the family of morphisms

Fidc,xf, Ui
(¢, U) — @, V)

iel } in Syn(P)

is Jsyn-covering.

(i) Condition Definition [A[ii) follows since the functor * is surjective on objects.

(iii) Let (c, U) , (d, V) be a provably functional relation, i.e. an arrow of Syn(P). As

W < P(pr,)(U), there is an arrow (c X d, W) LN (c,U) of C > P. Consider the
diagram

CP(Prl):aidcxderl W w

(cxd,W) > (c, U)

s d,V) (IlLv)

in Syn(P). To satisfy condition Definition [H(iii), it suffices to show that the

P
arrow (cxd, W) L), (c, U) is Jsyn-covering and the composite of ([II) is in the

image of C”. The former follows from the inequality
U < e, W = Fpr, Fidgepr, W
while the latter is expressed by the equivalences

I e W, y) Ax =X AW, ) Ay ypa W, ) AW(X,Y),
'“'x:c; yyd W(x/ y) A y = y,

in the internal language of P. An elementary proof is provided in Lemma A3

in Appendix [Al.
(iv) Let
f
—
(c, L) = V)

be a pair of parallel arrows of C = P that are identified in the image of (7,
i.e. JigxrU = Jig.xgU. To satisfy condition Definition L&(iv}), we aim to find a
J«-cover S of (c, U) such that, forallh €S, f oh = goh. Let

f
h —
e —> ¢ g}d
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be an equalizer diagram in C, and hence the square

e L} c
hi \Lidcx r (ITLvi)
c ﬂ) cxXd
is a pullback. The fork
(c, P()(L)) —= (¢, ) — @)
=

in C = P commutes, and the arrow (c, P(h)(U)) LN (c, U) is J.-covering since

FigxfU = Jigxed = U
== U

P(idc X f)HidcngI/

<
< ZP(M(U),

where the last implication is an application of the Beck-Chevalley condition for
the square ([ITxd).

O

The choice of functor C is suitably natural. Recall that MorphSites denotes the
bicategory of sites, morphisms of sites and natural transformations between these. The
two sites that can be assigned to an existential doctrinal site (P, (J.).cc) € ExDocSites,

(P, (]c)ceC) = (C =P, ]><) and (P/ (]C)CEC) = (SYH(P), ]Syn)/

yield a pair of bifunctors

o — .
ExDocSites syn} MorphSites.

It is easily checked that the morphisms of sites (": (C % P, J.) — (Syn(P), Jsyn) is the
component at the existential doctrinal site (P, (J.).cc) of a natural transformation
ExDocSites JJC MorphSites

\_/(

Syn

Since C” is a dense morphism of sites for each (P, (J.).ec), the composite 2-cell Sh = (,
ExDocSites JJC MorphSites — S Topos,

\/(

Syn

is an isomorphism.
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Remark IIL.41. Let T be a geometric theory over a signature © with N sorts. (See Sec-
tion M4 for more on geometric theories; also this remark, with suitable modifications,
will apply to any theory in a fragment of first-order logic that contains regular logic.)
A textbook account of classifying topos theory, as can be found in [63, §D1.4], [79, §X]
or [22, §1.4], presents the classifying topos Er of T with the syntactic site (Cr, Jr).

(i) The syntactic category Cr of T is the category

a) whose objects are the T-provable equivalence classes of formulae {X : ¢}

over X,

b) and whose arrows {¥ : ¢} LN {§ : ¥} are T-provable equivalence classes

of T-provably functional formulae, that is formulae 6 in the context X, i
such that T proves the sequents

Otz; o AP, @370, OAOIZ/T] ey =2
(i) In the syntactic topology Jr on Cr, a family of arrows

[0:]

{1200 217 p|ict]
is Jr-covering if and only if T proves the sequent

yl) I—g \/ 33?1‘ 61'.

iel

We immediately recognise the category Cr as the syntactic category construction
Syn(F") for the doctrine F': Cony — Frm associated with the theory T. Similarly,
the syntactic topology |t is precisely the topology Jsyn obtained from the existential
doctrinal site (FT, (J2)zecony ), Where each fibre F'(¥) has been endowed with the canon-
ical topology on the frame. (The induced topology J. on Cony! = FT is precisely the
topology Kpr from Definition [TTT.)

Thus, by Proposition [IT40, we conclude that both (Con]cz]p =< FT,J.) and (Cr, J1)
are both sites of definition for the classifying topos Er, as visualised in the ‘bridge’
diagram

Sr
__» theclassifying 4 _
-7 topos of T, TNl
/// \\
// \\
/7 \
4 N
FT: Cony — Frm Cr, J1)
the geometric doctrine, the syntactic site.

The site (Con,’ = FT, Krr) was dubbed the alternative syntactic site of the theory T in
[125].

Why would one choose one site of definition for &r over another? As we will
make use of in Chapter V11, the site (Con;,p = FT, K1) can be more amenable than the
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standard syntactic site for some calculations. Notably, every arrow (¥, ¢ ) = (¥, 1)
is a restriction of the arrow

(X, ) —> (¥, ¢)

{ !

(X, T) —= (¥, T),

and moreover, since (Z, T) is the product [1.e2(z;, T) in Conilp > FT the arrow

(2, T) > (7, T), labelled by a relabelling o: 7 — ¥, is induced universally as in
the diagram

(%, 7) -2 [ [T =7, T)

\L i€y
PTo(y;) \L
pry,

idy(y;)=idy,
(o), T) ——— (4, T)

Conversely, there are desirable properties of the syntactic site (Cr, 1) that are
not shared by the alternative site (Cony! = FT,K;r). For example, the topology Jr is
subcanonical (see [79, Lemma X.4.5]) while the topology Kgr on Con,; > FT is not (see
Remark ITTH(ii)).

I11.4 Geometric theories as internal locales

Finally, we focus exclusively on doctrines that interpret geometric logic. Let T be a
theory of geometric logic, i.e. T is a theory in that fragment of first-order infinitary
logic whose permissible symbols are {A, T,L,\/,d,=}, over a signature £ with N
sorts. The doctrine FT: Cony — DLat associated to the theory is an internal locale of
the presheaf topos Sets“"~.

(i) The doctrine FT takes values in the category Frm.

(ii) For each arrow ¥ - i/ € Cony, F'(0) has a left adjoint dpr(s) — the left adjoint
Jpr(,) acts on a formula ¢ € F'(3)) by

HFT(U)((P) =

37 ¢ A /\yi = 0(%’)}-

viey

(iii) Moreover, these left adjoints satisfy both the Frobenius and Beck-Chevalley
conditions.

Thus, by the classification of internal locales of Sets“™ given in [68, Proposition

VI1.2.2] (see also Theorem [IT0), we obtain the following proposition, as observed in
the single-sorted case in [63, Theorem D3.2.5] (the observation could also be obtained
using the theory of localic expansions of [22, §7.1], see also Section ITT4T).

Proposition II1.42 (Theorem D3.2.5 [63]). An internal locale 1L of Sets“™ corresponds,
up to equivalence, to an N-sorted geometric theory T (the exact notion of equivalence for
theories is provided by Theorem [ILT4).
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Geometric doctrines. We are therefore inclined to define a geometric doctrines as
follows:

Definitions II1.43. (i) A geometric doctrine is a doctrine that factors as
L: C°" — Frmgpe, € PreOrd

and moreover satisfies one of the equivalent conditions:

a) L satisfies the relative Beck-Chevalley condition;
b) IL defines an internal locale of the presheaf topos Sets®" .

(ii) We define the 2-category GeomDoc of geometric doctrines and their morphisms
as the 1-full 2-subcategory GeomDoc C DocSites on objects of the form (I, Ky,),
where the Grothendieck topology Ky on C > L is the same topology as in
Definition [TTT, i.e. the topology where a sieve S in C < L is Ky-covering if
and only if S contains a small family

iel}

v=\/3U;

iel

{ (ci, U;) N V)

in C » IL such that

Just as in Proposition [T, we can identify a morphism of geometric doctrines
(Fa): L — I’ as a pair consisting of a flat functor F: C — D between the base

. . g
categories and a natural transformation a: IL = I’ o F°? where, for each d = c € C,
the square

i

Ly —2 L.

3]L’<F(g§)
H‘;?(d) ]L/P(c)

commutes. Thus, if L, IL”: C°? = Frmpe, are two internal locales fibred over the same
category, then

GeomDoc(IL,IL") = Loc (SetsCOP)(IL’,]L).
Indeed, for any topos & =~ Sh(C, ]), there is a 1-full 2-embedding

Loc(6)°P —— GeomDoc.

Note also that we have not restricted ourselves to geometric doctrines that are
tibred over cartesian categories. We will instead use GeomDoc_, to refer to the 1-full
2-subcategory of geometric doctrines that are fibred over cartesian categories.

Applications to geometric logic. Having identified geometric theories with internal
locales, the remainder of this section is dedicated to applying our results on internal
locales from Chapter [ to deduce corresponding results on geometric theories. The
results we prove were previously known in the literature via other methods. But,
in the author’s estimation, the perspective of internal locale theory yields the most
elegant demonstrations of these facts.
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II1.4.1 Localic expansions

Our applications to geometric logic concern expansions of theories. Expansions of
theories are ubiquitous in mathematics since, as soon as one notion is defined, it is
natural to consider the same objects equipped with extra structure (formalised by
localic expansions) or special cases (formalised by quotient theories). Over the next few
results, we will observe that the structure of localic expansions is closely tied to theory
of internal locales developed in Chapter [.

Definition I11.44 (Definition 7.1.1 [?2]). Let T be a geometric theory over a signature
L. A localic expansion of T consists of an expanded signature X’ 2 X and a geometric
theory T’ over X’ such that:

(i) the expanded signature X’ adds no new sorts to the signature Z,

(ii) the theory T’ proves every every axiom ¢ +z ¢ of the theory T.

Corollary II1.45 (Theorem 7.1.3 [22]). For each localic expansion T’ of T, there is an induced
localic geometric morphism

e%': ST’ — ST.
Proof. For each context X, we denote by eg';l the map

I FT(®) - FT (3,
[plr = [plr,

where we have used the notation [p]r and [@]1 to differentiate between the class of
formulae that are provably equivalent to ¢ according to the theory T and according
to the theory T".

Since T’ proves every axiom of T, if [p]r < [¢]r, then [p]r < [¢]r, and so the

-1, .
map e . is monotone. Moreover, since

[ Al = [@lT A [Y]r and {\/ (Pi] = \/[(P]T/
T

iel iel

and similarly for T’, the map e%';l is clearly also a frame homomorphism. Addition-
ally, it is easily observed that e%'; is natural with respect to the maps F'(0) and 3,

since ejfT';l also preserves substitution and the interpretation of the logical symbols
{=3}

Therefore, the maps e%';l, for each context ¥ € Cony, are the components of an
internal locale morphism el : FT" — FT. Thus, by applying Proposition T3, there is
a localic geometric morphism

Sh(el'): Sh(FT) ~ & — &r = Sh(FT)

as desired, which we label by e%'. O
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Example III.46. Every theory T over a signature ¥ with N sorts is a localic expansion
of the N-sorted empty theory N - O. The induced localic geometric morphism

62;01 éﬁ[ — é;Nﬁ):: SEﬂSCOHN

is precisely the localic geometric morphism Cr ; : &1 = Sh(FT) — Sets“™ associated
with the internal locale FT of Sets

Cony

Conservative expansions. A localic expansion T’ of a geometric theory T is said
to be conservative if whenever T’ proves a sequent ¢ 3 1 over the non-expanded
signature X, then T also proves the sequent. Thus, an expansion T is conservative
if it proves no new theorems over the language of the original theory. It is easily
observed that the expansion T’ of T is conservative if and only if, for each context ¥
over X, the frame homomorphism

IR - FT(R)
is injective. Thus, the following corollary is obtained by Proposition IT28;

Corollary I11.47. The induced localic geometric morphism el : Ey — Er of a localic expan-
sion T of T is surjective if and only if T’ is a conservative expansion.

I11.4.2 Quotient theories

A quotient theory is a particular kind of localic expansion where the signature does
not change, i.e. a quotient theory is obtained by adding further axioms to the original
theory. There is an equivalence between quotient theories and subtopoi, as found in
[22, Theorem 3.2.5]. We give an elementary proof of this fact using internal sublocales.

Definition II1.48 (Definition 3.2.2-4 [?27]). Let T be a geometric theory.
(i) A quotient theory of T is a geometric theory T’ over the same signature X as T
and which contains the axioms of T.
(ii) Two quotient theories T’, T” of T are said to be syntactically equivalent, written

as T’ =, T”, if the axioms of T’ are provable by the theory T" and vice-versa.

Corollary II1.49 (Theorem 3.2.5 [22]). Let T be a geometric theory. There is a bijective
correspondence between the =s-equivalence classes of quotient theories of T and the subtopoi

Qféir.

Proof. A quotient theory T of T is a particular case of a localic expansion of T, and
so, by Corollary [ML45, there is an internal locale morphism

T FT 3 T,

Moreover, since T’ is a theory over the same signature as T, for each context X,
the frame homomorphism e%';: FI(¥) — FT(¥) is evidently surjective. Thus, the
internal locale morphism el is an internal sublocale embedding el : FT' »» FT and,
by Theorem [34, the theory T’ yields a subtopos el : Sh (FT') > Sh (FT) ~ &y.
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For the converse, by Theorem [L33, a subtopos
f:F — Sh(FT) ~ &y

must be induced by an internal locale morphism, i.e. an internal locale morphism
f: I — FT where, for each ¥, the component frame homomorphism f>": F'(¥) — IL(%)
is surjective. Let Ty be the quotient theory of T whose axioms consist of the sequents
@ rz ¥, for each pair of formulae ¢, ¢ for which ' ([p]r) < f.'([¢’]1). To complete the
proof, we need only note that IL = F'/ and that T =T for each quotient theory of
T and subtopos f: ¥ » &r. o

The frame of quotient theories. Given two quotient theories T’, T” of T, we order
the theories by T” < T’ if T” proves every axiom of T’. Thus, we have that T =, T" if
and only if T < T” and T” < T’. Thus, we are able to form Th, the poset of quotient
theories of T, whose elements are the =;-equivalence classes of quotient theories of T
ordered by as above.

Corollary IIL.50 (Theorem 4.1.3 [22]). The poset Thy of quotient theories of T is a co-frame.
Proof. We first note that there is a factorisation of internal sublocale embeddings

T
T

FT' > 5 T

if and only if T” < T’. Thus, in combination with Corollary [ITZ9, we have that
Thr = N (FT)*. An application of Theorem now yields the result. m|






Chapter IV

The geometric completion

Completions of doctrines. In the categorical formulation of logic and syntax af-
forded by doctrine theory, a natural question arises: given a doctrine

P: C°° —— PreOrd

and a certain syntax we wish P to interpret, is there a universal way of completing P
to this new syntax?

Many such logical completions have been studied in recent years. In [96], Pasquali
constructs a co-free completion of a primary doctrine to an elementary doctrine. The
quotient completion of an elementary doctrine has been extensively studied by Maietti
and Rosolini (see [8T]-[84]). The existential completion, introduced by Trotta in [ITY],
universally completes a primary doctrine to an existential doctrine. The existential
completion is adapted by Trotta and Spadetto in [12T, §3] to give a completion of a
primary doctrine to one which interprets universal quantification. In [30] Coumans
gives a completion of coherent doctrines that generalises the canonical extension of
distributive lattices.

The geometric completion we present is another such completion.

Philosophical motivation. While syntactic completions of doctrines are obviously
of a philosophical interest for their universal property, it is also desirable that they be
semantically invariant, i.e. the category of models associated with a doctrine P and its
completion TP are categorically equivalent. Thus, one is able to study the semantics
of the doctrine P but within the potentially more familiar framework of the syntax of
TP. We will observe in Theorem V1A that, if the desired models of a doctrine P are
encoded by a Grothendieck topology J on C = P, then the geometric completion of
(P, ]) is semantically invariant. It is this property which allows the intended use of the
geometric completion: to re-express a study of the semantics for various doctrines by
a single treatment for geometric doctrines.

The ideal completion for preorders. The geometric completion we will study is
a fibred generalisation of the ideal completion for preorders, which is described in
[68, §IIL.4] and [A0, §I1.2.11]. Recall that given a preorder P, the preorder 2" of all
monotone maps f: PP — 2, given their pointwise ordering, is the free join completion
of P (the universal property of 2P can be deduced from Remark [V2). Furthermore,

115
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2P is isomorphic to the set of down-sets of P ordered by inclusion, and is additionally
a frame.

Recall also that if we endow P with a Grothendieck topology (a Grothendieck
topology on a preorder is sometimes also called a covering system), then we can form
the frame [-1d1(P) of J-ideals on P. The elements of J-Id1(P) are the J-closed down-sets
I C P, i.e. those down-sets such thatif {y; < x| j € J}is a J-covering sieve with each
yjin I, then x € I too.

The map n'¥): P — J-Id1(P), which sends an element x € P to the J-closure of the
principal down-set | x generated by x, constitutes a ‘geometric completion’ of the pair
(P, ]) in the sense that it satisfies a universal property:

Theorem IV.1 (Proposition 11.2.11 [60]). For a meet-semilattice P and a Grothendieck
topology J on P, the frame J-1d1(P) satisfies the universal property that for each meet-semilattice
homomorphism a: P — L into a frame L which is J-continuous, meaning that a(x) =
V y<xes ay) for each J-covering sieve S on x, there exists a unique frame homomorphism
a: J-Id1(P) — L for which the triangle

(P))
P - J-1d1(P)
o
e g
L

commutes.

Remark IV.2 (Theorem 6.2 [19]). In Theorem VT, the requirement that P be a meet-
semilattice can be relaxed. If P is any preorder, and ] is a Grothendieck topology on P,
then the frame J-Idl(P) satisfies the universal property that, for each J-continuous
monotone map a: P — L into a frame L, there exists a unique monotone map
a: J-Id1(P) — L such that a preserves all joins and a o ) = 4.

The map a also preserves finite meets, and hence is a frame homomorphism, if
and only if a: P — L defines a morphism of sites a: (P, ]) = (L, Jcan)-

For certain cases, the geometric completion can be understood as an internal ideal
completion, externalised via the perspective of fibred topos theory [?4, §6]. A strictly
functorial doctrine P: C°° — PreOrd, fibred over a small category C, can be viewed
as an internal preorder of the presheaf topos Sets®”, and a Grothendieck topology |
on the Grothendieck construction C = P acts as an internal covering system on P.
The pair (P, ]) admits a fibred ideal completion, as established in [?4, Theorem 6.1], that
generalises the ideal completion for preorders. This yields the geometric completion
of the doctrine P, relative to the Grothendieck topology J on C = P.

Key results. The universal property of the geometric completion we present in
Theorem [V14 is an extension (to include change of base category) of the universal
property of the fibred ideal completion established in [?4]. We will show that the ge-
ometric completion defines an idempotent 2-monad on the category of doctrinal sites
DocSites from Definitions [ML72. We also simplify the description of the geometric
completion from [?4] for certain doctrines. This simpler description can be leveraged
to recover the geometric completion on an arbitrary doctrine.
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We also relate the geometric completion to two other classes of completions of
doctrines. The first are coarse geometric completions, which are obtained when we
‘forget’ some of the geometric information added by geometric completion. This is
encoded by equipping the geometric completion of a doctrinal site with a weaker
topology. The coarse geometric completions thus obtained are no longer idempotent
but are instead lax-idempotent.

The latter class we study are subgeometric completions, which are intended to capture
completions of doctrines to some, but not all, of the data of geometric syntax — for
example, in Section V.33 we will prove that Trotta’s existential completion [I1Y] is
subgeometric.

We also demonstrate throughout how these completions of doctrines yield com-
pletions of categories, such as the reqular completion [27], via the syntactic category
construction from Section [ML3.

Overview. The chapter is divided as follows.

(A) The geometric completion is developed in Section V1 as an application of
the fibred ideal completion of [?4, §6]. That the geometric completion of a
doctrinal site is universal, semantically invariant and idempotent is proved in
Section V.12, extending the universal property found in [?4], and this universal
property is used to develop the 2-monadic aspects of the geometric completion
in Section V.T3.

We also describe how, in combination with the syntactic category construc-
tion from Section M3, the geometric completion for doctrines yields a geometric
completion for regular sites in Section [V.T4.

(B) The geometric completion is idempotent since we can keep track of the geo-
metricity of a geometric doctrine by assigning a suitable Grothendieck topology.
Section is dedicated to the study of completions when some of this infor-
mation is ‘forgotten’ by assigning a coarser Grothendieck topology. We develop
a general framework for coarse geometric completions, and also prove that every
coarse geometric completion is lax-idempotent.

(C) Finally, we study subgeometric completions in Section V3. Vaguely speaking, a
2-monad T on a 2-subcategory of doctrines, viewed as a completion of doctrines
at the suggestion of [I20], is ‘subgeometric” if a suitable sub-class of geometric
doctrines are all T-algebras and the data added to the completion TP of a doctrine
P can be ‘seen’ by a certain Grothendieck topology ]}, on D = TP. We will show
that the geometric completion of P is isomorphic to the doctrine obtained by
completing P according to T, keeping track of the new data by the topology J7,
and then geometrically completing.

We begin in Section V31 with a motivating example: Trotta’s existential
completion [TTY]. The formal definition of a subgeometric completion is intro-
duced in Section V.32, where we also give sufficient conditions for a subgeo-
metric completion to be lax-idempotent.

We then turn to further examples of subgeometric completions. In Sec-
tion we develop a general theory for obtaining subgeometric completions
via subdoctrines of the free geometric completion, which encompasses the ex-
istential completion and the coherent completion of a primary doctrine. We
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also relate these completions to the regular and coherent completion of a carte-
sian category (see [27]). Finally, various pointwise completions are shown to be
subgeometric in Section V.34,

IV.1 The geometric completion of a doctrine

We are able to define the geometric completion of a doctrinal site using only results
on internal locales recalled in Chapter M. Given a doctrinal site (P, ]) € DocSites the
relative topos

Crp: Sh(C =P, J) — Sets®”

is localicby [23, Proposition 7.11] and the fact that 7tp is a faithful functor (alternatively,
Cr, is localic by [63, Examples A4.6.2(a) & (c)]). Thus, by Theorem [I7, the topos
Sh(C = P, ]) is the topos of sheaves on an internal locale (i.e. a geometric doctrine)

Cnp*(QSh(CxPJ)): COP H Frmopen

of Sets®”.

Definition IV.3 (Definition 6.2 [?4]). The geometric completion of a doctrinal site (P, ])
is the geometric doctrine C,, (Qsnc~pp): CP — Frmg,.,. We denote the geometric
completion of (P, ]) by 3(P, ]).

Recall from [?4, Proposition 4.2] or Section T2 that the doctrine

S(P/ ]) Cop ) Frmopen
is isomorphic to the functor
SubSh(Cpr)(C;P o} J:(;(—)) . COP —) Frmopen.

We claim that this choice of geometric completion is 2-functorial in DocSites, and
moreover universal, idempotent and semantically invariant. The proof of these facts
is delayed until Section and Section [V.T3. We proceed as follows.

— Immediately below, in Section VT, we recall the explicit description of the
geometric completion 3(P,]) of a doctrinal site (P, ), as described in [24, §6].
We also demonstrate that, in special cases, the calculation of the geometric
completion can be simplified.

Firstly, we show that the geometric completion of an existential doctrinal
site (seen in Section M3 can be computed ‘pointwise’. Secondly, we give a
simpler description of the geometric completion in the case where each fibre of P
has a top element and these are preserved by transition maps. By showing that
the free top completion is subgeometric, we can recover the geometric completion
of an arbitrary doctrine.

— In Section VT2, the unit of the geometric completion is defined and the univer-
sal property is proved.
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— We demonstrate the 2-monadic aspects of the geometric completion in Sec-
tion VT3 and identify the algebras of the monad as the geometric doctrines.

— Finally, in Section [V.T 3, we relate the geometric completion for doctrines to the
geometric completion for regular sites via the syntactic category construction
from Section [ML3.

IV.1.1 Calculating the geometric completion

An explicit description of the geometric completion 3(P,]): C°° — Frmgpe, for a
doctrinal site (P, J) can be computed directly using the description of the subobject
classifier of a Grothendieck topos found in [[79, §II1.7], as is done in [?4, Proposition
6.2]. This returns 3(P, ]) as the doctrine where:

(i) foreach objectc € C, 3(P, J)(c)is the frame of J-closed subobjects in Sets P of the
presheaf C(mtp(—),c): (C = P)°P — Sets (for a description of J-closed subobjects,
see [23, §2.1]),

(ii) and for each arrow d ER c of C, the transition map

3B D)= 3B, N)e) —— 3(P,))[d)
sends a J-closed subobject ¢ > C(mtp(-), c) to the pullback
file) — ¢
C(rp(=), d) — C(mp(-), ¢).

By unravelling definitions, this is equivalent to the concrete description presented
below.

Construction IV4. Let P: C°° — PreOrd be a doctrine and let | a Grothendieck
topology on C = P. The geometric completion 3(P, ]): C®® — Frmg,e, admits the
following description.

(i) For each object c of C, an element S of 3(P, J)(c) is a set of pairs (f, x), where d EN c
is an arrow of C and x € P(d), such that:

a) if (f,x) € S, then (f o g, y) € S for each arrow e £ d of C and y € P(e) with
y < P(g)(x);
b) for each arrow d i> c of C, given a subset { (gi, i) | iel} C S such that, for

eachi € I, g; factors as
hi\L &

d % ¢,
if there is an x € P(d) and, for all i € I, y; < P(h;)(x) for which the family

{ew@vlicr)

of morphisms in C = P is J-covering, then (f,x) € S.
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We then order 3(P, J)(c) by inclusion.

(ii) For each arrow d ER cof C, 3(P, J)(f): 3(P, ])(c) = 3(P,])(d) sends S € 3(P, ])(c) to
£*(S), where

£ ={&n|(fogy) €S}e3®NA.

The closure operator. Clearly, if | and ]’ are Grothendieck topologies on C = P with
J € ], then 3(P, J)(c) € 3(P, J')(c) for each object ¢ of C. Hence, for every Grothendieck
topology J, 3(P, ])(c) is a subset of 3(P, Jiiv)(c), where iy is the trivial topology on C>P.
An element S € 3(P, Juiv)(c) that is contained in the subset 3(P, ])(c) € 3(D, Juiv)(c), i.e.
S satisfies property (b) above, is said to be J-closed. This is precisely what it means for
the subobject ¢ > C(rtp(—), c) corresponding to S to be J-closed in the sense of [23].

A closure operation for subobjects is described in [?3, §2.1]. In the particular case of
subobjects of the presheaf C(rip(—),c), i.e. elements S € 3(P, J)(c), the J-closure can be
understood entirely in terms of internal locale theory.

Since the embedding Sh(C = P, ]) = Sets“*"" is a geometric morphism for which
the triangle

Sh(3(P, ])) = Sh(C = P,]) »—— Sets'™"" =~ Sh(3(P, Juiv))

\ Sets®” /

commutes, by Theorem T34 the geometric morphism is induced by an embedding of
internal locales 3(P, ]) > 3(P, Juiv). That is, for each object c € C, there is a surjective

frame homomorphism mc: 3(P, Juiv)(c) = 3(P, ])(c) such that, for each arrow d Lce
C, the diagram

T3 i)

—_—
S(P/ ]triv)(d) < S(R ]triv)(c)
3(P Juiv)(f)
—l l—
e
3(P, ])(d) 3(P, J)(c)

<~
3PN

is a morphism of adjunctions.

Definition IV.5. Let S be an element of 3(P, Juiv)(c). We call the image of S under

(2)e: 3P, Juin)(€) — 3(P,N)(c)

the J-closure of S, and denote it by S. The corresponding subobject ¢ of C(pp(-—),¢) is
precisely the J-closure of c.

The geometric completion of an existential doctrinal site. Recall Definition [MT77,
that an existential doctrinal site (P, (J.).cc) consists of a doctrine P: C°? — PreOrd



IV.1. THE GEOMETRIC COMPLETION OF A DOCTRINE 121

and a Grothendieck topology J. on each fibre P(c) such that J.. defines a Grothendieck
topology on C < P, where a sieve
iel }

{(d,aﬁxi) a, (d,y)‘iel}

{@x @y

is J.-covering if and only if

is J;-covering, where . is a left adjoint to P(f;) that preserves covers.

Since the arrow (d, x) J, (c,dfx) is a J.-cover for any arrow d ER ¢ € C, an element
S € 3(P, ])(c) is entirely determined by its elements of the form (id., x) € S. Hence, by
Construction [V4, we obtain the following.

Proposition IV.6. For an existential doctrinal site (P,(].)ccc), the geometric completion
3(P, | ) is isomorphic to its pointwise ideal completion, that is:

(i) for each object c of C, 3(P, J)(c) is the frame ]-1d1(P(c)),

(ii) for each arrow d ER cof C, 3B )(f): 3(P, J)(c) = 3(P,])(d) sends a J--ideal I to the
J4-ideal

fFm={yePd|3yell.

Remark IV.7. Recall that existential doctrinal sites were intended to interpret theories
that interpret at least the syntax of regular logic, i.e. the symbols { A, T,3}, if not
further syntax. It is therefore not surprising that completing to geometric logic, whose
permissible symbols are { A, T, 3, L,/ }, involves adding only fibre-wise structure.

Example IV.8. When P: C°? — DLat is a coherent doctrine, and C > P is equipped
with the topology Jcon, we recognise by Proposition [V that the fibre of the geometric
completion 3(P, Jcon)(c) is the coherent locale associated with the distributive lattice
P(c) under the (point-free) Stone duality for distributive lattices (see [b0, §I1.3.3], cf.
[ITT]).

In particular, if B: C°? — Bool is a Boolean doctrine, then
S(B/ ]Coh): Cop —> StFrmopen

sends c € C to the Stone frame corresponding to the Boolean algebra B(c). If there is
an isomorphism B = FT for some single-sorted classical theory T over a signature X,
then 3(B, Jcon)(¥) (where X € Con; is a context/tuple of variables of length 1) coincides
with the frame of opens of the familiar nth Stone space of the theory T (see [62,
§6.3]). Doctrines of this form — or rather, since Stone frames are spatial, the doctrines
Pt o 3(B, Ki"): Con(¥ — StSpace — were dubbed polyadic spaces in the note [64] and
suggested for use in categorically proving standard theorems of classical logic, a desire
realised in [43].

Examples IV.9. (i) Suppose that T is a coherent theory (or indeed any subfragment
of geometric logic). Then T can also be considered as a geometric theory. The
geometric completion of the doctrinal site (FL_, Jcon) is simply the geometric

) - Coh’
doctrine FGeom'
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(ii) (Morleyization) If T is instead a classical theory, then by a well-known trick
known as Morleyization (see [63, Lemma D1.5.13]), there exists a Morita equiva-
lent geometric t,heory T’. The geometric completion of the doctrinal site (Fgool, Jcon)
is given by FL

Geom*

When top elements are available

In the remainder of this subsection we demonstrate that, in the special case of a
doctrine P: C°? — PreOrd where P(c) has a top element, for each object ¢ € C, and

P(f) preserves that top element for each arrow d L ¢ of C, the description of the
geometric completion given in Construction [V4 can be simplified further.

We will then show how the description in Construction [V4 can be recovered
for an arbitrary doctrinal site (P, ]) by freely adding (preserved) top elements to the
doctrine P. This yields a different proof to [?4], though more circumlocutory, that
Construction V.4 describes the geometric completion of (P, J). We do so to illustrate
our first example of a subgeometric completion. A subgeometric completion is a partial
completion to the data of a geometric doctrine which can be ‘subsumed’ by the geo-
metric completion. This will be explored further in Section V3. To avoid confusion
in the subsequent paragraphs, we will temporarily relabel the doctrine described in
Construction V4 as 3'(P, J) while we prove the isomorphism 3(P, J) = 3'(P, J).

If, for each object ¢ of C, P(c) has a top element T, which is preserved by P(f) for

each arrow d & ¢ of C, then the projection 7p: C < P — C has a right adjoint: the
functor
tp: C—->CxP

which sends c € C to (c, T.) € C < P. Thus, we can apply the description of the direct
image of C,, given in [79, Theorem VII.10.4], to obtain that

S(P, ]) = Cpp*(QSh(CxP,])) = QSh(CxP,]) © t;p: COP - FITnopen-

Therefore, using the description of the subobject classifier of Sh(C > P, J) found in [79,
§II1.7], for each c € C, an element of 3(P, J)(c) is a J-closed sieve S on (c, T.) and, for

each d ER c€C,3(P,J)(f) sends S to

FO={EenSdT)|en S eryes).

We therefore observe that 3(P,]) is indeed isomorphic to the doctrine 3'(P, ]) as de-
scribed in Construction 4. The witnessing isomorphism is given by sending a
J-closed sieve S on (c, T,) to the set

{.o]@ndcryestes@ne.

The free top completion. In the absence of top elements, we can freely add them
to the doctrine P: C°? — PreOrd and demonstrate that, by carefully selecting a
Grothendieck topology, we obtain a doctrinal site whose geometric completion is
isomorphic to 3(P, ) — thatis to say, adding top elements is a subgeometric completion.
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Definition IV.10. Let P: C°? — PreOrd be a doctrine and let | be a Grothendieck
topology on C < P.

(i) Denote by P": C°? — Sets the free top completion, the doctrine where

a) for each object ¢ of C, PT(c) is the preorder P(c) ® T., where a top element
T. has been freely added to P(c);

b) for each arrow d EN cof C,P"(f): P"(c) — PT(d) is the monotone map

PHR)  ifx e P(),
T4 ifx=T.

PT(f)(x) = {

(ii) We define a Grothendieck topology ™ on C = PT in the following way:
a) for each object of the form (c,x), with x € P(c), a sieve S on (c,x) is ['-
covering if and only if S is J-covering;
b) for an object of the form (c, T.), a sieve S on (¢, T.) is J'-covering if and

only if, for each arrow of the form (d, x) ER (c, Tc), the sieve f*(S) on (d,x) is
J-covering.

The terminology free top completion is justified as a universal property is clearly
satisfied. For any morphism of doctrines (F,a): P — Q where Q(d) has a top element

for each ¢ € C which is preserved by Q(g) for each e 5 de D, thereisa unique natural
transformation a™: PT = Q o F°P such that the triangle

P <——— PT
|

1 T
a a

\‘/
Qo Fo»

commutes and 4] sends T, € P7(c) to the top element of Q(F(c)), for each ¢ € C.

Note that C = P defines a subcategory of C > P™ and ] is the restriction of T to this
subcategory. Note also that, for each c € C, the family

{ 95 T

xeP(d),chec}

generates a | T-covering sieve.

Lemma IV.11. For each doctrine P: C°° — PreOrd and Grothendieck topology | on C = P,
J" is a Grothendieck topology on C > PT.

Proof. The maximality and stability conditions for JT are trivially satisfied since | is a
Grothendieck topology on C = P, as is the transitivity condition | for sieves on objects
of the form (d, x) with x € P(d).

It thus remains to show that if S is a J"-covering sieve on (c, T,) and R is a sieve on
(c, T¢)such thath*(R) € J7(d, x) for each arrow (e, v) KN (c, T)in S, then Ris | "-covering,

i.e. f*(R) € J(d, x) for each arrow (d, x) J, (c, T.) with x € P(d).
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As f*(S) € J(d, x) and, for each arrow (e, y) EN (d,x) of f*(S), i.e. for which the com-

posite (e, y) LN (d, x) ER (c, T¢) is an element of S, we have that f*(R) is J-covering since
k(f*(R)) = (f o k)*(R) is J"-covering (and so J-covering) by the transitivity condition
for J. Thus, by definition, R is JT-covering. O

Lemma IV.12. The site (C > P, ]) is a dense subsite of (C =< PT,]T).

Proof. This is immediate since C> P is a full subcategory of C = P" and the only objects
not contained in C = P, i.e. those objects of the form (c, T.), are covered by objects
contained in the subcategory. O

The free top completion is subgeometric. Having developed the free top comple-
tion for a doctrinal site, we can finally observe that this constitutes a subgeometric
completion in the current loose sense that 3(P,J) = 3(P7,]") (a formal definition of
subgeometricity is provided in Section [V37). As a consequence, we obtain the
isomorphism 3(P, J) = 3/(P, ]) as desired.

Proposition IV.13. There is a chain of isomorphisms of doctrines:

3PN =3P ]) =3P, ]T) =3 [P)).

Proof. That3(P,]) = 3(PT, ") follows since the topoi Sh(C =P, J) and Sh(C=PT, ") are
equivalent by Lemma IV12. That 3(PT,]") = 3'(PT,]") follows as P" has (preserved)
top elements.

We will sketch the isomorphism between 3'(P7,]7) and 3'(P, ]). We observe that
each J"-closed sieve S on (c, T.) is uniquely determined by the set

1.(S) = {( £0ldn5 @ T)es xe P(d)} e (2]

If I.(S) = 1.(S'), then S and S’ agree on arrows of the form (d, x) ER (c, T.), where

x € P(d) C P7(d). Conversely, if (d, T4) ER (c, Tc) € S, then both S and S’ contain the
family

R= { €05 T)D T

xeP(e),eideC}

which covers (d, T,) ER (c, T.). Hence, (d, T,) ER (c, Tc) € §’ too. The same argument
with S and S” swapped completes the proof that [.(S) = [.(S’) implies that S = S’. The
maps I, for each ¢ € C, are thus evidently the components of a natural isomorphism
between 3'(PT,]") and 3'(P, ]). O

IV.1.2 Universal property of the geometric completion

We are now able to prove that the geometric completion of a doctrinal site is universal
in DocSites, idempotent and semantically invariant as claimed. We first recall the
construction of the unit of the geometric completion, which, unsurprisingly, is the
same as the unit of the fibred ideal completion defined in [?4, Proposition 6.2], before
turning to the universal property of the geometric completion, which extends the uni-
versal property of [?4]. Finally, we discuss some of the basic preservation properties
of the unit.
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The unit of the geometric completion. The unit generalises the notion of taking the
closure of a principal down-set for a preorder with a covering system. Let P be a
doctrine and let | be a Grothendieck topology on C = P. For each object ¢ € C and
x € P(c), the set

ix:{(g,y)‘eicec,yep(e)andy@(g)(x)}

is an object of 3(P, Juiv)(c). For each arrow d i) ¢, the transition map

S(P/ ]triv)(f): S(P/ ]triv)(c) H S(P/ ]triv)(d)
acts on this element by

3P Jui) (YU X) = {(hy) | (f o b, y) € lx},
_ {(h,y)‘el ceC, yePe)and y < P(fog)(x)},
={m]ebcec yereandy < PPN,
=L P(f)(%).
Hence, we obtain a (pseudo-)natural transformation | (—=): P = 3(P, Juiv)-
Definition IV.14. Let (P, ]) be a doctrinal site. We will use
N P=3(P))

to denote the the composite (pseudo-)natural transformation

/) S)
P == 3(P, Jui) == 3(B]).
The natural transformation 7)) yields a morphism of doctrinal sites

(idc, n(PJ)) : (P/ ]) —> (S(P/ ])/ Kg(P,]))'

In fact, as shown in [?4, Proposition 7.2], one can prove a stronger statement.

Proposition IV.15 (Proposition 7.2 [24]). The induced functor ide = ") yields a dense
morphism of sites

ide = ™D (C =P, J) — (C=3(L]), Kzwy)

From Proposition V15, we immediately deduce that for each object ¢ of C and
each 5 € 3(P, J)(c),
5= \/ Tz (T]EzPJ )(X))- (IV.i)
(fx)es

We will frequently abuse notation and write ) for the natural transformation,
the morphism of doctrinal sites (id¢, n*P): (B, ]) — (3(B,]), Kz@ry), and the functor
ide xn®D: CxP — C=3(P,]).
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The universal property of the geometric completion.

Theorem IV.16. To each doctrine P: C°P? — PreOrd and Grothendieck topology | on C < P,
the natural transformation n\"D: P = 3(B, ]) constitutes the unit of the geometric completion
of (P, ]) for which the following properties are satisfied.

(i) Universality: for each morphism of doctrinal sites (F,a): (P,]) — (IL,Ky) whose
codomain is a geometric doctrine IL: D°P — Frmpen, there exists a unique morphism
of geometric doctrines

(F,C(): S(P/D H L

such that the triangle
®D
P —— 3(P))

|
la
g

IL o FoP

a

commutes;

(ii) Semantic invariance: if the desired (set-based) models P are encoded by ], i.e. there is
an equivalence
P-mod(Sets) ~ DocSites((P, ]), (<, K»)),

then there is an equivalence of categories of models
P-mod(Sets) ~ 3(P, ])-mod(Sets);

(iii) Idempotency: for each doctrinal site (P, |), we have that

S(P/ ]) = 3(3(P/ ])/ KS(PJ))'

Proof. Let (F,a): (P,]) — (IL,Ky) be a morphism of doctrinal sites. By Lemma [T9,
there exists a commutative square of geometric morphisms

Sh(Fxa)

Sh(IL) ~ Sh(D = IL,Ky) ————— Sh(C =P, ])

C”IL\L = \LC’TP

o Sh(F 0
Sets?” ® S Sets® "

Let ¢: Sh(IL) — Sets” denote the composite geometric morphism

Sh(F)

Cry 0 0
Sh(L) —= Sets?” —— Sets“".

By [24, Proposition 7.2], the factoring topos in the hyperconnected-localic factori-
sation of g (see [b3, §A4.6]) is given by the topos of sheaves on the internal locale
9.(Qgn(y) of Sets®”. Whence, we have that

8+(Qsnw)) = Sh(F). o Cry ,(Qsnwy),
= Cr, . (Qsny) © FP,
=~ ] o F°P.
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Therefore, as Cy, is localic, by [63, Lemma A4.6.4] there is a factorisation of Sh(F = a)

as
Sh(Fxa)

/\

Sh(L) — Sh(L o FP) ——~% Sh(C = P, ])

o] sl S
op  Sh(F 0
Sets?” 4> Sets®”. Crp

Thus, as Sh(C < P, ]) ~ Sh(3(P, ])), there is a commutative triangle of geometric mor-
phisms

Sh(IL o F?) ———— Sh(3(P, )]))

C“mh‘ %’73(31)

Sets¢”.

Therefore, by ??, we obtain a morphism of internal locales a: IL o F°* — 3(P,]), or
rather a morphism of geometric doctrines (F, a): 3(P,]) — L, satisfying the required
conditions.

That the geometric completion is semantically invariant follows from the relative
Diaconescu’s equivalence:

P-mod(Sets) ~ DocSites((P, ]), (<, K»)),
~ Geom(Sets, Sh(C < P, ))),
~ Geom(Sets, Sh(C = 3(P, ]), K3p)),
~ DocSites((3(P, ), Kz p), (£, K»)),
~ 3(P, J)-mod(Sets).

That the geometric completion is idempotent follows from the fact that

385 )) = Crypyy (Qsnize) = 3(3(P 1), Ksep)-
O

Remark IV.17. A direct proof of Theorem [V.16, without mention of internal locales,
could also be given. Given a morphism of doctrinal sites (F,a): (P,]) — (IL,Ky),
where IL: D — Frmpe, is a geometric doctrine, we obtain the unique morphism of
geometric doctrines (F, a): 3(P, J) — L that makes the triangle

P
P —— 3(P,))

|
la
v

IL o F°P

a

commute by defining, for each S € 3(P, J)(c),

a.(S) = \/ T (rignaa(x).

(gx)eS
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Remark IV.18. Given a theory T over a signature X with N sorts, the category Cony
of contexts is normally considered to be entirely algebraic in content. That is to say,
the semantics of the empty theory Oy over the signature X are equivalent to the flat
functors Flat(Cong, Sets) (see [63, Corollary D3.1.2] or Proposition [ITH). In order to
amplify the analogy with theories, we have elected to work with doctrinal sites (P, J),
where only the category C>P is endowed with a Grothendieck topology ] representing
richer syntax, while the base category C is effectively treated as being endowed with
the trivial topology.

We could rectify this myopia by considering the 2-category DocSiteswrs, the 2-
category of doctrinal sites with topologies on the base category.

(i) The objects of DocSitesyrg are relative sites
[T[P: (C e P/K) - (C/])]/

where P: C°°? — PreOrd is a doctrine;
(ii) a 1-cell
(FF=a): (C,],CxPK) — (D,],D=Q,K)

of DocSitesyrp consists of a morphism of doctrines (F,a): P — Q such that
(E, F < a) is a morphism of relative sites.

(iii) The 2-cells we include are the same as for DocSites.

We note that, because for each object (C, J,C = P, K) € DocSitesyp the geometric
morphism

Crp: Sh(C =P, K) — Sets®”

factors through Sh(C, J) > Sets®”, by Lemma ITTA the Grothendieck topology Kz
on C>73(P, K) contains the Giraud topology Jx ., where 3(P, K) denotes the geometric
completion of (P, K) as in Definition V3. Hence, (C, J,C = 3(P, K), K3pk)) defines an
object of DocSitesyp.

Applying a similar method to that employed in Theorem V.16, we can deduce
that

(C, ], C = 3(P,K), Kzpk)

is the universal completion of (C, J,C < P,K) to an object of DocSitesyg of the form
(D, ], D =1L, Ky) for an internal locale IL: D — Frmgpe, of Sh(D, J').

The universal property of the geometric completion as stated in Theorem V.14 is
therefore the restriction of this more general statement to the 1-full 2-subcategory of
DocSiteswrp on objects of the form

(C/ ]triV/ C >~ P/ K)/

i.e. the 2-category DocSites from Definitions [IT72. However, as explained above, for
the purposes of our intended, logical applications the extra generality is not needed.
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Preservation properties of the unit. For each object ¢ € C, the unit nﬁp D.p— 3P, ])
preserves finite meets. This can be seen directly. If the meet x A y of two elements
x,y € P(c) exists, or if P(c) has a top element T, then the meet | x A |y € 3(P, Juiv)(c) is
given by | (x A y) and | T, defines a top element of 3(P, Juiv)(c). Thus, as

gc: S(P/]triv) H S(P,])

preserves finite meets as well, so does the composite n(P] ) = ) )0 d(=)e-

It is also easily recognised that joins and existential quantifiers are preserved by
the unit ") if and only if the Grothendieck topology ] is of a certain form. Given a
subset { y; | i € I} € P(c) whose join \/,; y; exists in P(c), since

ide = n®P: (C=P,J) — (C=3(B]), Ksep)

is cover preserving and reflecting by Proposition V.15, we have that

(PI (\/ ) \/U(P])(]/z

i€l i€l
iel}

is a J-covering family. Identically, if P(f): P(c) — P(d) has a left adjoint dp(f), then, for
each x € P(d),

if and only if

{(c yz)—>[ \/y]

iel

& o dpp(x) = Jzppy © Ufip’] (%),

if and only if the singleton
(@05 €0}

is a [-covering arrow.

IV.1.3 The geometric completion as a monad

In [1T19, §5], the language of 2-monad theory is used to describe the universal property
of the existential completion. This is expanded upon in [120] into a rich description of
thelogical completions of elementary doctrines via 2-monad theory. Thus inspired, we
will use the language of 2-monad theory for investigating the geometric completion.

Recall that a 2-monad on a 2-category C is a triple (T, 1, u) consisting of an 2-
endofunctor T: C — C, and 2-natural transformations n: id¢ - Tand y: ToT — T
such that the diagrams

6 Ly 72 ideoT s 72 ¢ Toide
yTl lﬁ \ ly / (IVi)
L T

strictly commute. The geometric completion will be a 2-monad on the 2-category
DocSites.
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We will initially develop the 1-monadic structure, and add the 2-monadic structure
in Proposition [V.T9. For any morphism (F,a): (P,]) — (Q, K) of doctrinal sites, there
exists a morphism of geometric doctrinal sites (F, a): 3(P, J) — 3(Q, K) by the universal
property of the geometric completion:

(iden®

) _ o™ (B ], Kzep)

(Fa)\L :(Fa
v

(idp,n@

(Q,K) % (3(Q, K), Kz(0,x)-

Thus, the geometric completion is 1-functorial in that it yields a 1-functor
3: DocSites —— GeomDoc.

The universal property of the geometric completion ensures that the functor 3 is a
left 1-adjoint to the inclusion of geometric doctrines into doctrinal sites:

5
DocSites - , GeomDoc. (TV.iii)

The unit of the adjunction is the natural transformation 7: idpecsites — 3 Whose
component at a doctrinal site (B, ]) is ") (P, ]) — (3(P,]), Kzp)- The counit of the
adjunction is the natural transformation whose component at a geometric doctrine IL
is the isomorphism of geometric doctrines IL = 3(IL, K) induced by the equivalence
of topoi Sh(IL) ~ Sh(3(ILL, K)).

In Proposition [IV.T9 below we add the 2-monadic aspects. The strict 2-adjunction
we prove extends the 2-adjunction found in [?4, Theorem 7.1], which presents the
universal property of the geometric completion without base change (i.e. all doctrines
considered are fibred over the same base category).

Proposition IV.19 (cf. Theorem 7.1 [?4]). The geometric completion
3: DocSites —— GeomDoc

can be made into a 2-functor such that

3
DocSites n } GeomDoc

%)

is a strict 2-adjunction.

Proof. We first show that 3 can be made 2-functorial. Let (F,a), (F’,a’): (P,]) 3 (Q,K)
be morphisms of doctrinal sites. We must show that every natural transformation
a: F = F’ that defines a 2-cell between morphisms of doctrinal sites

(Fa)
S N
) a (Q,K)

N v S

(F'a)
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also yields a 2-cell of morphisms of geometric doctrines

(Fa)
/_\
3P ) a  3(Q,K).
\(p_,)/(

That is, we must show that, for each c € C and S € 3(P, ])(c),

a:(5) < 3(Q, K)(ae)(az(S))-

A direct proof is possible (see [178, Proposition 4.13]), but it can also be achieved
by an application of Corollary [2Z. First, recall from Remark T2 that the 2-cell a
induces a natural transformation

F/ ><la/
In turn, & induces a 2-cell of geometric morphisms

Sh(Fxa)
/\
Sh(P, ]) ﬂsmm Sh(Q, K)

~_"v A

Sh(F'=a’)

by [63, Remark C2.3.5].

Recall also that the Grothendieck topology Kz k) on D = Q is relatively subcanon-
ical as defined in Definition (see Remark ICTH(ii)). Therefore, by Corollary [27
the 2-cell of geometric morphisms

Sh(F»a)
/_\
Sh(3(P, ]), Kzwr) = Sh(P, ]) MSh(d) Sh(Q, K) =~ Sh(3(Q, K), Kzo,x)

~_ ¥ A

Sh(F’'>a’)

induces a natural transformation F<a = F’>a’ and hence, since 3(P, ]) has non-empty

fibres, also a 2-cell
(Fa)

/_\
3P ) «  3(Q,K).

~_ ¥ A

(F",a%)

as desired (see Remark [12).
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We now show that, for each doctrinal site (P, ]) € DocSites and geometric doctrine
L € GeomDoc, there is a natural isomorphism of categories

DocSites((P, ]), (L, K1)) = GeomDoc(3(P, ]), L). (IV.iv)

The isomorphism on objects is provided by the universal property of the geometric
completion. We demonstrate the isomorphism on arrows. Given a pair of morphisms
of doctrines (F,a), (F',a’): (P,]) = (IL,Kr) and a natural transformation a: F = F’, if
ac.(x) < L(a)(a.(x)) for all c € C and x € P(c), i.e. a defines a 2-cell a: (F,a) = (F',a’),
then a also defines a 2-cell a: (F, a) = (F’, a’) by the 2-functoriality of 3 shown above.
Conversely, if a.(S) < IL(a,)(a/(S)) for all c € C and S € 3(P, J)(c), then

a:(x) = a0 (%)) < Liae) (@ (x))) = Liao)@(x)),

and so «a defines a 2-cell a: (F,a) = (F’,a’). Thus, we obtain the isomorphism ([\i).
Hence, we have demonstrated the strict 2-adjunction

3
DocSites n ; GeomDoc

%)

as desired. O

Remark IV.20. The isomorphism ([Vid) could also be obtained by the more gen-
eral observation: whenever (Q,K) is a doctrinal site such that each component
U;Q’K): Q) — 3(Q,K)(d) of the unit is injective, for any other doctrinal site (P, ])
and a pair of morphisms of doctrinal sites (F,a), (F,a’): (P, ]) = (Q, K), a natural trans-
formation a: F = F’ defines a 2-cell (F,a) = (F’,a’) if and only if a defines a 2-cell

(E, a) = (F’, a’). This is a consequence of the fact that if n;Q’K) is injective for each d € D,
then K is a relatively subcanonical topology.
Therefore, the induced functor on hom-categories

DocSites((P, ]), (Q,K)) —— GeomDoc(3(P, ]), 3(Q, K))

is full and faithful. The specific isomorphism ([\.ivl) can then be obtained by noting
that &) IL — 3(IL, K) is an isomorphism for any geometric doctrine LL.

It remains to describe the algebras of the geometric completion monad (3,1, 1)
of the adjunction (IViii). Since the geometric completion is an idempotent monad,
a simple application of [13, Corollary 4.2.4, Volume 2] (extended to the 2-categorical
setting) yields the following corollary.

Corollary IV.21. The algebras for the monad (3, 1, 1) coincide with geometric doctrines, i.e.
DocSites? ~ GeomDoc.

In particular, by restricting the adjunction (I/iii), for each category C there is a 2-equivalence
(DocSites/C)3 ~ Loc (SetsCOP)Op,

where (DocSites/C) denotes the 1-full 2-subcategory of DocSites whose objects are doctrinal
sites fibred over the category C.
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IV.14 The geometric completion of a regular site

We are able to combine the geometric completion of a doctrine with the syntactic
category construction studied in Section I3 to define the geometric completion of
a regular site, which sends a regular site to a geometric category. Unsurprisingly,
this amounts to assigning to each regular site (C, K) the full subcategory of Sh(C, K)
spanned by subobjects of representables.

Definition IV.22. We denote by GeomCat the 2-category of geometric categories, the
2-category

(i) whose objects are geometric categories — regular categories whose subobject
lattices have arbitrary joins that are preserved by pullback,

(ii) whose 1-cells are geometric functors — regular functors that also preserve joins of
subobjects,

(iii) and whose 2-cells are natural transformations between these.

Each geometric category G can be equipped with the geometric topology JGeom, the
Grothendieck topology whose covering families are the jointly epimorphic ones, to
obtain a regular site (G, Jceom). In light of Remark [T37, this is the topology whose
restriction JGeomlsubg(g) to the subobject lattice Subg(g), for ¢ € G, is the topology where

{ez- — h | i€ I} isa ]Geom'Subg(g)'Cover — h= \/ e;.

iel

This assignment of a regular site to a geometric category G is easily observed to
determine a full and faithful 2-embedding GeomCat — RegSites.

Theorem IV.23. There is a pseudo-adjunction

Cat
3

U —
RegSites + GeomCat
%)

for which each square in the diagram

3
ExDocSites " GeomDoc,;¢
%‘)
Syn| A Sub(,) Syn\[ 4 Tsub() (IVV)
Ca
3 N

RegSites . " GeomCat
%)

commauites.

Proof. In order to obtain the commutativity of the diagram (I\3d), we define

3t RegSites ——> GeomCat
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as the composite Syn o 3 o Sub_). The pseudo-adjunction is then obtained by the
natural equivalences, for each regular site (C, K) € RegSites and geometric category
G € GeomCat,

Geomcat(syn(S(SUbC/ KSub))/ g) = GeomDoccart(S(SUbC/ KSub)/ SU-bQ)/
~ ExDocSites((Subc, Ksup), (Subg, Ksu)),
= RegSiteS((C/ K)/ (g/ ]Geom))/

where in the last equivalence we have used that Sub(_): RegSites — ExDocSites is
full and faithful. O

IV.2 Coarse geometric completions

Because the geometric completion takes a Grothendieck topology as a second argu-
ment, it is an idempotent completion (see Theorem [V.TH). This is in contrast to many
of the other completions of doctrines considered in the literature (e.g. Trotta’s existen-
tial completion [T19]). The geometric completion would not be idempotent if we did
not have the ability to take suitable topologies as a second argument.

Consider the terminal frame 2. Being a frame, there is a canonical isomorphism
Jcan-1d1(2) = 2, but one can easily calculate that Ji,-1d1(2) is the 3-element frame 3 (i.e.
the opens of the Sierpinski space). We can interpret this behaviour as a ‘loss of infor-
mation’ by taking a coarser Grothendieck topology Jiiv C Jcan 0N 2. In order to relate the
geometric completion to other completions of doctrines considered in the literature,
we consider in this section the behaviour of the geometric completion for doctrines
when, for each geometric doctrine IL, we deliberately choose a coarser Grothendieck
topology Ji* € Ky on the category C > L (or indeed forget the Grothendieck topology
entirely by assigning the trivial topology Juiv to C < LL).

We thus arrive at the notion of a coarse geometric completion —a 2-monad 3, acting
on a 2-full 2-subcategory of DocSites. As evidenced by the example given above,
this monad 3, is no longer idempotent (unless each J# is chosen to be Ky), unlike
the geometric completion monad 3. We will observe that each coarse geometric
completion is instead lax-idempotent. After establishing the lax-idempotency of a
coarse geometric completion in Corollary [V78, we demonstrate in Corollary
how this yields a lax-idempotent geometric completion for cartesian, regular and
coherent categories.

Definition IV.24. A coarse geometric completion consists of the following data.

(i) We are given a 2-full 2-subcategory A-Doc C DocSites. The objects of A-Doc
we call A-doctrines and their morphisms we call A-doctrine morphisms.

(ii) There is a 2-subcategory GeomDoc, C GeomDoc which is full on 1-cells and
2-cells satisfying the following conditions.

a) For each L € GeomDocy, there is a choice of Grothendieck topology Jit
on the category C > IL which is coarser than the topology Ky, i.e. Ji € Ky,
such that (L, J#!) is an object of A-Doc. Moreover, the choice of topology
J¢ is functorial in the sense that, for each morphism of geometric doctrines
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(FEa): L — I, there is a morphism of A-doctrines

(F,LZ): (]LII]IE) — (]L// IIE/)

In other words, there is a 2-full 2-embedding GeomDoc, — A-Doc.

b) For each object (P, J) € A-Doc, the geometric completion 3(P, J) is contained
in GeomDoc, and the unit n®: P — 3(P,]) defines a morphism of A-
doctrines

U(PJ): (P/]) — (S(P/])rlg(p’]))'

Theorem IV.25. Let A-Doc C DocSites and GeomDocy, C GeomDoc define a coarse
geometric completion. There is a strict 2-adjunction

34

A-Doc : n }: GeomDocy

where 3, is the 2-functor

A-Doc —— DocSites —3> GeomDoc.

Proof. For each (P,]) € A-Doc and L. € GeomDoc,, the natural isomorphism on
objects of the categories

A-DOC((P/ ])/ (IL/ ]]]fj)) = GeomDOCA(SA (P/ ])/ IL') (IVVI)
actsby sending a morphism of geometric doctrines (F, a): 3,(P, J) — ILto the composite

(Fa

(B)) —— GABD I ) — 2 (@)

and, vice versa, sending an arrow (F,a): (P, ]) — (L, ]f) to the morphism of geometric
doctrines (F, a) as induced by the diagram

PJ)
(P.)) —— GPD, s, — GE)), Kswp)
|
(Ea) \i,(F ) | (F)

(IL, J4) ———— (L, Ky)

and Theorem [VTA. That this extends to an isomorphism on arrows, and hence the
isomorphism of categories (I\x), follows from Proposition [IVT9 and the fact that
A-Doc C DocSites and GeomDocy € GeomDoc are both full on 2-cells. O

Of course, 2 is a quotient frame (or sublocale) of 3. Similarly, the coarse geo-
metric completion of a geometric doctrine 3(L, ]f) is related to the geometric doc-
trine IL by a pointwise surjective morphism of geometric doctrines 3(IL, J¢) — L
(or internal sublocale embedding) corresponding to the inclusion of the subtopos
Sh(C ~<1L,Ky) = Sh(C <L, ]f) (see Proposition —if ]ﬁé is the trivial topology, the
morphism 3(IL, Juiy) — L is precisely the Ky -closure operation from Definition [V.35).
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Lax idempotency for coarse geometric completions. As previously mentioned, the
strict 2-adjunction
34
A-Doc : n }: GeomDocy

of a coarse geometric completion is not necessarily idempotent. We dedicate the
remainder of this section to showing that 3, satisfies a weaker form of idempotency:
lax-idempotency.

Let T: C — C be a 2-monad with unit n: id¢ — T and multiplication p: T> — T.
The 2-monad T is lax-idempotent® if the composites of the diagram

ta
<— 2
TA } T-A,

NTA

although perhaps not strictly equal to the identities idrs and idr24, as is the case for
an idempotent monad, can instead be related by canonical 2-cells such that there is
an adjunction p, 4 nra (see [74, Proposition 1.2]). Specifically, we require a require a
2-cell

TY] A
TA “/\A T?A,

NS

nrA

natural in A, such that the horizontal composites

Tna Tna
Ay TA o TPA, TA MAA T2A 5 A
\\na/( \n/

are both identity 2-cells (see [74, Definition 1.1]).

Often it can be more tractable, if circumlocutory, to demonstrate lax-idempotency
by an equivalent condition regarding the algebras of the monad. Recall from [72] that,
given a pair of (strict) T-algebras (A, a) and (B, a), a lax morphism of T-algebras is a pair
(f,a) where f: A — Bis an arrow of C whileaisa2-cella: boTf = f oa that fills the
square

TH

!In [74], lax-idempotent monads are called KZ-doctrines. However, using this terminology would
be confusing in the context of doctrines in the sense of Lawvere.

w% o?
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and satisfies the coherence conditions

~

°f

A L5 728 T2A — T?B
uA\L \L{JB i ﬂm iTB
TA —L 3 TB _ A 7 TB (IV.vii)
| ﬂ Is | ﬂ b
A—F—8B A——B
and
A 4) B A % B
a ima
TA —L5 TB - s (IV.viii)
SR
A—B A—LyB

It is shown in [[72, Theorem 6.2] that T is lax-idempotent if and only if for each pair
(A,a) and (B, b) of (strict) T-algebras and a morphism f: A — B there is a unique 2-cell
a:boTf = foasuchthat(f,a): (A a) — (B,b) is a lax morphism of T-algebras.

We require two lemmas concerning the algebras of 3, in order to demonstrate thata
coarse geometric completion 3, : A-Doc — A-Docis lax-idempotent. Since, in the per-
tinent examples of coarse geometric completions we will consider in Examples V.29,
the Grothendieck topology | given on C > P for an A-doctrine (P, ]) € A-Doc is chosen
for us, in what follows we simplify notation and denote the object (P, ]) of A-Doc by
simply P. Also in aid of legibility, if (G,b) = &: P — Q is a morphism of A-doctrines,
we will abuse notation and write & for the natural transformation b: P = Q o G°P as
well.

Lemma IV.26. Let P: C°°? — PreOrd and Q: D — PreOrd be a pair of A-doctrines and
let £:3,(P) = Pand C: 3,(Q) = Q be natural transformations such that the triangles

i 19

P —— 3,(P) Q — 34(Q)
\ % \ Qc

commute. Given a morphism of doctrine (F,a): P — Q, for each arrow d Lcecand
x € P(d), there is an inequality

Ce© Tz, @) © 1Ty © aa(x) < ac 0 & 0 Tz, oy © My ().
Proof. Firstly, using the inequality 1/ (x) < 3,(P)(f) © 3z, p)p) © 17 (x), we deduce that
1% 0 as(x) = 1% 0 az 0 & 0 (%),
< oag0 &0 3,(P)(f) © I, mxp © M5 (),
= 3A(QUF(f) ¢ 0 ac 0 & 0 T ey © 15 ().
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Thus, by the adjunction Jzo) () 1 3(Q)(F(f)), we have that

I, © 15 ©aa(x) < N 0 ac 0 & 0 Iz, s © (),
and we therefore obtain the desired inequality
Ce© Iz, © 115 © aa(®) < Ceond 0 ac 0 & 0 Iz, myp © N (),
= .0 & © Ty, py(p) © 15 ().
|
Lemma IV.27. If (P, &) is a 3 ,-algebra, then &, : 3 ,(P)(c) — P(c) preserves joins forall ¢ € C.

Proof. Let us first show that P(c) must have all joins For a subset {x; | i € I} of P(c),
we claim that the join \/,¢; x; is given by & (V/,; nE(x)). For each i € I, we have that

o) < [V nf(x))
i€l
while, if given y € P(c) with x; < y for all i € I, we have the converse inequality
& (\/ e (x)] con(y) =
i€l

Hence, the join \/; x; is given by &. (V¢ nE (x)).
To show that &, preserves these joins, we first observe that the diagrams

550 S5 5,(P) 34(P) —— P
i -
34(P) == 3,(P) 45) P, 3434(P) SA—(CE)) 34(P)

both commute — the left-hand diagram commutes since 3, is a monad and (P, &) is a
34-algebra, while the right-hand square commutes as 7 is natural. Note also that u”
and 3,(&) are morphisms of geometric doctrines. In particular, for each ¢ € C, both uf
and 3 ,(&). commute with all joins.

Therefore, given a subset {S; | i € I} C 3,(P)(c), we observe that

\/ &) =& (v e o a(si)],

i€l i€l

(\/ SA(é OUE)A(P) 1)]/

i€l

= £ 03,(8) [V 2 (s)) ]

i€l

=& oul (\/ nCSA(P)(Si)) ,

i€l

<l

iel iel

and hence joins are indeed preserved. |
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Finally we complete the proof that 3, is lax-idempotent. The argument is remi-
niscent of that found in [1TY9, Theorem 5.6].

Corollary IV.28. Each coarse geometric completion 3, : A-Doc — A-Doc is lax-idempotent.

Proof. Let (P, &) and (Q, C) be algebras of the 2-monad 3,. For each morphism of
A-doctrines (F, a), we first demonstrate that the identity transformation idr: F = F
defines a 2-cell that fills the square

(Fa)

34(P) ——— 34(Q)

I

\
(Fa) > Q.

@&

We thus need to demonstrate, for all S € 3,(P)(c), the inequality
Ce 0 a(S) < ac o E(S).

By combining Remark V.17, Lemma and Lemma V.27, we obtain the desired
inequality:

Ce 0 ac(S) = Cc[ \/ Fsowmeons e ”d(x)] /
(fx)es

_ Q
= \/ CoTs0em ond o ),
(fx)esS

< \/ a: 0 & 0 g, pyp © 4 (),
(f,x)ES

S0 EC[ \ Fs.00 0 Ug(x)J = ac 0 &(S).
(fx)es

Its trivially shown that ((F, a), idF) satisfies the coherence conditions (Vi) and (IVAzii).
For any other 2-cell a: C o (F, a) = (F a) o £ satisfying the coherence condition

P—"—Q P2 Q
n° iﬂQ
34(P) —2 3,(Q) - @ idg
3 ﬂa C

A—r—B j N}

the equality a = idr is forced, and so ((F,a),idr) is the unique such lax 3,-algebra
morphism. m|

Examples IV.29. We obtain the following lax-idempotent 2-monads as applications
of Theorem V.75 and Corollary [V.78.
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By Docg,e denote the 1-full 2-subcategory of DocSites on objects of the form
(P, Jiv). Equivalently, Docgy is the 2-full 2-subcategory of Doc on doctrines and
flat morphisms of doctrines. The assignment of the trivial topology Juiv to each
geometric doctrine L € GeomDoc yields a 2-embedding GeomDoc < Doc that
satisfies the conditions of Definition [V74. Thus, we obtain a coarse geometric
completion that we will call the free geometric completion

3Fr
Docyat n GeomDoc.
%)

In particular, this restricts to a strict 2-adjunction

3Fr
PrimDoc n GeomDoc,,

between the 2-category of primary doctrines and the 2-category of geometric
doctrines indexed over cartesian base categories. The free geometric completion
coincides with the completion studied in [38, §3.1.3].

There is a 2-embedding of GeomDoc into the 2-full 2-subcategory RelExDoc
of DocSites of relative existential doctrines, given by sending a geometric
doctrine I. € GeomDoc to (L, Jgx) € RelExDoc, satisfying the conditions of
Definition [V74. Hence, we obtain a coarse geometric completion that we call
the existential geometric completion

SEX
RelExDoc n GeomDoc,
%)

This strict 2-adjunction restricts to the 2-subcategories of existential doctrines
and geometric doctrines over a cartesian base category

3Ex
ExDoc + GeomDoc ..

By Proposition [V, the existential geometric completion is a pointwise con-
struction.

Similarly, we obtain a coarse coherent completion for relative coherent doctrines,
the coherent geometric completion

3coh

RelCohDoc n GeomDoc,
%‘)

where GeomDoc — RelCohDoc is the 2-embedding that sends a geometric
doctrine IL € GeomDoc to (L, Jcon) € RelCohDoc. Once again, this restricts to a
strict 2-adjunction

3coh

CohDoc n GeomDoc ..
%‘)

Once again, by Proposition [\.§, this is a pointwise construction.
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Coarse geometric completions for categories. We now relate how the coarse geo-
metric completions considered in Examples interact with the syntactic category
construction from Section 3. We will obtain (coarse) geometric completions for
cartesian categories, regular categories and coherent categories.

A coherent category (see [63, §A1.4], also called a logical category in [87]) is a regular

category whose subobject lattices Subc(c) have finite joins and, for each arrow d L cof
C, Sub¢(f) preserves these finite joins. A coherent functor F: C — D, between coherent
categories, is a regular functor that preserves finite joins as well. We denote by Coh
the 2-category of coherent categories, coherent functors and natural transformations
between these.

The 2-functors 3:*: Reg — GeomCat and 35 : Coh — GeomCat constructed

Coh
below in Corollary V30 are evidently given by the composites

Cat
Reg —— RegSites 55 GeomCat

and
Cat
Coh —— RegSites SH GeomCat,

where Reg — RegSites (respectively, Coh < RegSites) denotes the 2-embedding
that sends a regular (resp., coherent) category C to the regular site (C, Jreg) (resp.,
(C, Jcon))- Here Jreg denotes the regular topology and Jcon denotes the coherent topology
(see [A3, Examples A2.1.11]).

Corollary IV.30. There are lax-idempotent pseudo-adjunctions:
3e
(i) Cart n GeomCat,
%)
36

(i) Reg + GeomCat,
%)

Cat
3Coh

(iii) Coh n GeomCat.
%‘)

Proof. We will only spell out the proof for [ij, the other pseudo-adjoints being con-
structed in a similar fashion. We define 35*: Cart — GeomCat as the composite
Syn o 3. o Sub(_), as in the diagram

SFr
PrimDoc n GeomDoc.;¢
%)
Sub(_) Syn| 4 |[Sub,
35 y
Cart ) n GeomCat.
D

N

The required natural equivalence of categories, for each C € Cart and G € GeomCat,

Cart(C, G) ~ GeomCat(Syn(3;,(Subc)), G)
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follows by the chain of equivalences

Cart(C, G) =~ PrimDoc(Subc, Subg),
~ GeomDoc (35 (Subc), Subg),
~ GeomCat(Syn(3,(Subc)), G),

where we have used that Sub(_) is full and faithful. O

IV.3 Subgeometric completions

Having hinted at the existence of subgeometric completions throughout, we finally
turn to their systematic treatment. The term subgeometric completion is intended to
convey the following vague sense: a completion TP of a doctrine P is ‘subgeometric” if
the dataadded by T can be ‘seen’ by a certain Grothendieck topology J* on the category
C x TP, and has the property that 3(P, Juiv) = 3(TP,J) — ie. freely geometrically
completing P is the same as completing P according to T, keeping track of this new
information by J7, and then geometrically completing. We have already observed this
phenomenon in Section VT with the free top completion, and we will see further
examples below. It is this vague notion of ‘subgeometricity” that we seek to formalise
in this section.
We proceed as follows.

— Immediately below in Section V3 we present another motivating example
for the theory of subgeometric completions: we demonstrate that the existen-
tial completion of a primary doctrine due to Trotta [ITY] satisfies our vague
understanding of subgeometricity as stated above.

— We use this, and our study of the free top completion in Section [V.IT], as intu-
ition when introducing the formal definition of a subgeometric completion in
Section IV.372. We also discuss sufficient conditions under which a subgeometric
completion can automatically be deduced to be lax-idempotent.

— In the remaining two subsections, Section V.33 and Section V.34, we discuss
several examples of subgeometric completions. In the former, we discuss subge-
ometric completions obtained by considering special ‘compatible” subdoctrines
of the free geometric completion. In this way, we recover the existential com-
pletion as well as the coherent completion for primary doctrines. We also relate
these completions of primary doctrines to the corresponding regular completion
and coherent completion of cartesian categories (see [27]). Finally, in the latter
subsection, we give examples of ‘pointwise” subgeometric completions.

IV.3.1 The existential completion is subgeometric

We begin by explicitly describing the free geometric completion 3 (P) of a primary
doctrine P € PrimDoc as defined in Examples [IVZ9T). This is the geometric doctrine
3(P, Juiv): CF — Frmg,e, and thus, by Construction V4, can be described in the
following way.



IV.3. SUBGEOMETRIC COMPLETIONS 143

(i) For each object c of C, an element S of 3..(P)(c) is a set of pairs (f, x), where d ER c

is an arrow of C and x € P(d), such that if (f,x) € S, for each arrow e L dofC
and y € P(e), if y < P(g)(x) then (f o g, y) € S too. We order 3 (P)(c) by inclusion.

(ii) For each arrow d EA c of C, 3 (P)(f): 3 (P)(c) = 3. (P)(d) sends S € 3. (P)(c) to
£ &) ={@&|(fog v) €S} e3P,

The description of the free geometric completion 3 (P) given above is markedly
similar to the existential completion of a primary doctrine established in [[T9, §4], which
we recall below. We will be able to relate the two: the free geometric completion
of a primary doctrine can be computed as the existential completion followed by
the existential geometric completion — i.e. the pointwise free join completion (see
Examples IV7Y(ii)).

The existential completion. Recall from [[I'T9] that the existential completion of a
primary doctrine P: C°° — MSLat is the functor P7: C°? — MSLat defined as follows.
(i) Let c be an object of C. Consider the set whose elements are pairs (f, x) where

d 2 cis an arrow of C and x € P(d). We order this set by setting (g, y) < (f, x) if

there is an arrow ¢ d, making the triangle commute

hj&
d%c,

such that y < P(h)(x). We define P3(c) as the poset obtained when we identify
two elements such that (f, x) < (g, y) and (g, y) < (f, x). Just as in [1TY], we will
abuse notation and not differentiate between the pair (f, x) and its equivalence
class.

(i) Given an arrow ¢ > ¢ of C, the map P(g): PY(c) — P(e) acts by sending an
element (f, x) € P3(c) to (k, P(h)(x)) € P3(e), where

excd#e
L)
d%c

is a pullback square in C.

This is the ‘existential completion” of P in following sense.

(i) For each arrow e > ¢ of C, the map P7(g): P7(c) — P(e) has a left adjoint dpa,
that sends (f, x) € P3(e) to (g o f,x) € PI(d). With these left adjoints, the doctrine
P satisfies the Frobenius and Beck-Chevalley conditions (see [I1Y, Proposition
4.2 & Theorem 4.3]).

(ii) There is a natural transformation p: P — P7 given by sending x € P(c) to
(id., x) € P3(c) (see [TT9, Proposition 4.10]).
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(iii) Given an existential doctrine Q: O°° — MSLat, for each morphism of primary
doctrines (F,a): P — Q, thereis a unique natural transformation a?: P? = QoF°P

such that:
a) the triangle
p——— P?
N
Qo Fo»

commutes,

b) for each arrow ¢ ¢ of C, the square

I3
PA(c) +—2— P(e)

aacl laae

o)

Q(F(c)) <— Q(F(e))
commutes (see [119, Theorem 4.14]).

In [ITY, Proposition 4.9], it is shown that the existential completion defines a
2-functor
(=): PrimDoc —— ExDoc.

We can now observe that the existential completion satisfies our loose notion of
‘subgeometricity’.

Proposition IV.31. For each primary doctrine P: C°? — MSLat, there is a natural isomor-
phism
3 (P) = 3 (P) = 3(PY, Jix).

Proof. This isimmediate since the data of a down-set of P3(c), i.e. an element of 3 (P?)
by Proposition [V8, is precisely the data of an element S € 3 (P)(c). |

Remark IV.32. Given a primary doctrine P, the construction presented above of its
existential completion P is slightly simplified to that found in [TT9]. Namely, we

have added a left adjoint Jpa,) to P7(g) for every arrow e %, ¢ of C, whereas in [IT9] a
generalised construction is given that freely adds a left adjoint Jpa, to P(g) for arrows
in a chosen class A of morphisms of C closed under pullbacks and compositions and
containing all identities.

It is not hard to generalise our exposition to show that this modified existential
completion is also subgeometric. In Proposition V3T, the Grothendieck topology Je«
is replaced by the topology Jx ), Whose covering sieves are precisely those generated
by the singleton arrows

f
(d, X) —> (C, Elpj(f)X),

for each arrow d > ¢ € A. The conditions on A are precisely what are needed to en-
sure that gy ) satisfies definition of a Grothendieck topology — e.g., pullback stability
corresponds to the stability condition on [y ). As follows from Examples ITLTO(II),
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taking A as the class of product projections corresponds to freely completing with re-
spect to existential quantification, while taking A as the class of diagonals corresponds
to freely completing with respect to an equality predicate.

IV.3.2 Generalised subgeometric completions

We now develop an abstract framework which captures the notion of a subgeometric
completion. We also give sufficient conditions under which a subgeometric comple-
tion is automatically lax-idempotent. In the latter subsections Section V.33 and
Section .34, we will demonstrate that the examples of subgeometric completions
we have encountered so far satisfy this generalised definition.

Definition IV.33. Let A-Doc be a 2-full 2-subcategory of Doc (an object of A-Doc will
be called an A-doctrine, and an arrow of A-Doc a morphism of A-doctrines) such that
the image of the 2-functor

3Fr
A-Docgyy > Docgy —— GeomDoc C Docyy

is contained in A-Daog, as is the unit n®/s+): P — = (P) for each A-doctrine P € A-Doc.
Here A-Docy,: represents the 2-full 2-subcategory of A-Doc whose objects are A-
doctrines and whose 1-cells are A-doctrine morphisms that are also flat. A 2-monad
(T, &,v) on the 2-category A-Doc, thought of as a completion of A-doctrines, is said to
be subgeometric if it satisfies the following conditions.

(i) For each A-doctrine P: C°°? — PreOrd in A-Doc, there exists a choice of A-
doctrine morphism

EP: TSFr(P) —> SFr(P)
such that (3 (P), £p) defines a T-algebra.

(ii) For each A-doctrine P: C°P — PreOrd, there exists a Grothendieck topology JT
on the category O > TP such that:

a) the unit ¢”: P — TP of the monad yields a morphism of doctrinal sites
gP: (P/ ]triv) — (TP/ ]1{)/

b) for each A-doctrine P: C°? — PreOrd, the A-doctrine morphism &p from
above yields a morphism of doctrinal sites

Ep: (TSFr(P)/ ];;Fr(p)) — (SFr(P)’ K3Fr(P))’

¢) and the mapping thatsends an A-doctrine P: C°°? — PreOrd to the doctrinal
site (TP,JI) can be made functorial, i.e. each morphism of A-doctrines
0: P — Q yields a morphism of doctrinal sites

TO: (TP, J}) — (TQ,JY)

Thus there exists a 1-functor A-Doc — DocSites that acts on objects by
P +— (TP, ]}) (we label this functor by J7). In fact, since two morphisms
TO,TO': TP = TQ share the same 2-cells in both Doc and DocSites, |7 can
be taken as a 2-functor.
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Remark IV.34. (i) Condition [i] of Definition [V.:33 expresses that the completion T
completes an A-doctrine P to some fragment of the data of a geometric doctrine.
Evidently, if 3, (P) already possesses the structure which T is freely adding, then
3 (P) is a T-algebra. Condition [ii] expresses that the added data can be “seen’
by a choice of Grothendieck topology.

(ii) In Definition V.33, we also made the distinction between the category A-Doc, on
which the monad of the subgeometric completion (T, ¢, v) acts, and the category
A-Docg,t. This pedantry is necessary to include as examples all the completions
we would expect to be subgeometric. For example, the free top completion does
not induce a monad on Docg,. For a preorder P, the inclusion P < P& T = PT
of P into its free top completion, i.e. the unit of the completion, does not induce a
morphism of doctrinal sites (P, Jiiy) = (P, Juiv), but it does induce a morphism
of doctrinal sites (P, Juiv) — (P, ]...,) (see Lemma IV.T2).

Theorem IV.35. For each subgeometric completion (T, &,v) on a 2-subcategory A-Doc of
Doc, the square

A-Docq,y < Docqat

J T\L \L’Spr

DocSites i} GeomDoc

commutes up to 2-natural isomorphism. In particular, for each A-doctrine P: C°P — PreOrd,
there is an isomorphism 3 (P) = 3(T(P), J3).

Proof. The component of the 2-natural isomorphism 3o JT = 3. at an A-doctrine P is
given by 3(e”) — that is the arrow

T](PJ triv)

(B, Juiy) —— (B:(P), K3 (p))

el’i :3(81’)
§TPI) e
(TP, ]1{) — (3(TP, Lf), KS(TPJ};))

as induced by the universal property of the geometric completion. By the 2-naturality
of ¢, it is trivial to see that the arrows 3(¢”) are the components of a 2-natural trans-
formation.

It remains to show that 3(¢”) is an isomorphism for each A-doctrine P € A-Doc.
We exploit the universal property of the geometric completion to construct an inverse.
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Consider the diagram

y (SFr(P) K3F (p \(él))/
(TP/T>

(P, Jeriv) = > (TP, J}) — 5 (TP, T, Kypy)
J
&P TnPltiv) // ]
/ (IVix)

~ y

T T /
(TP/ ]p) 'q(P/]triv) (TSFI-(P)/ ]3Fr(p)) ///
o TBIP) & /// -

P k-
(")
(3(TP, J5), Ksqrnyny) ——— (3r(P), Kz p)s

where the arrow Zp: (3(TP, J1), K3(Tp,]};)) — (35 (P), K3, (p) is induced by the universal
property of the geometric completion.

We claim that the diagram (I\ViX) commutes — it suffices to only check that the
triangle

(P, Juv) 5 (TR]Y)

Tn®eiv)

~

(TSFr(P) ISF (p)) (IVX)

q(PJ triv)

&p

~

(SFr(P)’ K3Fr(P))

commutes (the other sub-diagrams follow by definition). The triangle (IVX) commutes
since

Ep o TnPle) o P = &) 0 ¢3r(P) o 1y(Pisi) since ¢ is natural,

— n(RImV) since (3, (P), &p) is a T-algebra.

Therefore, by the universal property of the geometric completion, we obtain the
desired equations 3(e”) o Ep = idy(rpyr) and Ep o 3(ef) = idz_ (p). |

Remark IV.36. We saw in Section VT that for each doctrine P: C°® — PreOrd and
Grothendieck topology ] on C = P, there is a Grothendieck topology | on the category
C = PT, where P7 is the free (preserved) top completion, such that 3(P, J) = 3(P7,]").
It is not hard to see that the notion of subgeometric completion and the result of
Theorem V35 can be extended to encompass 2-subcategories A-Doc C DocSites in
addition to 2-subcategories A-Doc C Doc as currently presented. We present the
modified result below.
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Let A-Doc be a 2-full 2-subcategory of DocSites endowed with a 2-monad (T, ¢, v).
By GeomDoc, denote the image of the composite

A-Doc —— DocSites —3> GeomDoc.

Suppose that, for each object (P, ) € A-Doc, there exists a choice ]é,’ D of a Grothendieck
topology on the category C = 3(P, J) such that (3(P, ]), ](fl‘,,])) € A-Doc and 3(P,]) also
satisfies the following properties.

(i) The choice of topology ](Tp,]) is 2-functorial, i.e. the action on objects that sends
3(P,J) € GeomDoc, to the doctrinal site (3(P, ]), ]6‘,/ I)) € A-Doc can be extended
to a 2-functor

J': GeomDocy, —— A-Doc.

(ii) For each (P,]) € A-Doc, there is a morphism
(E(PJ) : T(S(P/ ])/ ](Tp,])) — (S(P/ ])/ ](T;JJ))

of A-Doc for which ((3(B, ]), ](TPJ)), Epp) is a T-algebra and, moreover, the un-
derlying functor and natural transformation pair of ;) define a morphism of

doctrinal sites Eppy: T(3(P, ), ](Tp,])) — (35, ]), Kz p)-

Then the square

A-Doc < > DocSites

| I

A-Doc —— DocSites —3> GeomDoc

commutes up to natural isomorphism.

When are subgeometric completions lax-idempotent? In Corollary [IV.28, we ob-
served that the free geometric completion 3, is lax-idempotent. We may wonder if
this infers that any subgeometric completion is also lax-idempotent. The inference
holds, under some further assumptions.

Proposition IV.37. Let (T, ¢,v) be a subgeometric completion acting on A-Doc, such that

(i) for each A-doctrine P, the natural transformation n'*/»): TP — 3(TP, J}) is pointwise
injective,
(ii) and, for each A-doctrine P, the multiplication of the free geometric completion

MP: SFrSFr(P) ) SFI‘(P)

yields a morphism (3,35, (P), &5..r) = (35, (P), Ep) of T-algebras,

then (T, €,v) is lax-idempotent.
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Proof. Recall that a 2-monad (7, ¢, m) on D is lax-idempotent if, for each d € D, there
is a 2-cell A4: Te; = ey, natural in d, such that the two horizontal composites

d L} d UM ttd, 7td JPi Ttd —) Td,

\_/‘\/‘

i.e. Ay *es and my * Ay, are the identity 2-cells.

Our strategy for the proof is to lift the 2-cell Ap: 3 () = yGe@)uv) corre-
sponding to an A-doctrine P, to a 2-cell Ap: TeP = ™. We will then use that the free
geometric completion 3, is lax idempotent, i.e. that Ap  n®Jsiv) and uf » Ap are both
the identity 2-cells, to deduce the corresponding equations for the 2-monad T.

Since for each A-doctrine P, the natural transformation n*/»: TP — 3(TP,]7) is
pointwise injective, by Remark the functor

DocSites((TP, J}), (TTP, ]1,)) — GeomDoc (3(TP 5, 3(3(TP, JT), 3(TP]T)))
induced by 1"/ is full and faithful. Hence, so too is the functor
DocSites((TP, J}), (TTP, J1,)) —— GeomDoc(3..(P), 3,35 (P)) (IV.xi)

induced by the composite Ep o nTP/7), where Ep is the inverse to 3(e”) as constructed
in Theorem [V35. We will write © for the composite Ep o fT*H): TP — 3, (P).

Therefore, since 3y, is lax-idempotent, the corresponding 2-cell Ap: 3 (nF/eiv)) =
nGe@luw) lifts, as (V) is full, to a 2-cell Ap: Te? = TP (this 2-cell is of course labelled
by id¢, where P is fibred over the category C — but that should not be confused with
it being the identity 2-cell).

Note that, by definition, for each A-doctrine P the diagram

/(Z]P

3(TP,J;) e

\3&(6[)) \LEP
(P, riv)
m SFr(P )
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commutes. Therefore, the diagram

TeP
p—< sTp JP) TTP
©p Oz, (r)°TOP

SFr(q(PJtriV))
/\
p % SFr(P) “AP SFISFI‘(P)’

,](P,]mv) \/
7]<3Fr (P)f]triv)
also commutes. Since

DOCSiteS((P/ ]triv)/ (TTP/ ];:p)) —> DOCSiteS((P/ ]triv)/ (SFrSFr(P)/ KSFrSFr(P)))

is faithful, again by Remark V7T, we conclude that Ap+* e’ is indeed the identity 2-cell.
We exploit a symmetric argument to conclude that v+ Ap is also the identity 2-cell.
We claim that the diagram

TeP
TP MAP TTP ! \ TP
o 3Fr(17(P']triv)) ®3Fr(P)OT®P © (IV Xll)
uP

SFr(P) Ap SFrSFr(P) 4> SFr(P)

N~ Vv A

U(SFr(P)f/triv)

)

also commutes. Using that
DocSites((TP, J;), (TP, J3)) — GeomDoc(3,(P), 3x(P))

is faithful, again by Remark V.21, we conclude that VP Ap is the identity 2-cell as
desired.

However, demonstrating the commutativity of (IVxii), that is the commutativity
of the required square

TTP — 3 TP
Oz (p)°TOp Op (IV.Xiii)
Lo
SFrSFr(P) ) SFr(P)/
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is more involved. First, recall from Theorem [V33 that, for each A-doctrine P, the

square

(TeJh)

TP — 21— 3(TP,JT)

\LTTI(PJ triv)

(IV.xiv)

TSFr 5% SFr(P )

commutes. We can show that the square (IVxiii) commutes by decomposing it as

P

TTP TP
Ty TPp) m]t) @ TV Z T
M V3E:(P) ~
T3(TPJT)  ®  TT3(P) 225 T3.(P) @ 3(TPJD)
TEy Tép ® \ Zp
TSFr(P) cp > . P)
U(TSFr<P)J§Fr(P)) Wﬁw)
N Typ
3(T36P) g p) @ T3a3u(P) — T3e(P)
- / ® \
~ r

The squares (D and @) commute by ([¥xiv), and the square ) is just T applied
to (0xad). The square @) commutes by the naturality of v: TT — T. The square (5
commutes since (3, (P), p) is a T-algebra. The square (6) commutes by the assumption
that u” yields a morphism (3,3 (P), é3..r) = (3(P), &p) of T-algebras. Finally, the
remaining equation to check, that

CEP o T‘Llp (o] TT](SFr(P)/]triv) — EPI

follows from p” o nGeMfe) = id. (p), the unit law for (35, 1, 1).

IV.3.3 Subgeometric completions via subdoctrines

Let P: C°* — MSLat be a primary doctrine. The statement of Proposition V3T
expresses that the fibre at ¢ of the geometric completion P7(c) can be recovered as the

subset of 3...(P)(c), specifically as the subset of elements of the form 3 fngj’]““)(x), where

d ER c is an arrow of C and x € P(d). Furthermore, the elements 1 fnfip’]“”)(x) € 3 (P)(c)

can be characterised as the supercompact objects of the site (C = 3,(P), K3_ ).
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Lemma IV.38. An element S € 3 (P)(c) is of the form Elfnilp’]“”) (x) if and only if (c,S) is
supercompact, i.e. every Kz_(p)-cover of (c, S) contains a singleton subcover.

Proof. Firstly, if S is supercompact then, since (c, S) admits the Kz (p)-cover

(@S es|(fxes),

S must be equal to 1 fnfip’]““’)(x) for some (f, x) € S.
The object (¢, 3 m;p,] triV)(x)) is supercompact since if

(@)% e amPwylicr)
;Rhm)(x)l and so (f,x) € d,, Ty for some i’ € I.

Therefore, 4,, T = 3 f’?fgp 4 triV)(x) and so the singleton arrow

is a Ky,_(p)-cover, then {J;; 3, T; = I/

{ e 7o) 55 € AP ) |

is a K5_(p-cover. m|

In this subsection we study completions of doctrines obtained in an analogous fash-
ion by taking certain subdoctrines of the free geometric completion. We will formulate
a general theory for such completions obtained via subdoctrines, and demonstrate
that they are subgeometric in the sense of Definition [V.33, thus providing a broad
class of examples of subgeometric completions. Moreover, we show that the induced
2-monads are all lax-idempotent.

Among the examples of subgeometric completions we are able to obtain in this
way is the existential completion T7: PrimDoc — PrimDoc established in [IT9]. We
will also obtain a lax-idempotent free coherent completion for primary doctrines. Finally,
we will relate the existential and coherent completions thus obtained to the regular
and coherent completions of cartesian categories.

Compatible subcompletions. We first develop our general theory for completions
of doctrines obtained via subdoctrines of the free geometric completion. We call these
compatible subcompletions in analogy with the terminology ‘compatible properties’ used
in the topos-theoretic study of Stone-type dualities given in [9, §3]. Given a doctrine
Q: C°° — PreOrd, by a subdoctrine of Q we mean a doctrine Q": C°? — PreOrd, also
indexed over C, and a natural transformation Q" < Q for which every component is
a subset inclusion Q’(c) € Q(c).

For this subsection, in every doctrinal site (P, J) we encounter, the topology ] is
taken to be the trivial topology Juiy. Therefore, we abbreviate our notation and write
nP for T](P/Itriv)’ [lP for ‘u(PJtriV)’ etc.

Definition IV.39. Let A-Docbe a 2-full 2-subcategory of Docg,; that contains the image
of the functor

A-Doc —— Docg,t SHF GeomDoc C Docgyt,

as well as the unit n”: P — 3 (P) for each A-doctrine P € A-Doc. A choice of a
subdoctrine H?: TP < 3 (P), for each A-doctrine P, is said to be A-compatible if the
following conditions are satisfied.
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(i)

(ii)

(iii)
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For each A-doctrine P: C°? — PreOrd, TP is a subdoctrine of 3. (P) that contains
the image of the unit n)*, i.e. there is a factorisation

rIP

P T TP < 5, (P).

We also require that the factoring morphism ¢”: P — TP is a morphism of
A-doctrines.

The choice of subdoctrine is natural in the sense that, for each morphism
of A-doctrines (F,a): P — Q, the induced morphism of geometric doctrines
B (E a): 3p(P) = 3(Q) restricts to TP — TQ, as in the diagram

P TP <y 3 (P)

@“)l i \LSFr(F,a) (IV.xv)
Q 5 TQ %5 z.(Q).

Moreover, we also require that the restriction TP — TQ is a morphism of A-
doctrines, and so we obtain an (1-)endofunctor T: A-Doc — A-Doc.

For each P € A-Doc, the subdoctrine H”: TP < 3. (P) is ‘compatible’ with the
multiplication of the free geometric completion u”: 3 3. (P) — 3 (P) in the
sense that the composite

H3r:(P)

P P
TTP — % T3 (P) —— 330(P) ——— 3 (P)  (IVxvi)
factors through the subdoctrine H”: TP < 3 (P), and this factorisation

vl TTP —— TP

is a morphism of A-doctrines.

Examples IV.40. There are two basic examples to keep in mind for motivating our
development. In both cases, the 2-category A-Doc is taken to be the 2-category of
primary doctrines PrimDoc.

(i)

The first example has been encountered already. For each primary doctrine P,
taking TP < 3 (P) as the subdoctrine on supercompact elements is PrimDoc-
compatible. While not every morphism of geometric doctrines

(G,b): 3(P) — 3r(Q)

sends a supercompact element S € 3. (P)(c) to a supercompact element b.(S)
of 3;.(Q)(G(c)), this is however true for morphisms of the form 3. (F, a), where
(F,a): P — Qis a morphism of primary doctrines.

An element of TTP(c) is of the form

3e(P) p
Iz, 5. @10 (33Fr<P>(f>'7d (x)) ,
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for a composable pair of arrows d EX e,e 5 ¢ € C and an element x € P(d). One

can calculate that

3rlP) _
1 (g™ (Fsepmi ) = Faexsepnh (0)-

Thus, p® restricts to a morphism v*: TTP — TP. The other required conditions
on T are easily checked.

(ii) Now consider taking T“°"P to the be the subdoctrine of 3 (P) on compact elements,
i.e. T<MP(c) are those elements S € 3. (P)(c) such that every Kz, (p)-cover of (c, S)
has a finite subcover. Checking that this choice of subdoctrine of 3 (P) satisfies
the required conditions is analogous to the case for T7.

The (1-)endofunctor T: A-Doc — A-Doc is evidently 2-functorial. Every 2-cell
a: (Fa) => (F,a’) (i.e. a suitable natural transformation a: F = F’) between A-
doctrine morphisms (F, a), (F/,a’): P =3 Q yields a 2-cell

3 (Ea)
/\
SFr(P) Ma SFr(Q)
\_/(

B (")

since 3. is 2-functorial. Therefore, a also defines a 2-cell between the restrictions to

the subdoctrines
T(Fa)
TP ﬂa TQ.

Ny A

T(F ")
We note also that, since the triple (T, ¢, v) is a restriction of the 2-monad (3., 1, ), the
monad equations for (T, ¢,v) follow automatically.

Lemma IV.41. The triple (T, ¢,v) is a 2-monad on A-Doc.

Definition I'V.42. We call this 2-monad the compatible subcompletion.

Proposition 1V.43. Every compatible subcompletion T: A-Doc — A-Doc is subgeometric.
Proof. For each A-doctrine P, the morphism

H3E:®

uP
is a natural way of endowing 3. (P) with the structure of a T-algebra. The unit
condition, i.e. the commutativity of the triangle

35 (P)

\LHBFr(P)

SFr SFr (P )

1

SFr(P)/
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is satisfied since
‘uP o H3:W o 36 = yp o 1]3Fr(P) = id3Fr(p).

The action property, i.e. that
[JP le) HsFr(P) o) T([JP [e) HSFr(P)) — MP o) HsFr(P) fe) V3Fr(P)’

follows from the commutativity of the diagram

TT33,(P) — 2y T30, 50, (P) —— s T53,(P)
H3Fr3Fc(P) @ H3E:P)
SO BuBea®) — s 5,30(P) (IV.xvii)
3Fe(P) @ u’

H3Fr

TSFr(P) —> SFrSFr(P) —> SFr(P)

The commutativity of the square (D is assured since (3, 7, 1t) is a 2-monad, while the
squares (2) and (3) commute by definition (see the equations (IV3ad) and (IVad)).

We now seek to find a Grothendieck topology ], on C = TP satisfying the required
conditions of Definition [V.33. We take the obvious choice: C > TP is a subcategory of
C > 3, (P) since TP is a subdoctrine of 3 (P), and so we define ]} as the restriction of
Kz, (p) to C = P. We check that the three conditions of Definition are satisfied.

(@) Recall that that the unit of the free geometric completion yields a dense mor-
phism of sites id¢ > 1: (C < P, Juiy) = (C > 3, (P), Kz, p)- The functor id¢ > n’
factorises as

idg=el idg~<H

(C =P, Juiv) — (C=TP,J}) L Bee(P), Ks;,p))-

The right factor, idc = H”, is the inclusion of a dense subcategory, and hence
also a dense morphism of sites. Therefore, by [107, Corollary 11.6], idc = €” is a
morphism of sites, and so €”: (P, Juiy) — (TP, J}) is a morphism of doctrinal sites
as desired.

(b) Firstly, the functor u” defines a morphism of doctrinal sites

[Jp: (3Fr3Fr(P)I K3Fr3Fr(P)) — (SFr(P)’ KSFr(P))

Secondly, ide = H3#®): (Cx T3, (P), J¢ ) = (C> 35,35 (P), Kg5,,p) is the inclu-
sion of a dense subcategory, and therefore

H3rP) (TSFr(P)’ ]gFr(P)) — (SFrSFr(P)’ KSFr3Fr(P))

is also a morphism of doctrinal sites. Hence, the composite
}’l ° H3Fr ®: (TSFr(p) 3r (P)) H (SFr(P)’ KSFr(P))

defines a morphism of doctrinal sites as required.
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(c) Finally, we wish to show that TO: (TP, ]17;) — (TQ, ]g) is a morphism of doctrinal
sites for each morphism of A-doctrines 0: P — Q. By assumption, T0 is already
flat by virtue of being a morphism of A-doctrines. That TO sends J}-covers to ]g
covers follows since 3;.(0): 35.(P) — 35, (Q) sends Kz_p)-covers to Kz_(g)-covers.

Hence, all the conditions of Definition are satisfied. ]

An application of Proposition V.37 now shows that every compatible subcomple-
tion is lax-idempotent. The two conditions of Proposition [V.37 are clearly satisfied.

(i) Each component nETP’]g ). TP(c) — 3(TP, ]g)(c) is injective —indeed it is isomorphic
to the inclusion HY : TP(c) > 35.(P)(c) = 3(TD, J})(c).

(ii) Secondly, for each A-doctrine P,

U": (3p B (P), p3®) o H3w5r0)) —— (31, (P), u” o H3=()

is a morphism of T-algebras by the commutativity of the right hand side of the
diagram (IVxvid).

Corollary IV.44. Every compatible subcompletion (T, €,v) is lax-idempotent.

The regular and coherent completions. Let us revisit the examples of compatible
subcompletions given in Examples [V40. As remarked in Lemma V38, we have
recovered the existential completion established in [ITY], the lax-idempotent 2-monad
T?: PrimDoc — PrimDoc, as a compatible subcompletion.

The 2-category of algebras for the 2-monad T is precisely the the 2-category ExDoc
of existential doctrines (see [I19, Corollary 5.5]). In a similar fashion, we recognise the
2-category of algebras for the lax-idempotent 2-monad T<°": PrimDoc — PrimDoc
as the 2-category CohDoc of coherent doctrines. Using the inherent 2-adjunction

1-Alg - C
—

for a 2-monad (7,e,m) on a 2-category C, we recover the following completions of
doctrines.

Corollary IV.45 (§5 [I19]). (i) The 2-embedding ExDoc — PrimDoc possesses a lax-
idempotent left 2-adjoint.

(ii) The 2-embedding CohDoc < PrimDoc possesses a lax-idempotent left 2-adjoint.

The regular and coherent completions of cartesian categories. Following the exam-
ple of [B3], we turn to using these completions of doctrines to describe completions of
categories. We have seen in Corollary that the free geometric completion yields
the completion of a cartesian category to a geometric category. We deduce that, in a
similar manner, the subgeometric completions we have constructed in this subsection
yield other completions of cartesian categories.

As already noted in [I19, §6], the existential completion of a primary doctrine
can be used to recover the reqular completion of a cartesian category. For a cartesian
category C, Carboni describes in [?7] the regular completion Reg(C) as follows:
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(i) the objects of Reg(C) are arrows d L cof C;

(ii) an arrow [g]: fi — f> of Reg(C) is an equivalence class of arrows d; %, d, such
that
h
e \ dy fz_) C2

k

commutes, where (h, k) are the kernel pair of f;, i.e.

€—h>d1

L

dli>C1

is a pullback. Two such arrows

are equivalent, i.e. [g] = [¢'], if

8

d; \ d, i) C2
g/

commutes.

In [27, §5] it is shown that this defines the action on objects of a pseudo-adjoint
to the 2-embedding Reg < Cart of cartesian categories into regular categories. In
an analogous manner to Corollary [V30, we deduce that Syn(T7Subc) satisfies the
same universal property as Reg(C), and hence Syn(T7Sub¢) ~ Reg(C). Similarly, by
considering the category Syn(T“°"Suby), for a cartesian category C, we obtain the
universal coherent completion of C.

Corollary 1V.46. The 2-embedding Coh — Cart has a left pseudo-adjoint — the coherent
completion of a cartesian category.

IV.3.4 Pointwise subgeometric completions

In this final subsection, we revisit the free top completion as a subgeometric comple-
tion in light of Definition [IV33. Since the syntax of geometric logic is often represented
by the symbols { T, 3, =, \/, A}, we ‘complete the set’, so to speak, by also briefly
sketching that the free join and free binary meet completions also constitute subgeomet-
ric completions. The completion with respect to the either of the symbols 3 and =
is the previously discussed existential completion — for 3, we freely add left adjoints
to product projections, while for = we freely add left adjoints to diagonals (both are
subgeometric, see Remark [V.37). In what follows, the conditions of Definition
are easily, but tediously, checked — and so we omit many of the details.

Since the completions we consider in this subsection are of a ‘pointwise” nature,
we first state some easily deduced facts concerning such completions. Suppose that
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A-PreOrd is a 2-full 2-subcategory of PreOrd whose inclusion A-PreOrd — PreOrd
has a (strict) left 2-adjoint T4 : PreOrd — A-PreOrd. Equivalently, for each preorder P,
the completion TP has the universal property that for any monotone map a: P — Q
whose codomain lies in A-PreOrd, there is a unique morphism a?: TAP — Q of
A-PreOrd for which the triangle

P —— TP
o

a g

Q

commutes (where ¢ is the unit of the 2-adjunction). It is clearly deduced that the
functor T# extends to a (strict) 2-adjunction

T/A

[C°P, PreOrd] - ;: [C°P, A-PreOrd],

and hence also a (strict) 2-adjunction

T//A

Doc : L ;: A-Doc,

where A-Doc is the category of A-PreOrd-valued doctrines.

Free top completion. Let T'": Doc — Doc denote the free (preserved) top com-
pletion monad constructed in Section [IVT1. Having preserved top elements, every
geometric doctrine IL: C°P — Frmpe, can naturally be turned into an algebra for the
monad T". We have also already encountered the topology J. on the category C=PT,
where P is a doctrine P: C°? — PreOrd. That this choice of Grothendieck topology
satisfies the condition of Definition is easily shown: for example, that the unit
(P, Jiv) = (PT, ] ) is a morphism of sites follows from Lemma IV.T2. Thus, we can
apply Theorem V35 to deduce that TT is subgeometric, yielding a ‘top-down” proof
of Proposition [V.T3.

Free join completion. As previously mentioned, the 2-functor
3. ExXDoc ——» GeomDoc

sends an existential doctrine P: C°* — MSLat to its ‘pointwise’ join completion
207 0 P: CP — Frmgpen, i.6. 3, (P)(c) is the poset of down-sets of P(c) ordered by
inclusion.

We could also conceive of taking the ‘pointwise’” join completion 2% o P of any
doctrine P € Doc. Hence an element | € 20 o P(c) is a down-set of P(c). By the above
discussion, this yields a left adjoint TV to the inclusion of SupSLat-valued doctrines
into Doc, where SupSLat is the 2-category of sup-semilattices (i.e. posets with all
joins), their homomorphisms, and natural transformations between these. By the
universal property of TV, for each geometric doctrine L € GeomDoc there exists a
natural transformation idy : TVIL = L for which (IL,idy ) is a T"-algebra.

P
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For each doctrine P: C* — Sets, the choice of the topology ]y, where ] is the
Grothendieck topology on C > TVP generated by covering families of the form

{(c,fi)ﬁ(c,UL] ier},

i€l
can easily be shown to satisfy the conditions of Definition [IV33. Thus, there is a
natural isomorphism 3 (P) = 3(T"P, J}) for each doctrine P by Theorem [V.35.

Free binary meet completion. Finally, we construct the free binary meet completion
for doctrines, and observe that this is also a subgeometric completion. We begin by
defining the free binary meet completion for preorders.

Definition IV.47. Let P be a preorder. Consider the set Z,(P) \ 0 of non-empty;, finite
subsets of P. We order %%;,(P) \ 0 by setting

{x11x2/ ---/xn} < {yllyZI ,ym}

if and only if each y; is greater than some x;. We define P" as the poset obtained by
identifying two elements {x1, X2, ..., Xn }, { y1, V2, -, Ym } Of Pn(P) \ 0 if

{x1/x2/ °--/xn} < {]/1/ y2/ /ym } and {]/1/ y2/ /ym} < {x11x2/ vy Xp }

We denote the equivalence class of { x1, x, ..., X, } by [ x1, X2, ..., x, . Alternatively, P*
can be described as the poset of non-empty, finitely generated up-sets of P ordered by
inclusion.

It is easily checked that, given two elements [ x1, ..., x, I, [ v1, ..., Y ]| of P*, their
meet is given by

[[xll cee s Xny yll /ym ]]/

and thus the poset P" has all binary meets. The map [ - ]»: P — P” given by sending
x € Pto [x] € P" is clearly monotone. Since every element [y, ...,x, ]| € P" is the
finite meet of the elements [ x; ]| € P", we obtain the desired universal property: for
each preorder P and any monotone map a: P — Q, where Q has binary meets, there
exists a unique monotone map a”: P* — Q that preserves binary meets such that the
triangle

p L2 pa

Q
commutes.

Thus, by the discussion above, there exists a left 2-adjoint T" to the inclusion
of BMSLat-valued doctrines into Doc, where BMSLat is the 2-category of binary-
meet-semilattices, their homomorphisms, and natural transformations between these.
Evidently, there exists a natural transformation id; : T"L = L, induced by the uni-
versal property of T", which yields a T" algebra (IL, idy) for each geometric doctrine
L € GeomDoc.
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We denote by |, the Grothendieck topology on C > T"P generated by covering
families of the form

{(c,l[y]]) e, (c,[x1,x2, ..., xx ) |y € P(c), y < x1,%2, ...,xn}.

There are few obstacles to concluding that the choice of topology ], satisfies the
conditions of Definition [V33. Hence we obtain by Theorem [V35 that there is a
natural isomorphism

for every doctrine P.
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Chapter V

Sheaves on a groupoid

Topoi as generalised spaces. Locales and topological spaces are generalised, re-
spectively, by topoi and topoi with enough points”. But to what extent are spaces
generalised by topoi? The representation results of Joyal and Tierney [68] and Butz
and Moerdijk [17] express that, roughly speaking, a topos is a space whose points
can possess non-trivial isomorphisms. In this regard, topoi can be likened to orbifolds
from differential geometry.

Groupoids and their sheaves. The informal notion of a ‘space with isomorphisms
of points’ is captured by the notion of a topological or localic groupoid. A topolog-
ical/localic groupoid comes equipped with a natural notion of a topos of equivariant
sheaves, or simply the topos of sheaves on a groupoid, which simultaneously gen-
eralises the topos of sheaves on a space and the topos of continuous actions by a
topological group.

The representation results of [b8] and [I7] state that every topos (respectively,
every topos with enough points) is equivalent to a topos of sheaves on localic (resp.,
topological) groupoid. We will review these representation results in Chapter V1 and
Chapter VTI. But first, we recall in this chapter the definition of the topos of sheaves
on a localic/topological groupoid, as well as its pertinent properties that will facilitate
our later study.

Overview. We proceed as follows.

(A) For familiarity, we initially focus on the topological case. Section M1 contains the
definition and examples of topoi of sheaves on topological groupoids. In Sec-
tion V1T, we study the behaviour of this topos when the action and topologies
on the constituent spaces are modified.

(B) Secondly, we briefly recount in Section M2 how our definitions adapt when
topological groupoids are replaced by localic groupoids.
V.1 Sheaves on a topological groupoid

A topological groupoid is a groupoid internal to the category Top of topological spaces
and continuous maps. That is, a topological groupoid X consists of a diagram

!Garner suggests the name ionaid (singular ionad) for the latter in [ZT].
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T
Py
m/
\ 2
/Xl\

P
)

i

~

X1 Xx, X1

Xo, (Vi)

» | |~

~

in Top such that the equations

soe=toe=idy,
som=sopr,, tom=topr,,
mo(idxl XX, m) :mO(m XX, idxl),
m o (idx, Xx,e) = m o (e Xx, idx,),

expressing that (M) is an internal category (where s and t send an arrow to, respec-
tively, its source and target, e sends an object to its identity morphism and m sends a
pair of composable arrows to their composite), and

soi=1¢t toi=s,
mo(idxl XX, i):eot,
mo (i Xx, idx,) =eos,
ioi=idy,

expressing that i sends an arrow to its inverse, are all satisfied. Equivalently, a topo-
logical groupoid is a (small) groupoid in the usual sense and a choice of topologies for
the set of objects and the set of arrows such that all the groupoid structure morphisms
(i.e. the displayed arrows in (V1)) are continuous with respect to these topologies.

Since we will mostly be concerned with the ‘source” and ‘target’ maps s and ¢, we
will often write X = (X; =3 Xj) to denote the topological groupoid. Assoi=t,and i
is a homeomorphism, s is open if and only if ¢ is open. This allows us to simplify the
definition of an open topological groupoid:

Definition V.1. A topological groupoid is said to be open if either s or t are open maps
(and hence both are).

We will often restrict our focus to open topological groupoids. Of particular
importance for us is the fact that in an open topological groupoid, the orbit t(s™'(U))
of an open U C X, i.e. the closure of U under the action of Xj, is still open. The
restriction to open topological groupoids is not prohibitive since every topological
groupoid is Morita equivalent to an open one, in the sense that for every topological
groupoid X, its topos of equivariant sheaves (defined below) is equivalent to the sheaves
on an open topological groupoid. This follows from [I7].

Definition V.2. Given a topological groupoid X, we can construct the topos of equiv-
ariant sheaves Sh(X). This is a construction that generalises simultaneously both topoi
of sheaves on spaces and topoi of continuous group actions.

(i) Objects of Sh(X), called X-sheaves, consist of triples (Y,4,5) where q: Y — X, is
a local homeomorphism and g is a continuous X;-action on Y, by which mean a
continuous map

B:Y Xx, X4 —— Y,
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where Y Xy, X is the pullback

Y XX, X —— Y
Lok
Xy ——— Xo,

satisfying the equations

BBy, &), h) = Bly, m(g, h)),
q(B(y, 8)) = t(Q),
Bly,e@y)) =y

(i) Anarrow (Y, g,p) ER (Y’,q', ") of Sh(X) consists of a continuous map f: Y — Y’
such that the diagram

>< Oldx

Y XX, X1 X% Y’ XX, X4
Ir I
Y GV
Xo

commutes. The commutation of the bottom triangle of (\ii) expresses that f
is a a morphism of sheaves over Xj,, while the commutation of the top square
expresses that f respects the respective X;-actions.

(V.ii)

Examples V.3. That the topos of equivariant sheaves on a topological groupoid si-
multaneously generalises the topos of sheaves on a space and the topos of continuous
actions by a topological group is clear by the following examples.

(i) Let X be a topological space. The diagram

idx\ idx\

idy 7 idy 7
X " >X<.d X

X\ 1X\
U

idx

is a topological groupoid whose topos of sheaves is the familiar topos of sheaves
on a space Sh(X).

(ii) Let (G, e, m,i) be a topological group. The diagram

pry !

—  —
GXG—> G%l
I

is a topological groupoid whose topos of sheaves is the topos BG of continuous
group actions by G on discrete sets.
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Descent data. The objects and morphisms of Sh(X) can be given a more compact
definition in terms of descent data (the reasons for the nomenclature will become
apparent in Section VI 2T).

We first fix some notation. Recall that each continuous map U L, V induces a
geometric morphism Sh(h): Sh(U) — Sh(V), whose inverse image part we write as
h*. It sends a local homeomorphism q: W — V to its pullback along h

(W) — W
Ll
u—=>--sv
and a morphism
W’ # W
\%
of Sh(Y) to the induced map

HW) —ee W’

\h( {\

h(W)—)W

LN

u—>=-3v

A descent datum for X is a pair consisting of a local homeomorphism g: ¥ — X,
and a morphism

s°(Y) —— #(Y)
NS
X1

such that e*(0) = idy and m*(0) = pr,(0) o prj(6). A morphism of descent data

(Y,0) ER (Y’, 0’) is a commuting triangle

y — vy

N Ly

(i.e. a morphism Y ER Y’ in Sh(X))) such that the square

s(Y) —— £(Y)

s (f)\L \Lt*(f)

s(Y) == #(Y")
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commutes.

That the two definitions of sheaves on X are equivalent is a matter of unravelling
definitions. The notational difference arises because, for descent data, we keep track
of the arrow a € Xj once it has been applied to a point y € Y. Indeed, given a X;-action
B: Y Xx, X; — Y, the corresponding descent datum is the map 0g that sends the pair
(y,a) € s°(Y) to (B(y, @), ) € t°(Y), while given descent datum 0: s*(Y) — t'(Y) on Y,
corresponding to the X;-action fy, is the composite

Y xx, X1 =5(Y) == £(Y) —> Y.

For completeness, we explain the equivalence between X;j-actions and descent data
in detail in Appendix B.

We will use actions and descent data interchangeably when discussing sheaves
on a groupoid since, as we will also observe in Chapter VI, it can often be more
convenient to work with one other over the other. For example, the following is most
succinctly demonstrated using descent data.

Lemma V4. If X = (X1 =3 X)) is an open topological groupoid, for any X-sheaf (Y, q, ), the
X-action

ﬁ: Y XX, X1 ——Y
is an open map.

Proof. By above (see also Appendix B), the action f is the composite
Y xx, X1 =5°(Y) = #(Y) —> Y

for some descent datum 6 on Y. The first factor s*(Y) LA t(Y), being a morphism of
Sh(X;), is an open continuous map (see [63, Lemma C1.3.2]). The later factor is also
open since it is the pullback of the open map t in the square

FOY) —— Y
Ll
X1 — Xo,

and open maps are stable under pullback. ]

V.1.1 Forgetting topologies and actions

In this section we lay out the necessary facts regarding the sheaves on a topological
groupoid that will be used in Chapter VII. Let X = (X; =3 X)) be a (small) groupoid,
which can also be considered as a topological groupoid where both X, and X; have
both been endowed with the discrete topology. We will write X® = (X 3 X?) to
emphasise this fact. Let 79 and 7; be a topologies on X, and X; respectively such that
all the structure morphisms of X are continuous with respect to these topologies, i.e.
X5 = (X]' 3 X{’) is a topological groupoid.

Definitions V.5. (i) As above, let Sh(X}!) and Sh(Xg) denote the topoi of sheaves

0

on the topological groupoids X3! = (X]' =3 X;") and X = (X 3 X9).
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(ii) By Sh(X‘EO) we denote the category whose objects are local homeomorphisms
q: Y — X equipped with a (not necessarily continuous) action f: Y'xx, X; — Y,
satisfying the same equations as in Definition Vi). Arrows (Y,q,5) — (Y’,q’,')
are continuous maps f: Y — Y’ such that the diagram

fxx,id
Y XX, X1 ﬂ Y’ XX, X1

I I
Y NNV
N
Xo

commutes, as in Definition M 2(ii).

Remark V.6. Note that X = (X° 3 X{") is not a topological groupoid (unless 7o is
also the discrete topology). If X9 = (X{ =3 X{°) were a topological groupoid, then, for
each x € X, the singleton

{x) =e'({id.})
would be an open subset of X;°. Despite this, the category Sh(X? ) is still a topos, a
consequence of [92, Theorem 2.5] and Lemma VTA below.

We note that the topoi Sh(Xg ) and Sh(Xg) can be written in a more familiar manner.
There are, of course, evident equivalences

Sh(X?) ~ Sets/X, ~ Sets™, Sh(X®) ~ Sets*.

Section aims. The main focus of this section is to construct a commutative diagram
of topoi and geometric morphisms

Sh(X?) —— Sh(X™)

Jf l e Sh(X})) (V.iii)
—

Sh(X?) —/— Sh(X?)

such that the following are satisfied:

(i) jand u® are both localic surjections,
(ii) u is a localic surjection and, additionally, open if X7 is an open topological
groupoid,
(iii) v is an open localic surjection,
(iv) j’is a surjection,
(v) wis a hyperconnected geometric morphism,
and the left-hand square is a pushout of topoi.
To construct the diagram (i), we will make repeated use of [63, Theorem B2.4.6]

to deduce that whenever a functor between topoi preserves finite limits and arbitrary
colimits, it is the inverse image part of a geometric morphism.
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Forgetting the action. We first note that the forgetful functors U: Sh(X7)) — Sh(X}’)
and U°: Sh(X?O) — Sh(X{’), which forget the X '-action (respectively, X‘ls—action),
create all colimits and finite limits. This is deduced since a colimit or finite limit
in Sh(X;") of spaces with an X'-action (resp., Xf-action) can be given an obvious
X{'-action (resp., X‘f-action) making it an object of Sh(X7}) (resp., Sh(X‘EO)).

Example V.7. We prove in more detail, as an example, that U: Sh(X7!) — Sh(X")
preserves binary products, and remark that the other finite limits and arbitrary colimits
follow just as easily.

Let (Y,q,8), (Y,q',B’) be objects of Sh(X?!). The product of (Y,4) and (Y,4’) in the

0

topos Sh(X’) is given by the pullback of spaces

Y Xy, Y —2 Y

_I 4
Prl\L q

Yy — I 5 Xm,
Let (v, v, a) be an element of Y Xx, Y’ Xx, XI], where Y Xx, Y’ Xx, X? is the pullback
Y XX, Y’ XX, XII — Y XX, Y’

L |

S
XD > X,

The definition B(y, i, @) = (B(y, @), B’ (v, @)) yields a X]'-action
B: Y xx, Y Xx, X]' — Y Xx, Y.

The action B is continuous since  and ' are both continuous and the necessary
equations on B are direct consequences of the equivalent equivalent equations for
(Y,q,p) and (Y’,q’, p’). Hence, the triple (Y Xx, Y’,q o pr,, B) is an object of Sh(X7}).

The projections Y Xx, Y’ 2 Yand Y Xx, Y’ 22 ¥ define morphisms in Sh(X7})
since, by a simple diagram chase, both the diagrams

PrIXx, 1dX1 PryXx, 1dX1

Y Xx, Y Xx, X7 Yxx, XY Xy, Y Xy X Y xx, X

I b b !

, p1y N , p1; N ,
Y Xx, Y > Y Y Xx, Y > Y
qopx / qoprfq’opkk /
T0 70
Xo , Xo .

commute.
Finally, we can demonstrate that (Y Xx, Y’, gopr,, B) satisfies the universal property
of the product. Let (Z,p,y) be a Xi}-sheaf with morphisms f and g to (Y,4,B) and



170 CHAPTER V. SHEAVES ON A GROUPOID

(Y’,q’, ') respectively. Then there is a unique commuting continuous map Z L yx %, Y’
induced by the pullback

I

y — L 3 x

that sends z € Z to (f(z), g(z)) € Y Xx, Y’. Thus, (Y Xx, Y’,q o pr,, B) is the product of
(Y,q,p) and (Y’,q’, p') in the category Sh(X7}) if 1 makes the diagram

T hXXOiXm , T
Z XX, Xll Y XX, Y XX, Xll
b b
h N ,
V4 S Y Xy, Y
x %Pfl
T
XO

commute. This is easily checked by another diagram chase, and so we have demon-
strated that U: Sh(X7])) — Sh(X_") preserves binary products.

Since U (respectively, U°) preserves finite limits and all colimits, by [63, Theorem
B2.4.6], it is the inverse image of a geometric morphism u: Sh(X’) — Sh(XZ)) (resp.,
u®: Sh(X;’) = Sh(X?)) between topoi.

Lemma V.8. The geometric morphisms u: Sh(X;’) — Sh(X3}) and u®: Sh(X;") — Sh(X?)
are both localic surjections.

Proof. As U (respectively, U°) is clearly a faithful functor whose codomain Sh(X’) is
a localic topos, u (resp., u°) is a surjective localic geometric morphism. |

Lemma V.9 (Proposition 4.4 [92]). If X} is an open topological groupoid, then the geometric
morphism u: Sh(X{’) — Sh(X3}) is additionally open.

0

Remark V.10. The functors U and U° above reflect jointly epimorphic families and
monomorphisms. As shown in [/9, Proposition I1.6.6], a family of morphisms in
Sh(X;") is jointly epimorphic if and only if they are jointly surjective, and hence so too
in Sh(X?!) and Sh(XiO). Also, a morphism in Sh(X{’) is a monomorphism if and only

0

if it is injective, and hence so too in Sh(X7}) and Sh(X‘;O).

Let V: Sh(Xg) - Sh(XS) denote the analogous functor that forgets the Xf-action.
By an identical analysis to the above, we conclude the following.

Lemma V.11. The functor V is the inverse image functor of a geometric morphism
v: Sh(X)) —— Sh(X))

that is open, localic and surjective.
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Subsheaves. Given an X%-sheaf (Y,q,pP), the subobjects of (Y, g, ) are easy to de-
scribe. By Remark V.10, a morphism (Y, g, ) J, (Y’,q', B’) of X7} -sheaves is a monomor-

phism in Sh(X}) if and only if Y J, Y’ is a monomorphism in Sh(Xj), i.e. f is the
inclusion of an open subspace. The requirement that f makes the diagram (MVii)

commute is equivalent to the following.

Definition V.12. Given an X}/ -sheaf (Y, g, f), a subspace Y’ C Y is said to be stable” if
Y’ is closed under the X;-action  on Y, by which we mean that if y € Y’ C Y then
B(y,a) € Y C Y too, for any suitable a € X;.

Lemma V.13. Therefore, the subobjects of a Xi}-sheaf (Y,q,B) can be identified with the
X4 -sheaves (U, q o i, Blu), where i: U — Y is the inclusion of an open and stable subspace.

Forgetting the topology on arrows. The topos Sh(X7}) is evidently a full subcategory
of Sh(X) ). Let W: Sh(X7}) — Sh(X?) be the inclusion functor. Clearly, there is a

0
commuting triangle of functors

Sh(X})) —— Sh(X%)

S b

Sh(X™).

Hence, as U preserves finite limits and arbitrary colimits while U° reflects them, W
also preserves finite limits and arbitrary colimits. Therefore, W is the inverse image
of a geometric morphism w: Sh(X‘T’O) — Sh(X7)).

Proposition V.14. The geometric morphism w: Sh(X‘gO) — Sh(X?)) is hyperconnected.

0

Proof. A hyperconnected geometric morphism is one whose inverse image functor
is full and faithful and whose image is closed under subobjects (see [63, Proposition
A4.6.6]). The functor W: Sh(X7)) — Sh(X?® ,) is already full and faithful by definition.

Let (Y, g, B) be a X2 -space whose X?-action  becomes a continuous map
B:YXx, X' —> Y

when X; is endowed with the topology ;. If Z is a subobject of Y in the topos Sh(X? ),
then Z is an open subspace of Y whose X?-action is the restriction of f to the subset

Z XX, XiCY XX, Xi.

Since ﬁlgixoxl(ll) = B }(U) N (Z xx, X;), for each open subset U C Z, and as B is

continuous for the topology on Y Xx, X', 80 t00 is Blzx, x,: Z Xx, X]' = Z. Thus, the
image of W is closed under subobjects. |

ZNote that we are following the terminology of [5], [B6], [37], where the term ‘stable” was used to
reduce confusion with closed subspaces.
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Remark V.15. Let X = (X; =3 X)) be a groupoid that becomes a topological groupoid
when Xj is endowed with the topology 7o and X; is endowed with 7;. The construction
of the hyperconnected morphism w: Sh(XiO) — Sh(X{)) relied only on the fact that
the discrete topology 6 contains the topology 7;. Indeed, for any other topology 7; on
Xj, containing 7, such that

X0 = (Xfi =34

is also a topological groupoid, then there is a hyperconnected geometric morphism
Sh(X}}) — Sh(X[,
whose inverse image is the inclusion of Sh(X7}) into Sh (Xzé)

Forgetting the topology on objects. The identity idx,: X5 — X’ is a surjective con-
tinuous map of topological spaces and so induces (see [79, §I1.9 & §IX.4]) a surjective
localic geometric morphism

j: Sh(X)) — Sh(X).

The inverse image of j is the functor J: Sh(X’) — Sh(Xg) that sends a local homeo-
morphism g: Y — X the pullback of g along idx,: X) — X;°. In other words, ] is the
functor that forgets the topology on Y. We denote J(Y) by Y°.

There is a similar forgetful functor J': Sh(X} ) — Sh(XY)) that sends a X -space
(Y, q,B) to (Y°,g,B). Clearly, there is a commutative square

. Ué 70
Sh(X®) — Sh(X{")
1
Sh(X)) —— Sh(X)).
As Jo U? preserves finite limits and arbitrary colimits and V reflects them, |’ preserves

finite limits and arbitrary colimits too. Therefore, |’ is the inverse image of a geometric
morphism j': Sh(X?) — Sh(X? ) which makes the square

Sh(X}) ——5 Sh(X¥)

| I+

Sh(X?) —— Sh(X?)

commute. Moreover, since j, u® and v are surjective geometric morphisms, so too is j/
(since surjective geometric morphisms are the left class in an orthogonal factorisation
system, see Theorem A4.2.10 [h3]).

Lemma V.16. The square
Sh(X?) —— Sh(X™)

Lok

Sh(X?) —— Sh(X?)
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is a (bi)pushout in the category Topos of Grothendieck topoi and geometric morphisms.

Proof. By [92, Theorem 2.5], the bipushout of the diagram

Sh(X}) —5 Sh(X¥)

Sh(X?)
in Topos is computed as the bipullback (see [76, Example 15]) of the inverse image

functors
Sh(XSO)

,l (V.iv)
Sh(X?) — Sh(X?)

in CAT, the category of (large) categories.
It is then easy to see that the commuting square

u T
Sh(X?) —— Sh(X}")

b b (Vov)

Sh(X?) —— Sh(X))

is said bipullback. Given a bicone F: A — Sh(X{’), G: A — Sh(Xg) of the cospan
(M1d), i.e. J o F = V o G, there is a unique (up to isomorphism) functor such that the
diagram

F

\ASh(X‘EO) Ly Sh(X™)
ri if

Sh(X?) —— Sh(X)).
commutes up to isomorphism. The functor A -3 Sh(X? ) is constructed as follows.

(i) For an objecta € A, F(a) is a local homeomorphism Y — X °. Since
Y? =JoF(a) =V oG(@),

the set Y? can be endowed with the (non-continuous) X‘ls-action given by G(a),
thus defining Y — X as an object of Sh(X?).

(ii) Each arrow g of A is sent by F to a continuous map f: Y — Y’ for which the
triangle

y — L sy

N/

70
XO
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commutes. Again using that f = V o G(g) = ] o F(g), we deduce that f is also
equivariant with respect to the imposed X¢-actions on Y° and Y’®. Thus, f also
defines an arrow of Sh(X? ).

It is clear by definition that the diagram (V) commutes up to natural isomorphism.
It remains to show that these natural isomorphisms also satisfy the universal
property required by the bipullback. However, we can elide these details since, as
the perceptive reader will notice, by applying the same reasoning as above, Sh(X? ) is
also the 1-pullback of the cospan (Mid). By [67], we know that the bipullback and the
1-pullback are equivalent since the functor V': Sh(Xg) — Sh(Xg) is easily observed to
satisfy the invertible-path lifting property. If f is an X®-equivariant map of sets over X?
such that V(f) has an inverse in Sh(XS), then this inverse must also be X‘ls-equivariant,
and so defines an inverse for f in Sh(X?). O

This completes the construction of the diagram (\iii) and the demonstration of its
required properties.

V.2 Sheaves on a localic groupoid
The theory of sheaves on topological groupoids can be repeated for localic groupoids.

Definition V.17. A localic groupoid Y,

m e
Y1 Xy, Y1 > Y1 < Yo,

is a groupoid internal to the category Loc. By replacing each instance of ‘topological
space’ in Definition V2 with locale and each instance of ‘continuous map” with locale
morphism, we obtain a topos Sh(Y), the topos of sheaves on Y.

Remark V.18. As explained in [92, §5.3], we can re-express equations in locale theory
in the more familiar notation of point-set topology, provided a ‘point” y € Y is taken
to mean a ‘generalised point” of Y, i.e. an arbitrary locale morphism y: U — Y. To
translate a “point-set” argument back to a concrete one, each instance of y € Y should
be replaced by a generic locale morphism y: U — Y, and the notation f(y) for some
map f: Y — X is translated as the composite foy: U — Y — X.

For example, given a Y-sheaf (Z, g, f), the point-set equation

Vz e Z B(z,e(q(z) =z
satistied by (Z, g, p) expresses the commutativity of the triangle

(idz,eoq)

Z ——— Z Xy, 1

\f
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where (idz, e o q) denotes the universally induced map

idz
Z
\\\ (idz,eoq)
Y
q Z Xy, Y, —> Z

(I

e S
Yo > Y, > Y.

Lemma V8 and Lemma V9 also apply to localic groupoids. That is, for each localic
groupoid Y, there is a surjective geometric morphism u: Sh(Y;) — Sh(Y) whose
inverse image is the functor that forgets the Y;-action on sheaves, and moreover u is
open if and only if Y is an open localic groupoid.

To conclude this chapter, we discuss obtaining localic groupoids from topological
groupoids and vice versa, and compare their topoi of sheaves.

From topological groupoids to localic groupoids. Since the functor O: Top — Loc
that sends a topological space to its locale of opens does not, in general, preserve
limits, if X is a topological groupoid

t
_>
X X My X,
1 XX, &1 7 A1 S

()

there is no reason for O(X), i.e. the diagram of locales and locale morphisms

x

Xo,

o)

O(X1 xx, X1) 2 O(X1) 4gm— O(X0),
—

I

o)

to define a localic groupoid since O(X; Xx, X1) # O(X1) Xox,) O(X1).

However, when O(X) does define a localic groupoid, the topoi Sh(X) and Sh(O(X))
are equivalent. This follows from the fact that, for a local homeomorphism between
locales g: W — V, if V is spatial then W is spatial too, and that local homeomorphisms
are stable under pullback (see [63, Lemma C1.3.2]). Thus, the topological X-sheaves
coincide with the localic O(X)-sheaves.

From localic groupoids to topological groupoids. Conversely, the functor
Pt: Loc —— Top

that sends a locale to its space of points (see [b0, §I1.1]), being a right adjoint, preserves
all limits. Thus, if Y is a localic groupoid

m e
Y1 Xy, Y1 > Y1 < Yo,
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then Pt(Y) is a topological groupoid, where Pt(Y) denotes the diagram

Pt(m) Pt(e)}
Pt(Yl) XPH(Yy) Pt(Yl) = Pt(Yl Xy, Yl) —_— Pt(Yl) W Pt(Yo)
9,

(J

Pt(i)

In contrast to the topoi Sh(X) =~ Sh(O(X)) above, the topoi Sh(Y) and Sh(Pt(Y))
can be very different. For example, Y could be chosen as the localic groupoid

idy

idy idy
Y > Y
ldy

U—)

idy

Y,

where Y is a non-trivial locale without points (see Example V19 for an example), in
which case Sh(Pt(Y)) is the trivial topos Oropes and therefore

Sh(Y) ~ Sh(Y) # Sh(Pt(Y)).

However, if the locale of objects Y, the locale of arrows Y3, and the locale of
composable arrows Y; Xy, Y7 in Y are all spatial, then OPt(Y) = Y and so there is an
equivalence of topoi Sh(Y) =~ Sh(OPt(Y)) ~ Sh(Pt(Y)).

Example V.19 (Partial surjections from IN to X). Let X be an uncountable set, and let
Tn-x be the propositional geometric theory

(i) with a basic proposition [f(#n) = x], for eachn € N and x € X,

(ii) and the axioms, for everyn € Nand x,y € X withx # v,

[f(n) = x] A [f(n) =yl + L,
T+ \/[f(n) =]

nelN

A 2-valued model of Tn_,x corresponds to a partial surjection N — X, which cannot
exist as X is uncountable, and so there are no 2-valued models of Tn_,x.

Nonetheless, the classifying locale of Tin—, x isnon-trivial (see [63, Example C1.2.8]),
and thus is an example of a non-trivial locale without any points. Informally, this
expresses that, from a localic perspective, even uncountable sets are subquotients of
IN. This will prove important in Chapter M.



Chapter VI

A localic representing groupoid

Localic representation of predicate theories. Joyal and Tierney famously proved in
[68] that every topos & (and hence every geometric theory) is represented by a localic
groupoid Y, by which we mean that there is an equivalence & ~ Sh(Y). This expresses
that the topos & can be thought of as a “space’, in the pointfree sense, equipped with
further “isomorphisms of the points’.

The original paper [68] presents a general method of constructing a representing
localic groupoid for a topos & from any open cover ¥ - & (see Definition VT.7). How-
ever, potentially because of the level of abstraction involved, there is some confusion
as to how to construct a representing localic groupoid in concrete cases [103], [T0Y],

[TT7].
Our goals. The purpose of this chapter is twofold.

(A) We provide a review of the Joyal-Tierney construction in order to compare how
the theory for localic groupoids differs from the representation of topoi by topo-
logical groupoids discussed in Chapter MI. This is performed in Section VT2

(B) Our ultimate aim is to write down an explicit description of a representing
localic groupoid for the classifying topos &r of a geometric theory T. Since
every topos is the classifying topos of some theory, this provides a description
of a representing localic groupoid for any topos. Our description, provided in
Section VT3, will prove familiar when we later recall the representing topological
groupoids studied in [5], [7], [B6], [B7Z].

This chapter is adapted from joint work with Graham Manuell [8S].

VI.1 Reasoning using points

Prior to embarking on the a description of the Joyal-Tierney result, we remark that,
just as for locales (see [92, §5.3] or Remark MT8), we can also use generalised points
of topoi, i.e. arbitrary geometric morphisms f: & — &, in order to reason about them
as though they were spaces (see [123]) — though in this case we must also consider
morphisms of points since topoi exist at a higher categorical level than locales.

This is especially useful when combined with the theory of classifying topoi, since
we can define a geometric morphism g: & — & by describing how ¢ acts on a

177
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(generalised) point # — &r and morphisms of these points. That is to say, we can
define g by describing how it transforms a T-model (in #) into a T’-model and a
T-model homomorphism into a T’-model homomorphism.

For example, given a geometric theory T over a signature X with N sorts, the
associated localic geometric morphism

Crq: Er = Sh(FT) — Sets®*™ ~ o

deduced from Proposition [IT42 sends a T-model in a topos ¥ to the N objects of
its underlying sorts and a T-model homomorphism to the N underlying functions
between these objects.

This perspective lends itself well to the problem of determining the geometric
theory classified by certain (bi)limits of other classifying topoi, using the method
described in [173, Proposition 8.43].

Examples VI.1. Let us consider some examples of how to compute limits with this
approach.

(i) Let T and T’ be geometric theories. The data of an ¥ -point of the product topos
Er X &y is a pair of geometric morphisms  — &r and £ — &y, ie. a pair
of a T-model and a T’-model in ¥. Thus, we conclude that the product topos
Er X Ey classifies the theory given by a copy of T and a copy of T’ (over separate
sorts).

(ii) Let Ty, T, be localic expansions (see [22, §7.1] or Definition [44) of a theory T3,
i.e. all three theories share the same sorts, but the theories T; and T, add new
symbols and new axioms to Ts. Let e%: Er, — &, be the localic geometric
morphism induced by Corollary [IT43. It is the geometric morphism that acts
on (generalised) points by sending a T;-model to its Ts-reduct, i.e. the T3-model
obtained when we forget the extra structure added by T;, and which sends a
T;-model homomorphism to its underlying homomorphism on the Ts-reducts.
Similarly, the morphism egi : Er, = &r, sends a Tr-model to its Ts-reduct.

An ¥ -point of the (bi)pullback

81["1 Xg% 81["2 > 81["2

R
S, T> S,

3

consists of the data of a pair of ¥-points M: ¥ — &y, and N: ¥ — &g, and an
isomorphism
elloM=e>oN
T; i

Therefore, the (bi)pullback topos &, Xg,, Er, classifies the theory whose models
are a pair of a T;-model and a T,-model whose Ts-reducts are isomorphic.

Remark VI.2. Some readers may wonder how our theory is impacted when we vary
the specific notion of 2-limit we consider. Ultimately, as classifying topoi are defined
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up to equivalence, this won’t be of importance. We will focus on comparing, for a
geometric theory T, the various notions of ‘pullback’ for the diagram

St
Jise
idey
Er — &Er.

Evidently, the 1-pullback is given simply by &r.

When calculating the bipullback as in Examples VI above, we are implicitly
taking the iso-comma object of the cospan. This is the topos & that is universal with
respect to the data of projections r, u: & = &r and an isomorphism

E—— &r

Lo

ST.dHST-
ey

As in Examples VII[ii), we recognise that & classifies the theory of T-model isomor-
phisms. We denote this theory by T=. An explicit axiomatisation of this theory is
given in Definition VTT4 below.

Subtle changes to the notion of 2-pullback we take can change the specific presen-
tation for the theory classified by the topos. For example, if we instead considered
the pseudo-pullback, i.e. the topos &’ that is universal with respect to the data

we see that & classifies the theory Tx~ whose models are triples of T-models and a
pair of isomorphisms between these.

However, such care will not be necessary. Recall from [/6, Example 15] that
although the topoi &r. and &Er. . are not isomorphic as categories, they are equivalent.
In fact, the iso-comma object &, the pseudo-pullback Er. . and the the (1-)pullback
Er are all equivalent by an application of [67]. We sidestep these issues by only
working up to equivalence and referring to bipullbacks. Consequently, the theories

T, T- and T- ~ are all Morita equivalent.

V1.2 Overview of the Joyal-Tierney theorem

We now give an overview of the Joyal-Tierney result from [68]. A description of the
representing localic groupoid of the classifying topos Er constructed via the Joyal-
Tierney method is provided in Section VT3 1.

This section can be summarised as follows.

— In Section VI'ZT, we recall the theory of descent exposited in [b8]. Given a
geometric morphism f: F — &, this is a way to study objects of & by equipping
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objects of ¥ with additional data. This data forms a topos Desc(¥F.,). If the ge-
ometric morphism f: # —» & is an open surjection, then there is an equivalence
of topoi Descs(¥.) ~ &.

— In Section we note that Desc¢(¥,) is naturally represented by a localic
groupoid whenever ¥ is a localic topos. Therefore, one can obtain a represen-
tation of & by a localic groupoid from an open surjection ¥ - & whose domain
is localic (called an open cover).

— Finally, in Section V.23 we construct an open cover of a topos & from a geometric
theory classified by &, and hence conclude the Joyal-Tierney theorem that every
topos is the topos of sheaves on some localic groupoid.

VI.2.1 Descent theory

In order to prove their representation theorem, Joyal and Tierney developed in [68] a
descent theory for topoi. We will treat descent theory as a ‘black box’, recalling below
the necessary facts we will use in our exposition. For details, the reader is directed to
[68, §VIII] and [63, §B1.5 and §C5.1].

Let C be a cartesian 1-category. Recall that the pullback of an arrow c ENy along
itself gives the kernel pair of f. This has the structure of an internal equivalence relation
in C. If f isa ‘good” quotient map (in this case, a regular/effective epimorphism), then
it can be recovered from this equivalence relation (as the coequalizer of its kernel
pair). The situation in the 2-category of topoi is similar, but instead of an internal
equivalence relation, we obtain an internal groupoid.

A geometric morphism f: ¥ — & between topoi induces an internal groupoid in
Topos as in the diagram

Prys3 pr,
sl 7 f
FXeF XeF 7> 7‘~Xa7‘~<prl 7 > &,
RA RARS

T

where 7: F Xg ¥ — F Xg F is the twist map, A: F — F Xg F is the diagonal, and
the remaining maps are the appropriate projections.

Definition VI.3. The category Descs(¥F.,) of descent data for f is defined as follows.

(i) The objects of Descs(¥,) are pairs (Y, 0) consisting of an object Y € ¥ and an
isomorphism 6: pr}Y — pr;Y of ¥ Xg ¥ such that
A'(0) = idx and pr] 4(0) = pr; 4(6) o pr7,(0).
This is known as a descent datum on Y.

(ii) A morphism (Y, 0) LN (Y’,0’) in Desc¢(¥.,) is a morphism Y 4 Y of F such that
the square

priY —2 pryY
pﬁ@l lprz(g)
pr;Y’ ? pr;Y’

commutes.
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The category Descs(¥.,) is a topos, and there is a canonical functor ¢*: & — Descs(¥.)
that sends an object E € & to the pair consisting of f*E and the canonical isomorphism
pr; f°E = pr; f°E (arising from the 2-cell of the bipullback).

In fact, Moerdijk shows in [92, §3] that the topos Descs(¥.) is obtained as the
colimit in the bicategory Topos of the diagram

P13 p1,

Pry13 A
F XgF XgF W F XsF <pr1 F > DeSCf(?:.),
— —

T

and the canonical functor ¢': & — Desc¢(¥,) is the inverse image part of the uni-
versally induced geometric morphism Descs(¥.) — &. This is analogous to how a
morphism in a 1-category factors through the coequalizer of its kernel pair.

The problem of descent involves discerning for which geometric morphisms
f:F — & the canonical functor c*: & — Desc¢(¥,) is an equivalence. Such geomet-
ric morphisms play the same role as regular epimorphisms did in our 1-categorical
analogy.

Definition VI.4. A geometric morphism f: ¥ — & is called an effective descent mor-
phism if the canonical functor ¢*: & — Descf(¥.) is an equivalence.

Many examples of classes of effective descent morphisms are known, including
proper surjections (see [b3, Definition C3.2.5 & Theorem C5.1.6]). We will focus solely on
open surjections, which were shown to be effective descent morphisms in [68, Theorem
VIIL.2.1], since these are the class of effective descent morphisms used in [68].

VI1.2.2 Descent data with a localic domain

When the domain topos of a geometric morphism f: F — &islocalic, say ¥ =~ Sh(X),
the category of descent data Descs(¥.) is equivalent to the topos of sheaves on some
localic groupoid whose locale of objects is Xy, as observed in [b8, §VIIL.3]. To see why
this is the case, we first recall two facts about localic geometric morphisms from.

(i) Localic geometric morphisms are stable under pullback (see [5Y, Proposition
2.1]).

(ii) If f: H'" — H is a localic geometric morphism and H is a localic topos, then
the topos H"’ is also localic since localic geometric morphisms are closed under
composition (see [AY, Lemma 1.1]).

Hence, if f: ¥ — & is a geometric morphism whose domain ¥ is a localic topos,
then the (bi)pullback

FxeF —> F

przi " lf

F—&
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is also a localic topos, as is the wide pullback F Xg F Xg F. Therefore, as the fully
taithful functor Sh: Loc — Topos reflects limits, the descent diagram

PTy3 pr;
F Xg F Xg F —>§:z F Xe F %Pi F
— —

is the image under Sh of a localic groupoid X

T,
Py

~

X1 Xx, X1

t
Xi <— Xo. (VLi)

)

i

/
=

T
Pl\
I

~

As ¥ ~ Sh(X,), an object of ¥ is a local homeomorphism g: Y — X, and descent
datum is a morphism 6: s*(Y) — t'(Y) in Sh(X;) =~ F Xg F such that idx, = ¢*(0)
and m*(0) = 1,(0) o 7j(0), i.e. the pair (Y, 0) is an object of Sh(X). Similarly, arrows
in Descf(F,) correspond to arrows in Sh(X). Thus, there is an equivalence Sh(X) =~
Desc(¥,) from which we obtain the following.

Theorem VI.5 (Theorem VIIL.3.2 [68]). Let f: Sh(X,) — & be an effective descent mor-
phism. The topos & is equivalent to the topos of equivariant sheaves on the localic groupoid X
whose locale of objects is Xy, and whose source and target maps s, t: X1 =3 X, make the square

Sh(s)

Sh(X;) — Sh(X,)

_1
s | V

Sh(Xo) f) &

a (bi)pullback of topoi.

Remark VI.6. Recall from [92, Definition 7.2] that a localic groupoid is said to be étale
complete if the square

Sh(X;) — Sh(Xo)

|
Sh(t)\L \Lu

Sh(Xy) —— Sh(X)

is a bipullback of topoi. This expresses that for every generalised pointx: U — X, and
every automorphism a: u o Sh(x) = u o Sh(x), i.e. an automorphism of the composite

Sh(x)

Sh(Ul) —— Sh(X,) —— Sh(X),

the automorphism is instantiated by a generalised point of X;. In other words, X;
contains as points “all possible automorphisms’ of points of Xj.

Evidently, any representing localic groupoid of a topos constructed using the
method of Theorem VT3 will be étale complete. Indeed, we also deduce from
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Theorem VI3 that every localic groupoid for which u: Sh(Xy;) — Sh(X) is an ef-
fective descent morphism is Morita equivalent to its étale completion, as observed in
[92]. We will study a topological counterpart to the theory of étale complete localic
groupoids in Section VIT23.

Since open surjections are effective descent morphisms, this theorem applies in
particular to what we call open covers.

Definition VI.7. An open cover of the topos & is an open surjection ¥ = & whose
domain topos ¥ is localic.

Remark VI.8. Recall that open geometric morphisms are stable under (bi)pullback
(see [b8, Theorem 4.7] or [68, Proposition VII.1.3]). Hence, if Sh(X;) - & is an open
cover, then the projections pr, and pr, in the (bi)pullback

Sh(X;) ~ Sh(Xy) xg Sh(Xy) —23 Sh(X,)

-

Sh(X)) ———» &,

are open too. Consequently, by [79, Proposition IX.7.2], the source and target maps
s,t: X1 3 Xp of the induced localic groupoid X displayed in (MI3) are open locale
morphisms. Thus, & has an open representing groupoid.

The same analysis holds for any other property of geometric morphisms that is
stable under pullback. For example, if an effective descent morphism Sh(X,) — & is
proper or connected and locally connected, then the resulting representing groupoid
for & is also proper or connected and locally connected (in the sense that the source
and target maps have these properties; see [63, Theorem C3.2.21 & Theorem C3.3.15]
for a demonstration of the pullback stability of these properties).

VI.2.3 Open covers via partial equivalence relations

We are halfway to showing that every topos can be represented as the topos of sheaves
on an open localic groupoid. The remaining task is to prove that every topos has an
open cover.

To find an open cover of a topos &, it suffices to find a localic geometric morphism
h: & - H and an open cover f: F - H, since then in the (bi)pullback

Fxy& —2s F

ki - Lf (VLii)

84;1)7.{/

the map k: ¥ X4 & - & is an open surjective geometric morphism whose domain is

moreover a localic topos, as the composite F X4, & % & — Setsisalocalic morphism.
Hence, k: ¥ X4 & - & is an open cover.

Such a pair of geometric morphisms can be found given a choice of theory classified
by &. Suppose the topos Eis classifies a theory T with N sorts. Recall from Section [TT4
that there is a localic geometric morphism Cry: & — En.p which sends a T-model
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to the N underlying objects interpreting the sorts. This will play the role of / in the
square (\VILii).

Remark VI.9. In fact, we can always choose N tobe 1, since every geometric theory T'is
Morita equivalent to a single-sorted theory. This appears in [68] as Proposition VIL.3.1,
but an entirely syntactic proof is given in [b3, Lemma D1.4.13]. In summary, the idea
is to combine all the sorts of the theory into one, and introduce new unary relation
symbols, RX for each sort X, and axioms such that R¥(x) expresses the statement “x
belongs to the sort X”.

We must now describe an open cover of En.o to play the role of f in (VIii). As
prefigured in Example V.19, there is a sense in which ‘every set is a subquotient of IN’
and so we are motivated to consider partial equivalence relations on IN. We denote
the classifying topos of partial equivalence relations on N copies of N by En.pq,,. This
is the propositional theory whose basic propositions are [n ~' m] for each n,m € N,
and i € N (meaning that n,m are identified in the ith partial equivalence relation on
IN), and whose axioms are

[n~m] v [m~'n] (symmetry)
[n~ 1Al ~m] v [n~ m] (transitivity)

for each n,m,I € N and i € N. Being a propositional theory, the classifying topos
Enpqy 18 localic.

There is a geometric morphism Q: En.pq, — En.o that sends the N generic partial
equivalence relations on IN to their corresponding subquotient objects. This geometric
morphism possesses many desirable properties: it is open and surjective, but also
connected and locally connected (see [63, Theorem C5.2.7]). Hence, we indeed have
an open cover of En.o.

We now obtain an open cover Py[E] -» & by taking the (bi)pullback

Py[E] — Enpay

-
! ke
Cryx

E — Envo

Note that Py[&] is determined not only by &, but also by the localic geometric mor-
phism & — Ey.p, and hence by a choice of N-sorted geometric theory T classified by &
(by Proposition ML42). In Lemma VT.TY, we describe a propositional theory classified
by the topos Py[E].

Finally, as every topos classifies some geometric theory, by applying Theorem VI3
we arrive at the landmark result of Joyal and Tierney.

Theorem VI.10 (Theorem VIIL.3.2 [68]). Every Grothendieck topos can be represented as
the topos of equivariant sheaves for a localic groupoid.

Remarks VI.11. (i) Since the geometric morphism Q above is open (and even con-
nected and locally connected), the representing localic groupoid is also open
(indeed, connected and locally connected; see Remark VIL8).
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(ii) A topos can have many non-equivalent open covers and therefore many non-
isomorphic representing localic groupoids. Nonetheless, these are all equivalent
in a suitable sense provided by [92, §7] (see also Section MITLT).

The open cover Py[E] - & we consider is slightly different to the one built
by Joyal and Tierney in [b8, Theorem VIL.3.1]. They instead use the open cover
Eran ~ Eo., from classifying topos of total equivalence relations on IN to the
classifying topos of inhabited objects. The reader is directed to [63, Remark
(C5.2.8(c)] for more details. Other examples of open covers include the Diaconescu
cover, constructed in [33] (see also [63, Theorem C5.2.1] and [7Y, Theorem IX.9.1]).
See also Remark VI73.

V1.3 The syntactic groupoid

Let T be a geometric theory. We give an explicit description of the representing localic
groupoid for the classifying topos &y via Theorem VI.T0, which we call the syntactic
groupoid because of its obvious syntactic nature.

VI.3.1 Description of the syntactic groupoid

The syntactic groupoid G" is motivated by a desire to re-express the first-order theory
T in terms of simpler propositional theories. The models of this new propositional
theory should somehow represent the models of the original theory T, including the
objects being used to represent each sort. The question then is how to encode the sorts
of T using only propositional logic.

Sorts as partial equivalence relations. If we were to focus on a single set-based
model M, then we could include propositional variables in our language that express
that 7 € RM for each relation R of the theory and each appropriate tuple 77 of elements
from M. More generally, we could imagine fixing some a suitably large set & and
cutting out the carriers for each model as subsets or subquotients of &. The issue is
that in general a geometric theory has unboundedly large models.

However, recall from Example that, although the topological space of partial
surjections from IN to any set X might be trivial, the localic version is not. Hence,
there is a sense in which ‘every set is a subquotient of IN". This motivates replacing
the sorts in the theory T by partial equivalence relations on IN, which describe these
subquotients. Recall that a partial equivalence relation is a symmetric transitive
relation and can be thought of as describing an equivalence relation on the subset of
elements which are related to themselves.

Definition VI.12. Let T be a theory over a signature X without function symbols (if T
involves function symbols, these can be removed by [63, Lemma D1.4.9]). We define
the propositional geometric theory P[T] over the signature P[Z] as follows.

(i) For each sort X of X, we add a copy of the theory of partial equivalence relations
on IN. Explicitly, we add, for each 1, m € IN, a basic proposition [n ~* m] to P[£]
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and, for each nn,m, [ € IN, and the sequents

[n ~X m]r [m ~*n], (symmetry)

[n~Xm]A[m~XI]F[n~*1] (transitivity)

to the axioms of P[T].
(ii) For each relation symbol R € X! X --- X X* of £, and for each pair of tuples

n,...,mx € Nand m,...,m € N, we add a proposition [(n1, ..., 1) € R] to P[X]
and the sequents

[, ..., m) € RIA [m ~ ma] A=+ A [ ~5 my] F [(my, ..., m) € R],
and
[(n1,...,m) € RIF [y ~* ] A= A [~ g

as axioms to P[T].

(iii) For each axiom ¢ ky.x1 . .xx ¥ of T, we add an axiom

k

.....

a) replacing each free variable x; by a (fixed) natural number n;,
b) each quantifier dx : X x(x,...) by ajoin \/, o x(1s,...),

c) each subformula of the form R(ys, ..., y;) with [(y1,...,y1) € R],
d) and each subformula of the form x =x y with [x ~* y].

We denote the classifying locale of the propositional theory P[T] by G].

Here we have simply translated the relations on the sorts to relations on IN that
respect the partial equivalence relation. We have written the axioms of T in terms of
these with existential quantification over sorts being expressed using joins over the
natural numbers. Evidently, if T is a propositional theory (i.e. there are no sorts), then
T and P[T] are the same theory.

Remark V1.13. Note that the generators [n ~* m] can also be thought of as a as special
case of the proposition [(n,m) € R], where R is given by the equality relation on X.

Encoding isomorphic copies. The points of the locale G| are given by represen-
tations of models of T as subquotients of IN. Different subquotients of IN might
correspond to isomorphic models, so these must be identified in the locale of isomor-
phisms of the syntactic groupoid.

We can define a geometric theory T~ whose models are isomorphisms between
models of T, and then transform it into a propositional theory as we did for T in
Definition VIT2. The theory T is precisely the theory classified by the iso-comma
object described in Remark VT2
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Definition VI.14. Given a geometric theory T over a signature £ (where we again
assume that there are no function symbols), we construct T as the following geometric
theory over the signature X..

(i) For each sort X or relation symbol R of X, we add a pair of copies Xj, X, or Ry, R,
to X= (where R; is defined on the i-subscripted sorts).

(ii) For each axiom of ¢ +3 1 of T, we add a pair of sequents ¢ +z, 11 and @; Fz, 1>
to T, where the formulae ¢;, 1; are obtained by replacing each variable of sort
X with a variable of sort X;, and each relation symbol R with the relation symbol
R;.

(iii) For each sort X in £, we add a relation symbol a* C X; X X, to Z. together with
the bidirectional sequent
(x,y) € aX A ', y) e aX A x =x, X Arxx,yx, (X, Y) € aX A (', y) e aX A y=x, Y
along with the sequents
Fyx, dx X (v, y) € a¥,
Fex, Ay 2 Xa (x, 1) € a¥,
as axioms to Tx, making « into the graph of a bijection”.
(iv) For each relation symbol R of X, we add to T= the bidirectional axiom

k k
/\(xi, yi) € A(xr, ..., ) € Ry ks, v /\(xz-, v)eaX Ay, ..., y) €Ry

i=1 i=1
expressing that the bijection encoded by a is an isomorphism of X-structures.

We define the locale G| to be the classifying locale of a propositional geometric theory
P[T.] defined as in Definition ML T2.

Remark VI.15. Let T be a propositional geometric theory over a signature .. Condi-
tion [iv) from Definition VT T4 entails that the copies R; and R, of each basic proposition
Rin X are equivalent. Thus, the theories T, P[T] and P[Tx] are all equivalent.

Structural morphisms of the syntactic groupoid. The localic groupoid G' has G;
as its locale of objects and G] as is locale of morphisms. We now describe the
structural morphisms of the groupoid G"'. Recall that it is possible to define a frame
homomorphism, and hence a locale morphism, by specifying its action on generators.
In the case of G] and G, this amounts to defining the action on the basic propositions
of the propositional theories P[T] and P[Tx].

Definition VI.16. Let GT denote the localic groupoid

t

—
GT X GT — GF <+— GrI
1 Gy Y1 4 1 Y 0

U—)

i

whose morphisms are defined as follows.

!For clarity we will often write a suggestively as though it were a function.
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(i) The source map s: G — G; is specified by frame homomorphism that acts on
generators by

[n ~*Xm] - [n~% m],
[(mq,...,1m0) €R] > [(ny,...,1m1) € Rq].

(ii) Similarly, the target map t: G — Gj is specified by the action on generators

[n ~Xm] e [n~*2m],
[(nq,...,10) €R] > [(ny,...,1m) € Ro].

(iii) The identity map e: Gj — GJ is specified by

[(Tll,...,i’lk) € Rl] = [(Tll,...,l’lk) € R],
[(Tll,...,nk) S Rz] = [(Tll,...,nk) S R],

[a%(n) = m] — [n ~* m].

(iv) The inversion map i: G| — G] swaps the two copies of the sorts in the sense
that

[(ny,...,n5) € Ry] — [(ny,...,n) € Ry],
[(ny,...,m) € Ro] — [(ny,...,n) € Ry],

[a*(n) = m] = [a*(m) = n].

(v) The composition map m: Gi Xcr Gi — G is given as follows.

a) The domain of the composition map can be alternatively described as the
classifying locale of the propositional geometric theory P[T~~], where T~ »
is the geometric theory whose models are a triple of T-models and a pair
of isomorphisms between these (cf. Remark VT2).

The theory T+~ is constructed much like T, but there are three copies of
the theory T instead of two and there are two relation symbols % C X; x X,
and y* C X, x X; for each sort X, encoding two T-model isomorphisms,
instead of one relation symbol a*.

b) The map m itself is specified by the action

[(n1,...,m) € Ry] > [(ny, ..., 1) € Ry],
[(n1,...,10) € Ry] > [(ny,...,1m5) € R3],

[ () = pl = \/ [B¥(0) = m] A [y*(m) = p],

melN

i.e. the map m sends the pair of relations (8%, %) to their relational com-
posite.

Remark VI.17. The set IN is actually only the simplest possible choice of base set for
the above construction. All the properties we prove of the localic groupoid G' (other
than those discussed in Section MT.33) will still hold if IN is replaced with any infinite
set.
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VI.3.2 The syntactic groupoid is representing

We now prove that the localic groupoid G" described in Definition VI8 is the rep-
resenting localic groupoid for the topos &r yielded by the Joyal-Tierney method
exposited in Section VT2, that is we will prove that:

Theorem VI.18. For each geometric theory T, there is an equivalence of topoi
&r = Sh(GT).
We require one lemma before embarking on the proof of the theorem.

Lemma VI1.19. For each geometric theory T with N sorts, the commutative square

Epir) —— Enpay

! b

St c—> Eno
T

is a (bi)pullback, i.e. Px[E] =~ Eppry.

Proof. For simplicity, we will assume the theory T has a single sort, but this is easily
generalised. Recall that Q: Epq,, — Ep is the geometric morphism that acts on models
by sending a partial equivalence relation ~ on IN to the corresponding subquotient
IN/~. As described in Examples VLT, it is easy to compute a theory T’ that the
bipullback topos Er Xg, Epq, classifies using the methods of [173, §4.5]. The theory
T’ can be taken to be the theory of pairs of a model M of T, a model ~ of PQy and an
isomorphism M = IN/~.

It is now elementary to massage T’ into a more convenient, equivalent form by
transporting the T-model structure on M along the bijection M = IN/ ~ to give
relations defined in IN/~. Then, since the object M and its definable subobjects
are completely specified by relations on IN/~ and the isomorphism M = IN/~, the
isomorphism can safely be removed from the theory. The resulting theory is essentially
propositional. We can make it manifestly propositional by replacing a relation R on
IN/~ with its preimages under the quotient N - N/~ to give a subset Ur € IN¥,
which can then be described using the basic generators

[(nq,...,1,) € Ug]

for each (n1,...,n;) € INF. Thus, we have arrived at the theory P[T] described in
Definition VIT2. This theory now has no sorts and so it is manifestly propositional. O

Proof of Theorem [VLT8. Again we assume that T has one sort for simplicity. By

Lemma IVI.TY, the open cover P[Er] —» &t used to construct the representing groupoid
in Section MI.2Z3 is the projection from the bipullback

Sh(Gy) = Epimy = Er X1, Epayy —» Er.
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By applying Theorem VI.5, we know that &t is represented by the localic groupoid
whose locale of objects is Gj, the classifying locale of P[T], and whose source and
target maps s, t: Y =3 G; are the locale morphisms for which the square

Sh(s)

Sh(Y) —> Erm

wl

Epr) — &r

is a bipullback of topoi. We must show that Spjr.j = Sh(G]) is this bipullback.

Let 2 - O denote the theory of pairs of objects, which by Examples VI is classified
by the product 2 - O is classified by the product &0 = Ep X Ep. Similarly, the product
Epaqy X Epqy classifies the theory 2 - PQy of pairs of partial equivalence relations on IN.
Recall also from Examples VT and Remark VI that the theory T- of isomorphisms
of T-models is classified by the bipullback

Er. —— &r

- .
U\L ld&]r
id,

Er —25 &p.

By the universal property of Eptj, there are universally induced geometric morphisms
s,t: Eprr.] 3 Eppy such that all the squares in the diagram

Epirp ————— Epqy

A
/ 4
s 7/
/
/
/
/

Epr.] ——— Erpay

A
/ Er /— — &
W r
Sy —>/\PQN /
L/

Er. —|— 820

/
~ ~

&r — &o

\

©

commute up to canonical isomorphisms. Being induced by the maps r,u: Er. =3 &,
which send a model a T--model M = N to, respectively, M and N, we recognise
that the locale morphisms s, t: G = G corresponding to the geometric morphisms
s,t: Epr.) 3 Eppr) are exactly the ones described in Definition VI TH. Note that
we are abusing notation and not differentiating between a locale morphism and its
corresponding geometric morphism between localic topoi.
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We now demonstrate that the square

Epr.] —— Eppmy

| !

Epr) — &1

is a bipullback of topoi. Firstly, we note that the square commutes up to isomorphism
since it can be rewritten as

Ep(T.] > Spim
t N Er. — &r
o e
Sppmy > &1 — o S Er.
For any other (bi)cone

7 % ST
1T
Epr) — Er

of the cospan, we will demonstrate that there is a diagram of topoi and geometric

morphisms
ﬁ Epr) ———— Epqy

Epr) ———— Sapan

4
T

— A
Spm\\—) [STN /
J \}J \L / ~

N

where every square and triangle commutes up to canonical isomorphism.
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(i) The geometric morphism ¥ -+ &Er. is induced by the universal property of Er.
as in the diagram

F > Eprm
L
gl . Sr. —— &r
i
\ \
Epr > &1 — o Er.

(ii) The geometric morphism ¥ -+ &E,pq, is induced by the universal property of
&Er.pqy as in the diagram

Spr) €

R
<
IR

Epqy —— Epay X Epgy — Epan

(iii) Finally, the geometric morphism # - &pt.; is induced by the universal prop-
erty of Epr.; as in the diagram

14
/

\ ,1 Y
\ Epr.) — Saray

N

ke Er. — &o-
Thus, the (bi)cone factorises canonically as

F f

1R

T

_ Epr) —— Enm
-]
Eprp — &

We have elided the details that Epr.; also satisfies the necessary universal property
on 2-cells to be the bipullback, but this can be demonstrated in a similar fashion since

the canonical morphism # - Eppr.] was universally induced by a series of bilimits.

Finally, by demonstrating in an analogous manner that Ep(r. .} is equivalent to the
wide bipullback Epir Xg; Eppry Xep Eppmy, We recognise that the composition map of
our groupoid is described as in Definition VTTH, thus completing the proof that the
localic groupoid G represents Er. O
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Example VI.20. As remarked in Remark VIT5, when T is a propositional theory,
the theories T, P[T] and P[T-] are all equivalent, and therefore have isomorphic
classifying locales. Hence, the syntactic groupoid G" as described in Definition VT.TA
is an example of a localic groupoid of the form Examples and so there is an
equivalence Sh(G") ~ Sh(Ggr), i.e. the classifying topos for T is equivalent to the
topos of sheaves on the classifying locale of T, as we would expect.

VI1.3.3 Countable theories and Forssell groupoids

Recall from Section M2 that if the locale of objects G, the locale of morphisms G| and
the locale of composable morphisms G X1 G] arespatial, then there is an equivalence

of topoi
Er = Sh(G") =~ Sh(PH(G")),

where Pt(G") is the corresponding topological groupoid. We can ensure these spa-
tiality conditions under certain countability restrictions on the theory.

Definition VI.21. A geometric theory is said to be countable if it has a countable
number of sorts, symbols and axioms.

Proposition V1.22. For a countable geometric theory T, the localic groupoid G" is spatial
and thus arises from a topological groupoid.

Proof. Note that if a theory T is countable, then the locale of objects G; and the locale
of morphisms G of the representing localic groupoid are countably presented. A
countably presented locale is spatial (assuming the excluded middle, see [49, Corollary
3.14]). Moreover, since countably presented locales are closed under finite limits, the
domain of the composition map is also spatial, as required. |

When T is a countable geometric theory, the topological groupoid Pt(GT) thus
obtained is the same representing topological groupoid as constructed by Forssell
in [37]. The representation of classifying topoi by topological groupoids is studied
in Chapter VI, and Forssell groupoids, in particular, are discussed in Section MIT54.
While we further elucidate the connection between Pt(G') and Forssell groupoids,
we adopt the as-yet unintroduced terminology and notation from Chapter VTI.

The Forssell groupoid F G(IN) (see [37, §3] or Definition VIL53) is the topological
groupoid

" ——
FG(IN)1 Xggany, FGIN)y —— FG(IN); <5— FG(IN),

I

i
constructed as follows.

(i) The space of N-indexed models F G(IN) is the set of all IN-indexed models of
T, i.e. those set-based models of T whose underlying sets of each sort are
subquotients of N. For a tuple # € IN, we denote by [#] its equivalence class
in M. Since T is a countable theory, by [87, Theorem 6.2.4] (and the downward
Lowenheim-Skolem theorem if necessary), the set ¥ G(IN)o is a conservative set
of models.
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We endow the set ¥ G(IN), with the logical topology for objects (see [37, Defini-
tion 3.1] or Definition VI T4), the topology generated by subsets of form

[7 € R]lrgm) = {MGTQ(N)O“F[] ERM},

where R is a relation of T (including equality), RM is its interpretation in a model
M, and 1 is a tuple of natural numbers.

We immediately recognise the frame of opens O(F G(IN)o) as the frame Gg
from Definition VTT2. Explicitly, we identify the basic open

[7 € Rlrga S FG(IN)o
with the generator [#7 € R] of Gj.

(ii) The space of arrows F G(IN); is the set of all isomorphisms between models in
¥ G(IN)y, endowed with the logical topology for arrows (see [B7, Definition 3.1] or
Definition MITTY), the topology generated by sets of the form

o R [i7] € RY,
N . N _ | MO M eFGMN) | il € M, [] € M,
FGIN)

n_/)l = n_/l), - =/
ﬁ)’ eR a([m]) = [Wf ]/
[i7] e R"M.

Once again, we identify O(F G(IN);) with GI by identifying the basic open

i eR

ii€R
i C FG(N)
FG(IN)

with [77 € Ri] A [i1 € Ry A A\, enla(mi) = m)] € GT.
(iii) The maps m, t, e, s and i are defined in the obvious way.

Thus, when the theory T is countable, the syntactic localic groupoid G as constructed
in Definition WITA coincides with the topological groupoid ¥ G(IN) of IN-indexed
models. Hence, we deduce by the equivalence

Er ~ Sh(G") ~ Sh(FG(N))

the representation result in [37, Theorem 5.1] (see also Corollary VIL56) in the partic-
ular case where T is a countable theory.

Remark VI.23. For a countable theory T, the representing topological groupoid for
&r constructed by Butz and Moerdijk in [17] (see also Definitions VIT54)) is not directly
comparable with the syntactic groupoid G, instead deriving from one of the many
other open covers of &r. In summary, it is the groupoid obtained when, instead of
considering the theory PQy of partial equivalence relations on IN as we did, one
takes the theory of partial equivalence relations on IN where every equivalence class
is infinite — that is, the theory obtained by adding to PQ, for each n,] € IN, the axiom

[n~n]|—\/{[n~m1]/\---/\[n~ml]|mi€leithm1<m2<~--<ml}

expressing that the equivalence class of n in the subquotient has at least | many
elements (and hence infinitely many).



Chapter VII

Topological representing groupoids

Topological representation for predicate theories. Logical theories can be ‘repre-
sented” by topological structures. Let T be a propositional theory with a classifying
locale L. We intuit that T is represented by a set of models X, by which we mean that
Ly is the frame of opens on some topological space whose points are X, if and only if
the models X are jointly conservative.

In this chapter we demonstrate a first-order generalisation of this observation.
Propositional theories are replaced by predicate theories, classifying locales are re-
placed by classifying topoi, and topological spaces — inspired by the representation
results of Joyal and Tierney [68] and Butz and Moerdijk [T7] — are replaced by open
topological groupoids. Thus, rather than representing the predicate theory as a topo-
logical space, we represent the theory by ‘a space where points have automorphisms’.

Therefore, we will say that a theory is represented by an open topological groupoid
if its topos of sheaves classifies the theory.

The classification result. The representation result of Butz and Moerdijk [17] ex-
presses that a geometric theory admits a representation by an open topological
groupoid if and only if the set-based models are a jointly conservative class of models.
Our classification result answers the next obvious question: which open topological
groupoids represent a given geometric theory? Informally, this question is equiva-
lent to asking: which groupoids of models ‘have enough information” to recover the
theory?

The main result of this chapter is a characterisation of when a groupoid of models
of a (geometric) theory can be endowed with topologies to yield a representing open
topological groupoid.

We will observe that, unlike for propositional theories, it no longer suffices to
simply have a groupoid of jointly conservative models. Instead, a further, model-
theoretic condition, elimination of parameters, must be placed on the groupoid. Taken
together, these conditions yield the characterisation of representing groupoids. In
addition to admitting novel applications, our characterisation also subsumes the pre-
vious examples of representing groupoids found in the literature.

Representing groupoids for doctrinal sites. Recall that one of the intended appli-
cations of the geometric completion developed in Chapter [M is to replace an ad hoc
approach to the model theory for logical theories from diverse syntaxes with a sin-
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gle unified approach using geometric logic. Therefore, during this chapter, we will
assume that our theory is a geometric theory and argue in the familiar language of
geometric logic.

Thus, by characterising the possible representing groupoids of a geometric theory,
we have also characterised the possible representing groupoids of any predicate the-
ory with a classifying topos, since such a theory must be semantically equivalent to a
geometric one. In particular, this classification can be phrased in the language of doc-
trinal sites developed in Chapter [l and Chapter [M to abstractly represent predicate
theories without prejudice as to the underlying syntax.

Relation to the previous literature. The previous literature on using groupoids to
represent topoi can be divided as to whether localic (i.e. pointfree) or topological
groupoids are used. Both approaches have markedly different flavours.

By Caramello’s topological Galois theory [21], a complete and atomic theory is rep-
resented by the topological group of automorphisms of a model if and only if that
model is ultrahomogeneous. This is in contrast to the localic Galois theory developed
by Joyal, Tierney and Dubuc ([68, Theorem VIII.3.1] and [34]), wherein it is shown
that a complete and atomic theory is represented by the localic automorphism group
of any model. We take this as evidence that while the disciplines of categorical logic
and classical model theory, in which ultrahomogeneous models play an important
role, are normally viewed as entirely distinct, this is not the case when we prioritise a
topological rather than localic viewpoint.

In a similar fashion, Blass and S¢edrov characterise Boolean coherent topoi in
[T1] as those topoi that can be expressed as the coproduct of topoi of continuous
actions by coherent topological groups. Moreover, these groups can be taken as the
automorphism groups of ultrahomogeneous models for the theory classified by the
topos.

In Chapter V1, we reviewed the celebrated result of Joyal and Tierney [68] thatevery
topos is the topos of sheaves on some open localic groupoid. The parallel topological
result was given in [I/], where Butz and Moerdijk show that every topos with enough
points is represented by an open topological groupoid. When a topos with enough
points is known to classify a theory T, Forssell’s thesis and subsequent papers with
Awodey [B], [B6], [B7] give an explicitly logical description of a representing open
topological groupoid. Namely, their results express that T is represented by the
groupoid of all &-indexed models, for a sufficiently large cardinal & (we shall call such
groupoids Forssell groupoids, see also Definition VTL53 and Section VT.33).

In summary, the relevant literature on the representation of topoi by localic and
topological groupoids can be divided as follows.

Localic representation ~ Topological representation

Connected

atomic topoi localic groups [B4], [68], topological groups [21],

Boolean coproduct of coherent
coherent topoi topological groups [I1],
All topoi (with open localic open topological

enough points) groupoids [b8], groupoids [5], [17], [B6], [37].
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Our characterisation of the representing open topological groupoids recovers the
previous results for the right-hand column of the above table.

Overview. The chapter proceeds as follows.

(A) Section MILT is divided into four parts. In the former two, Section MITTT
and Section MILT2, we define indexings of sets of models and an extension of
the notion of a definable subset of a model to indexed groupoids of models.
This will allow us to express the statement of our classification theorem for
representing open topological groupoids, completed in Section VILT3. Finally,
the method we will follow in proving the classification result, completed in
Sections VI 2 to V114, is laid out in Section MIL T 4. Section VI T4 also includes
a brief discussion of the relation between our result and the descent theory of
Joyal and Tierney [68] recalled in Section VT2

(B) The proof of our classification result is contained in Sections V12 to MIT4. Given
a groupoid of models X = (X; =3 X)) of our theory, the possible topologies with
which X, respectively X;, can be endowed that lead to a representing open
topological groupoid are characterised in Section VILZ, resp., Section VIL3. The
tinal steps of the proof of the classification result are completed in Section VIL4.

(C) In Section IVITH, we present some applications of our characterisation, including
a demonstration that the other logical treatments of representing open topologi-
cal groupoids considered in the literature can be recovered via our classification
result.

(@) In Section MIT5T, we recover the principal result of [21] that an atomic
theory is represented by the automorphism group of a single model if and
only if that model is conservative and ultrahomogeneous, as well as a
characterisation of Boolean topoi with enough points that is reminiscent of
(]

(b) Section VIT'52 concerns the representing groupoids of decidable theories.

(c) In Section VIL53 we show that every open representing model groupoid
is Morita equivalent to its étale completion.

(d) The representation results of Awodey, Butz, Forssell and Moerdijk [5],
[17], [B7], including the case of Forssell groupoids, are recovered in Sec-
tion VIT'2 4.

(e) Having described representing groupoids for a given theory, we answer
in Section MIL51 the converse problem by adapting the methods of [62,
Theorem 4.14] to describe a theory represented by a given groupoid of
indexed structures.

(D) As a demonstration, in Section MIL.6 we give a worked example in further detail
of a representing groupoid for the theory of algebraic integers.

(E) Finally, Section WVIT7 contains a translation of our classification result for geo-
metric theories into the language of doctrinal sites. Recall that these were used
in Part[Al to abstractly represent formal systems of predicate reasoning. Thereby,
we obtain a classification of the representing open topological groupoids of any
predicate theory with a classifying topos.
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VII.1 The classification theorem

In order to state the classification theorem for representing open topological groupoids,
we must first develop our terminology for indexed structures and definables. The former
notion is jointly inspired the signature of the diagram of a model (see [8Y, Definition
2.3.2]) and the enumerated models and indexed models studied in, respectively, [17]
and [5], [36], [B7] (the connection with these works will be fully illustrated in Sec-
tion MIL54). Indexed structures capture the intuition of constructing models from
a list of parameter names. Meanwhile, the latter notion of definables extends the
standard notion of definable subset found in model theory (see [62, §3]). The two
properties that characterise representing open topological groupoids, ‘conservativ-
ity’ and ‘elimination of parameters’, are introduced in Section MILT3, in which we
also state the classification theorem. ‘Conservativity’ will be a familiar notion to the
logician, but we believe ‘elimination of parameters’ to be a novel addition.

VII.1.1 Indexed structures

Let X be a signature. Given a Z-structure M, a standard model-theoretic construction
is to consider M as a structure over the expanded signature X U {c, | n € M}, the
signature of the diagram of M, where we have added a constant symbol for each
element of M. This allows us to express via formulae over the expanded signature
those subsets of M that are defined in relation to finite tuples of other elements of M.
We present a modification of this construction below.

Definition VIL.1. Let X be a signature with N sorts, and let & = (R))reny be an N-tuple
of sets. We denote by X U & the expanded signature obtained by adding, for each
m € K, a constant symbol ¢, (of the kth sort) to Z. We will call these added constant
symbols parameters.

A K-indexing of a L-structure M consists of:

(i) a sub-expansion of X U R, that is the signature
ZU{cm|m€R’,k€N}
for a tuple K’ = (R,’{)keN of subsets R,’( C Ky,
(ii) and an interpretation of M as a structure over the signature
ZU{cm|m€R’,k€N}

such that, for each k € N, the model M satisfies the sequent

T \/ 2= an

meR]’(

In other words, we have interpreted in M some of the parameters introduced by & in
such a way that every element n € M is the interpretation of a parameter.

Our definition of K-indexed structure is equivalent to the homonymous notion
found in [5], [36], [B7] that a X-structure is R-indexed if the interpretation of the kth
sort M/ is presented as a subquotient of &, i.e.
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(i) there is a partial surjection & — M,

(ii) or equivalently, there is a subset S C & and an equivalence relation ~ on S such
that M% = S/ ~.

We will abuse notation and write m for both the parameter as an element of & and its
interpretation in an f{-indexed structure M. We denote a choice of KR-indexing of M

Definition VIL.2. Let X = (X; =3 X;) be a (small) groupoid of models of T over a
signature X.. An RK-indexing of X is a R-indexing & — M for each model M € X.

Note that an element n € M can be the interpretation of multiple parameters, and
also that the models M € X, are allowed to share parameters, i.e. for M, N € X, the
same parameter m € K can be interpreted in both M and N.

Examples VIL.3. Every (small) groupoid X = (X; =3 X;) of T-models admits multiple
indexings by various sets of parameters.

(i) Every model is trivially indexed by its own elements, and so X can be indexed
by the set (Jyex, M.

(ii) Since X is a small groupoid, there is a sufficiently large cardinal & such that
every M € X, is of cardinality at most &, and thus there is a choice of partial
surjection & — M for each M € X,.

VII.1.2 Definables

In this subsection, we generalise definable subsets of a single model to groupoids
of models, and show that this generalisation naturally carries the structure of an
equivariant sheaf over the groupoid of models in question (when endowed with the
discrete topologies).

Let M be a model of a theory T. We use the notation [ ¥ : ¢ s to denote the subset
defined by the formula in context {¥: ¢}, i.e.

[%:@lv={7eM|ME o).

The notation ¢(M) is also standard for definable subsets. We maintain reference to
the context since we wish to emphasise the difference between the same formula
interpreted in different contexts, for example

[[(DZT]]le;é[[XZT]]M
(assuming that M has more than one element).
Definitions VIL4. Let X = (X; =3 X)) be a (small) groupoid of models of a theory T.

(i) The definable of a formula in context { X : ¢}, which we denote by [ X : ¢ IIx, is

the coproduct
[[1%: @ln.

MEXO

Elements of [ X : ¢ x we denote as pairs (it, M), where 7 C M € X.
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(ii) Suppose the models M € X are indexed by a set of parameters K. For a tuple
of parameters of &, we denote by [ ¥, : ¢ ]x the definable with parameters

[%7:]x = H{(ﬁ,z\/b |77 € Mand M E (i, 1) ).

M€X0

Recall that our models may share parameters, and so the definable [% m : Y IIx
can have as elements (ii, M), <fi’, N >, where M and N differ.

If m = 0, we say that the definable [ X, 77 : ¢ [Ix is definable without parameters. Note
that every definable with parameters [ X, : ¢ [lx is equivalently a definable without
parameters over the expanded signature X U K.

A definable [ ¥ : ¢ lx possesses an evident projection 7 o] to Xo which sends the
pair (i1, M) to the model M € X, as visually represented in the bundle diagram

[x Plm_ ’__[[?:(P]]M’ )
: > : : - : [[x:(/)]]s\f
B o
R o
- A f 1 1 1
1 a 1 1 1 : 1
A e
[ 1 ! '\____l
:-fl__,' lb J
'M M - N
""""""""""""" ! XQ.

Functoriality of definables. Note that the definable subset [x: T ]y of a single
model M is just the interpretation of the sort of the variable x, which we will denote
by M*. Similarly, [ ¥ : T ] is the set of all tuples with the same sort as ¥, or the product
set [ ], czM™, which we will denote by M. For every formula ¢ in context ¥, there is
clearly an inclusion

[%:@luClZ: TIu=M,
and similarly there is an inclusion [ ¥ : ¢ ]lm € [ X : ¢ ]; if T proves the sequent ¢ +; 1.

Let 0:  — ¥ be a relabelling of variables, i.e. a map where y; and o(y;) have the
same sort for each y; € . The map o induces universally an arrow

M -y HM%: M

yi€y
pr"(yi)
\Lpryi

MeW) M.

If T proves the sequent ¢ F; P[¥/,7], i.e. if there is an arrow (¥, ¢) > (¥, ¢) in the
category Con,! > FT from Chapter [I, then the map o™ restricts to a function on the
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subsets
[:00m ---> [¥:¢1u

M= U—M> M.
We thus obtain a functor [ — J;: Cony > FT — Sets. In fact, under the equivalences

T-mod(Sets) ~ Geom(Sets, Et) ~ Kpr-Flat(Con,’ = F", Sets),

this is precisely the continuous flat functor corresponding to the T-model M in Sets.
Evidently, the pointwise coproduct [[,cx,[[ — I behaves well with the projection

my_y in that, for every arrow (i, @)= (¥, ) of Con} < FT, the diagram

commutes. Thus, we obtain a functor

[—1Ix: Cony = FT —— Sets/X, ~ Sets™.

Actions on definables. The bundle rtjz,;: [¥: ¢ [x = X, admits a canonical lifting
of the X;j-action on Xy. By this we mean there is a map

Orzpr: [X: @lIxxx, X1 = [¥: @ 1x,

where [ X : ¢ ]x Xx, Xj is the pullback

[[3?:(p]]x><XOX1 —_— [[J?(p]]x

4
e

S
Xi > Xo,

satisfying the equations

Qllfz(p]](ellf:q)]]«n_}l/ M>/ 0(), )/) = 9[[>?:<p]](771,)/ © 05)/
6[[3?:([)]](<n_)l/ M)/ 1dM) = <T?Z/M>/

ie. ([¥:@lx, T ze1, Opze1) 18 @ sheaf on the groupoid X = (X; =3 Xo), in the sense of
Definition Vi), when X; and X are both endowed with the discrete topology.
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Given a T-model isomorphism M 5 M’ € Xy, we declare that
ell J?:(p]](<3/ M>/ 0() = <0((6_l)), M,>/

where (4,M) € [¥ : ¢]x. Since & is a morphism of T-models, it preserves the
interpretation of the formula ¢, i.e. M’ £ ¢(a(d)) too. Hence, 6 o1 18 well-defined.
The action 6y 1,7 can be visualised as acting on the bundle 7z, : [%:9]x = Xoas
in the diagram

[¥:plu [X:@lw .
o L [x:@ln
vdo by T
S A
v 7 1 1 1 1
f a 1 f 1 : :
A e
A A S RS '
l-_-_l l____l
‘M o M - N
"""""""""""" ! Xo.

For each arrow (i, ¢ ) > (X, 1) of Con}¥ = FT, it can be checked directly that the
induced map [o]x: [¥: ¢Ix — [¥: ¥ Ix is equivariant with respect to the above
defined Xj-actions, i.e. the square

Oz >
[%:¢@lx Xx, X1 LN [x:¢l

\L]IU]IX \L'IU]]X

Oyl

[7:9I%xxXo — [7:¢]
commutes. Thus, there is a functor [[ — [Jx: Con;,p =< FT — Sets™.

Orbits of definables. Note that every definable with parameters forms a subset of
a definable without parameters, e.g.

[[)?,ﬂ?li(p]]xg [[fag)(Pﬂx,[[f Tﬂx.

The X;-action Oz does not restrict to an X;-action on [ %, 7 : ¢ Ix since the subset
may not be closed under the action, i.e. if (4, M) € [¥,# : @] and there is an iso-
morphism of T-models M = M’ € Xj, it does not follow that M’ £ ¢(a(@), ). This
is because a is an isomorphism only of the X-structure and need not preserve the
interpretation of any of the parameters we have added. Indeed, m might not even
be interpreted in M. Of course, if 1 = 0, then [ X : ¢ ] is closed under the X;-action
Oz, the restricted action being precisely Oy z,1-
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Definition VIL5. The orbit [ X, 1 : i ] of a definable with parameters [ ¥, : i ]x is
the closure under the isomorphisms contained in Xj, explicitly

[Z7: 1y = {<ﬁ,N>‘3Mi> N € X; such that M £ g(a”' (@), i) }.

Equivalently, [ %, : ¢ ]l defines the smallest stable subset of [ X : T Jix that contains

[[J?,ﬂ_’l) . ¢HX

VII.1.3 Statement of the classification theorem

Having developed our terminology for the definables of a groupoid of T-models
indexed by &, we can now state the classification theorem.

Definitions VIIL.6. Let T be a geometric theory over a signature X and let X be a
(small) groupoid of models of T indexed by a set of parameters K.

(i) We say that X is conservative if X is a conservative set of models, i.e. for each
pair of geometric formulae over L in context X, if [¥: ¢ Ix C [¥: ¢ ]x, then T
proves the sequent ¢ Fz 1.

(ii) We say that X eliminates parameters if the orbit of each definable with parameters
[ %, 7 : ¢ Jx is definable without parameters, i.e. there exists a geometric formula
in context { X : ¢ } such that

[Xm:¢]=0%:¢lx

Remarks VIL.7. (i) Recall that a topos & has enough points if the points, i.e. the
geometric morphisms Sets — &, are jointly conservative — that is the inverse
image functors are jointly faithful. If & classifies a theory T, then & has enough
points if and only if the set-based models of T are conservative. By [57, Corollary
7.17], if & has enough points, a small set of conservative models can always be
chosen. We will therefore mix our terminology and say that a theory has enough
points to mean there exists a conservative set of set-based models.

(ii) Our terminology ‘elimination of parameters’ is justified since, in the special case
of field theory, it is demonstrably the groupoid removing the parameters from
the defining polynomial of a solution set. As a simple example from traditional
Galois theory, the orbit of the definable with parameters [x =i ] o = {7} under
the automorphisms of Q(i) that fix Q is definable without parameters, namely

[x = ilaweey = (i =i} = [2* = =1 Tauon)-

Our terminology ‘elimination of parameters’ is also inspired by the parallel
model-theoretic study of Galois theory and the theory of elimination of imagi-
naries of Bruno Poizat [0, §2] that arises therein.

(iii) Let T be a geometric theory and let X = (X; =3 X)) be a (small) groupoid of
models of T indexed by a set of parameters 8. To check that the groupoid X
eliminates parameters, it suffices to show that, for each tuple of parameters 77,
there exists a formula in context { / : x } without parameters such that

[i=mlx=017:xIx
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since, for an arbitrary definable with parameters [ m : Y JIx, we have that

[% 91y =[%: Agyly/ml Ay =mly,
= [%: 3y ¢ly/ml A x Ix.

Let T be a geometric theory over a signature X and let X be a groupoid of T-
models indexed by 8. We note that the condition that X eliminates parameters
does not depend on the theory T, but only on the signature . We will revisit
this observation in Remark VT30

Let X be a conservative groupoid of T-models, indexed by a set of param-
eters R for which X eliminates parameters. Given a definable formula with
parameters [ X, : ¢ ]x, we may wonder what restrictions can be made on the
formula ¢ which witnesses the elimination of parameters, i.e. a formula for

which [%, 7 : p Iy = [ ¥ : ¢ Ix. We note that, since

[xXm:pIx CIXm: ¢l CIX: 3y ¢lx

and the groupoid X is conservative, T must prove the sequent ¢ +; Iy .
Similarly, if every instance of the parameters 7 in a model M € X, satisfies a
formula y, then T also proves the sequent ¢ +z 3§/ ¥ A x. In particular, we have
that

@z AP A /\ Yi=Yj

ml:mj

where the conjunction A, _, i = y; ranges over the elements of the tuple m
that are equal.

Theorem VII.8 (Classification of representing open topological groupoids for a geo-
metric theory). Let T be a geometric theory, and let X = (X1 =3 Xo) be a (small) groupoid of
set-based models of T. The following are equivalent.

(i)

(ii)

There exist topologies on Xy and Xy making X an open topological groupoid such that
there is an equivalence of topoiSh(X) =~ &Er.

The groupoid X is conservative and there exists a set of parameters ] and an indexing
of X by & for which X eliminates parameters.

Remark VIL.9. Let T be a geometric theory and let X be a groupoid of models for T
satisfying the hypotheses of Theorem VITS.

(i)

In general, we can not a priori infer an indexing for which X eliminates parame-
ters without knowledge of the topologies on X for which Sh(X) ~ &r. In other
words, there does not exist a canonical indexing R.,n, — X with the property that
there exist topologies making X an open topological groupoid with Sh(X) =~ &y
if and only if X eliminates parameters for the canonical indexing K.n — X.
This is because, as will become apparent in Section M2, a choice of indexing
for X yields a choice of topology on X, and, vice versa, a choice of topology on
X yields a choice of indexing for X.
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(ii) If X’ is another groupoid for which there is an equivalence of categories X =~ X',
then it is not necessarily true that X’ can be endowed with topologies for which
Sh(X’) = &y. This apparent defect arises because we are considering topological
categories. Indeed, if X’ and X were equivalent, or homeomorphic, as topological
categories, by which we mean that the functors F: X — X’ and G: X’ — X that
witness the equivalence also preserve the induced topological structure, then
there would be an equivalence of topoi Sh(X’) =~ Sh(X) = &r.

The proof of Theorem WILH is completed in Sections MIL2 to MIT4. Given a
geometric theory T, we will call a (small) groupoid X = (X; =3 X)) of set-based
T-models, i.e. a small subcategory X C T-mod(Sets) in which every arrow has an
inverse, a model groupoid for T.

VII.1.4 Owur method

We now lay out the method that we will follow in Sections VT2 to VIT4 in order to
prove Theorem VITB. Let X = (X; = X)) be a groupoid and let

p: SetsX =~ Sh(X®) — &y

be a geometric morphism. For each object x € X of X, the evaluation functor Sets* —
Sets,
[P: X — Sets] — P(x)

yields a geometric morphism ev,: Sets — Sets”, and hence a point

Sets —*% Sets® —3 Er

of the topos &Er. Consequently, x € X also yields a T-model M.
Similarly, every isomorphism x = y of X; yields an isomorphism of points

Sets “a Sets™ % &t

€vy
and thefore an isomorphism of T-models. Thus, the geometric morphism p cor-

responds to a model groupoid X C T-mod(Sets). Similarly, each model groupoid
X € T-mod(Sets) also yields a geometric morphism

p: Sets® — &r.
Recalling that (Con,; = FT, K1) is a site of definition for Er, the continuous flat functor

Con,} = FT —— SetsX
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corresponding to the geometric morphism p: Sets® — &r is precisely the functor
[ - Ix considered in Section MILT2.
We will denote the composite

Sh(X3) —— Sh(X}) — &;

by Po-

Definition VII.10. A factoring topology for objects is a topology 7y on X such that the
geometric morphism py: Sh(X]) — & factors as

Sh(X?) —— Sh(X") ---5 &r.

Given a factoring topology for objects 7y, recall that, by Lemma MT8, there exists
a unique (up to isomorphism) geometric morphism p’ such that

Sh(X?) —5 Sh(X")

L

Sh(X?) —— Sh(X?)

commutes.

Definition VIL11. Given a factoring topology for objects 7o on Xy, a factoring topology
for arrows is a topology 71 on X; such that X7} = (X]' =3 X{) is a topological groupoid
and p’ factors as

Sh(X?) —— Sh(X}}) ---% &r.

Our method for proving Theorem VITH is broken down into four intermediate
steps as follows.

(A) In Section we classify, for a geometric theory T and a set X, of set-based
models, the possible factoring topologies for X,. We will show that, when the
models in X, are indexed by some set of parameters &, the logical topology on
objects, introduced in [B6], [B7], is a factoring topology for X; and that, up to a
choice of indexing for each M € X, every factoring topology for X, contains a
logical topology on objects.

(B) Given a factoring topology on objects for X, we classify in Section VI3 the
factoring topologies on arrows for X;. We will show that a topology 7; on X;
is a factoring topology for arrows if and only if 7; contains the logical topology
for arrows, another topology utilised in [36], [37] (where we have assumed that
79 contains the logical topology for objects for some indexing of the models).
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(C) We demonstrate in Section VIT.3 T that, if X and X; are endowed with the logical
topologies t-log, and 7-log,, and that the resulting topological groupoid is open,
then the factoring geometric morphism

Sh (xT‘ng) & (VILi)

t-log),

is localic.

(D) Finally in Section VT4, we deduce Theorem VILH by studying the morphism
of internal locales induced by the localic geometric morphism (VIT3) using the
methods established in Chapter [.

Comparison with Joyal-Tierney descent. Before embarking on the main proof, we
elaborate further the connection between the representation of topoi using topological
groupoids and localic groupoids, as discussed in Chapter 1.

Let & be a topos. Let X, be a set of points of &, i.e. Xy € Geom(Sets, &), and let 7
be a factoring topology for objects on Xj, i.e. there is a canonically induced geometric
morphism

Sh(Xy) — &.
There are two groupoids that can naturally be associated with the pair (Xo, 7o).

(i) Firstly, there is the concrete groupoid X = (X; = X)) (i.e. a groupoid internal
to Sets) obtained by taking X; as the set of all isomorphisms of the points Xj
(which is always small).

(ii) Secondly, there is the localic groupoid X' = (Xl© 3 XI°), whose locale of
objects is the frame of opens O(X’) and whose locale of arrows is the locale in
the (bi)pullback of topoi

Sh(X'c) ——% Sh(X")
Sh(X¥) —— &.

Suppose that there exists a topology 71 on X; making X7} = (X]' =3 X°) an open
topological groupoid for which there is an equivalence of topoi & =~ Sh(X7,). Then,
by Lemma V.8 and Lemma V9, the canonical geometric morphism

u: Sh(X;') — Sh(X}}) ~ &.

is an open surjection, and so, by an application of the descent theory of Joyal and
Tierney [68] (see also Theorem VT3H), the topos & is also the topos of sheaves on the
localic groupoid X'°c.

The converse, however, is not true. In Example VIT40 we give a counterexample
consisting of a topos & and an open surjective point p: Sets — & for which there is an
equivalence & ~ BAut(p)'® (here Aut(p)'* denotes the localic automorphism group
of p) but where there is not an equivalence & # BAut(p)™ for any topology 7; on the
concrete automorphism group Aut(p).
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VIL.2 Factoring topologies for objects

Let T be a geometric theory and X a set of set-based models of T. We wish to classify
the possible factoring topologies for X,. We first note that there is a factorisation

Sh(X?)
]'\L &
Sh(X™) ~--% &r= Sh(Con = FT, K;)

if and only if there is a factorisation

Sh(X?)

IT\ \pa%on})f <FT

Sh(X;") ¢--- Cony} < FT.

In the following proposition, we restrict to the special case where T is a single-
sorted theory for notational simplicity. However, a multi-sorted version is readily
deduced using the same ideas — a statement is given in Remark VITT3.

Proposition VIL.12. Let T be a single-sorted geometric theory and let X, be a set of models
of T. A topology ¢ on X, is a factoring topology for objects if and only if

(i) there exists a topology T on [ x : T lIx = [ yex, M such that the projection
T xp]* [x: T]]}T( — Xéo

is a local homeomorphism,

(i1) and for each geometric formula in context {X : ¢}, where the context X is of length n,
the subset [ X: ¢ TIx C [ X: T Ix is open in the product topology T" on

[%:Tlx= HM:(HM) .
MeXj MeX,

Proof. Suppose 1) is a factoring topology for objects, and let
k: Sh(Xy’) — &Er

be the factoring geometric morphism. Hence, the map 7y, : [x: T [x — Xo, being
the image p* o {coppar (x : T), must be a local homeomorphism for some topology T
on [x : T ]lx when X, is endowed with the topology 7.
Ask*o fC(m?pxFT preserves finite limits we deduce that, for a context X of length 7,
ko fCOn;vpxqu( D_C), T ) =k'o €Con‘1’P><PT((x : T,
= (k* o {;Conc{pxl_ﬂr(x T ))n,

- [7T|I>?:T]]: [x: T]]BT; - XSO]'
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The functor k* also preserves subobjects. The subobjects of fCOH?VpxFT( X, T) are objects
of the form KCOH?pxFT( X, ¢ ) by Section (cf. also [63, Lemma D1.4.4]). Hence, since
subobjects of [ X : T I} are, in particular, open subsets, the subset [ X : @ lx € [X: T JIx
is open in T". This completes the ‘only if” direction of the proof.

Conversely, suppose that:

(i) thereisa topology Ton[[x : T Jix such that the projection mtypy: [x : T I — XJ
is a local homeomorphism,

(ii) and for each geometric formula in context {X : ¢}, the subset [X¥: ¢ ]x C [ X :
T Ix is open in the product topology T" on [ ¥ : T Jx.

Clearly, since finite products are computed in Sh(X;°) as wide pullbacks in Top,
ey (X0 T ]])T; — X is also a local homeomorphism, where T" is the product
topology, for each natural number n. As the subset [X: ¢ x € [¥: T ]x is open in
the product topology T", the composite

K0 begurgr(R, @) = [ mpzgy: [¥: @Ix SI%: TIx = Xp° |

is also a local homeomorphism, when [ X : ¢ Jix is endowed with the subspace topol-
ogy.

Let (¥, ¢) > (7, ) be a morphism of Con{¥ > F', where the contexts ¥ and i
have respective lengths n and m. Since the induced map

[%:Thx=[[ M s [ M =17 T

MeX MeXy
T‘m A 1
Xo

is obtained universally, it is automatically continuous when [X: T]and [§: T ] are
endowed with their respective product topologies. Therefore, the restriction to the
subspaces

[Z:plx —2 [7:v1x

! !

[%:TIx —— [¥: TIx

nﬂf:‘l’\‘ Agﬂ]
Xo

is also a continuous map.
Thus, there exists a factorisation

Sh(X?)

ﬂ\ Q&m?\f ~FT

Sh(X;") ¢--- Con{¥ < FT

and so 7 is a factoring topology. |
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Remark VII.13. In Proposition VIL.T2, we assumed the geometric theory T was single-
sorted for simplicity’s sake. However, the proof is readily adapted to the multi-sorted
case. We give the statement below.

Let T be an arbitrary geometric theory over a signature X, and let X, be a set of
models of T. A topology 7y on X is a factoring topology for objects if and only if

(i) foreachsort XinZX, thereexistsatopology Tyon[ x : T Jlx such that the projection
ey [x: T ]]}T(" — Xg“ is a local homeomorphism, where x is a single variable

of sort X,

(ii) for each geometric formula in context {X: ¢}, the subset [X: @ Ix S [¥: T [Ix is
open in the corresponding product topology Ty on [ ¥ : T Jix.

The logical topology on objects. Given an indexing of each model in our set of
objects by some parameters, we now introduce a certain class of factoring topologies
for objects: the logical topologies for objects. This is an adaptation of the topology used in
the papers by Awodey and Forssell (see [37, Definition 3.1]), itself an adaptation of the
topology used by Butz and Moerdijk in [[7, §2]. As we will see in Proposition VIL.T7,
a factoring topology for objects 7y on X can, essentially, be chosen to contain a logical

topology.

Definition VII.14 (Definition 3.1 [B7], Definition 1.2.1 [5]). Let T be a geometric theory
and let X, be a set of T-models indexed by a set of parameters K. The logical topology
for objects T-log, on X, for this indexing, is the topology generated by the basis whose
opens are sentences with parameters [ : ¢ Jx, i.e. those definables with parameters
[% 7 : ¢ Ix where ¥ = 0.

Remark VIIL.15. Let X, be a set of indexed T-models as above. We note that, when
generating the logical topology for objects 7-log, on X, we can focus our attention on
only those opens [ : ¢ [x where ¢ is an atomic formula (see [63, Definition D1.1.3]).
This is because any of the logical symbols { A, \/,3} used to construct a composite
geometric formula from atomic ones can be replaced by topological constructions:

A [m:pryIx=0m:@lxnNln:yIx
(ii) [[”_% : \/ieI @i ]]x = Uz‘el[[ﬁ)? Qi Ix,
Gil) [72: yolx = Upeall M, " : @ Ix.

Lemma VIL.16. Let T be a single-sorted geometric theory. Each ‘logical topology for objects’
is a factoring topology for objects.

Proof. Let X, be a set of models of T indexed by parameters }. By Proposition VI T2
and the multi-sorted version given in Remark VITT3, it suffices to show that, for each
singleton variable, there is a topology Ty on [ x : T Jlx such that the projection

1
Tery: [2: Tlx —— XS o8

is a local homeomorphism, and for each geometric formula in context {X : ¢} the
subset [X: ¢ x € [X: T Jix is open in the product topology Tz on [ X : T Jx.
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Let T, be the topology on [ x : T Jlx generated by the basic opens
[x 7 @ Tx = {{n, M) | M E p(n, rit)}.

For this topology, m..r is a local homeomorphism. Firstly, each element (1, M) of
[x: T Jx is contained in the basic open

[x=mlx={<mM)|meM},
where m is a parameter indexing n. The image of [ x = m ]x under the map

1-log

Tpery: [x: Tlx — X

is open, namely .ty ([x =m]x) = [m: T x. Moreover, there is an evident local
section s: [m: T J]x — [x =m]x of mp,ry — the map that sends M € X, in which
the parameter m is realised, to the pair (n, M), where n realises the parameter m. It
remains to show that the local section s is continuous, but this is clear since

s‘l([[x:m]]xﬂ [x i : I,D]]x) = {M€X0|MI: v,b(m,r?i')},
=[m i :pIxSlm:TIx

Hence, for the topology Ty on [x : T Jlx, the map mpyry: [x: TIx = Xg'logo is a local
homeomorphism.

We claim that the product topology Tzon [ X : T ]lx is the topology generated by the
basis whose opens are definables with parameters. Clearly, if the product topology T
is, as claimed, generated by definables with parameters, then each definable without
parameters [X: ¢ x € [¥: T ]x is an open subset as desired.

The inclusion of the product topology T in the topology generated by definables
with parameters is obtained by noting that

[ [0 7 2 il = { G, M) | Vi M i )

X,‘E??
n
> - - - = .
n,my, ..m,¢c Y, X1, ooy Xp t Qi ,
' M
n
_ > - -
=\ xX,my, .., my: @i .
' X

For the reverse inclusion, we observe that, for each (i1, M) € [ X, : ¢ ]x,

= {(ﬁ,l\/D

(i, M) € H[[xi x; = ml A (i, 1m) Ix,
x,-ea_c'

7/

=[X:X=m Ao ,m)]x C[Xm:¢lx

where 7’ is a tuple of parameters indexing 71 € M. O
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Every factoring topology for objects contains the logical topology. As expressed
below, there is a sense in which the ‘logical topology for objects’ is essentially the only
factoring topology that need be considered.

Proposition VIL.17. Let T be a geometric theory and let X, be a set of models of T. A
topology T on X, is a factoring topology for objects if and only if there exists an indexing of
each M € X by a set of parameters K such that t, contains the corresponding ‘logical topology
for objects’ 1-log,,.

Proof. One direction is clear: if 7o contains a ‘logical topology for objects” t-log,, then,
by Lemma VITTH, the geometric morphism p, factors as

Sh(X}) — Sh(X{") — Sh(X;™™) — &r.

When we assume instead that 7( is a factoring topology for objects, then, in
particular, for each singleton context, the projection 7y .+y: [x: T ]x — X° is a local
homeomorphism for some choice of topology Ty on [x: T []x. In particular, every
element (11, M) of [ x : T Jix lies in the image of some local sections: U — [x: T Jx of
Tipx7] Whose domain and image are open We call such local sections open. Let | be
the set of parameters whose elements are open local sections of mtj,.+j. We can index
each M € X, by interpreting the parameter s: U — [x: T []x by n € M if (n, M) lies in
the image s(U). Thus, the open s(U) C [x : T Jix is the interpretation of the definable
with parameters [ x = s ], as in the diagram

[[x:‘l‘]]]\/_f__~ __[[_XIT]]M'
P N EE
[r=shietodendt Lo |
S : :
b e
N '
D - J
iMoo M N

NSIZIIIIIIIlcccmmmmm———— Xo-

As the open local sections are jointly surjective, this does indeed define an indexing
of each M € X, by the parameters K.

It remains to show that 7y contains the logical topology for this indexing. We note
that s(U) = [x =s]lxisopenin [ x : T Jx and therefore, by Proposition VIL T2 (and its
reformulation in Remark WITT3), in the product topology on [ X : T Jix, for any tuple
of parameters § of the same sort as X and any formula in context { X : ¢}, the subset

[2:pAZ=5x =% @Ix0 [ [Ix =51,

XIEJ?

= {(it, M) |M £ ¢(3), it = 5}
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is open in the product topology on [ X : T Jix. Since the local homeomorphism

T-log

mpery: [x: Tlx — X
is, in particular, an open map, the image
71[[:?:711([[551 p AX=5]x) =[5: ¢[s/X]Ix
is open in 7y, i.e. 7o contains the ‘logical topology for objects” as desired. |

Remark VIL.18. Let T be geometric theory over a signature X, let X, be a set of
T-models, and let 7( be a factoring topology for objects on Xp.

(i) When we discover an indexing of X by the set of parameters & such that 7, con-
tains the ‘logical topology for objects’ 7-log,, via the method of Proposition V1L T4,
we note that we have also forced the chosen topology on [ X : T Jix to contain as
opens the definables with parameters [ %, 77 : ¢ ]x.

(ii) If T is an inhabited theory, meaning that T proves the sequent T +y dx T (for each
sort of X), then each fibre of [ x : T ]ix is non-empty. Thus, every open in 7 is
of the form 7tf,.+(V) for some open V C [x : T Jlx. In particular, the sets of the
form

U=mnperi(lx=slx)=1[s: Tlx
fors: U — [x: T ]x an open local section of 7tf,.ty, form a basis for 7y. There-
fore, when each M € X is indexed by the open local sections of 7.+ as in
Proposition MITT7, the induced logical topology t-log, contains 7, too, and so
7o = 1-log,.

VIL.3 Factoring topologies for arrows

Let T be a geometric theory, X = (X; =3 X;) a model groupoid for T, and let 7
be a factoring topology for objects on X,. We seek to classify the possible factoring
topologies for arrows on X;. As before, we first note that there is a factorisation

Sh(Xio)
w\L K
Sh(X7) ---% &r
if and only if there is a factorisation

Sh(X?)
WT \Ccn >F
Sh(X}!) ¢--- Con¥ < FT,

if and only if, for each object (¥, @) of Cony > F', the X%-action on [¥: ¢ Jx is

continuous. In fact, it suffices to only check that, for each context ¥, the action

Opzry: [X: TIx xx, X' — [%: Tlx



214 CHAPTER VII. TOPOLOGICAL REPRESENTING GROUPOIDS

is continuous since then, for each formula in context {¥ : ¢}, the restriction of Oz
to the subspace [X: ¢ Ix C[¥: T Ix, i.e. the Xj-action

Orzpn: [X: @lIx xx, X[ — [¥:@1x,
is continuous as well.

Logical topology for arrows. We define the logical topology for arrows, another
variation on a topology utilised in [8], [17], [B6], [37]. Much like the logical topology
for objects, we will observe in Proposition VTL.72 that the logical topology for arrows
plays a special role among all factoring topologies for arrows.

Definition VII.19 (Definition 3.1 [B4], Definition 1.2.1 [B]). Let X = (X; =3 X,) be a
model groupoid for a geometric theory T indexed by the set of parameters 8. The
logical topology for arrows is the topology on X; generated by basic opens of the form

ﬁ):(p M':(P(El))/
b2l =dMSNeX |Nea@®) =2\,
d:v ], N E (d)

where {¥: @}, {V: ¢} are formulae, and 7, b, d are tuples of parameters in K.
Lemma VIL.20. The groupoid XT_iOgl,
T-108g),
t-log; 7-log, 7:: 1-log; Z 1-log),
XX Xy ——= X, — X
5
i
is a topological groupoid, i.e. the maps s, t, etc., are continuous.

Proof. For each basic open subset of Xg'logO and XI'IOgl, we have that

m: @
sl @) =00
X

0:T
dip
o2 |=07:@Ixnld:vIxnlb=2lx
L‘;l)”,lhx
[ d:p ] i 0:T
and m™! ZZ|—>E’ :Uﬁ}}ﬂ_,gm XXO{[{HEM
| d:Y [ soa LO:T Iy d:y fy
The continuity of the other arrows is just as easily checked. m|

We are now able to recognise the logical topology for arrows as a factoring topology
for arrows. Below, we explore the special role the logical topology plays among all
factoring topologies.
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Lemma VIIL.21 (Lemma 2.3.4.3 [B6]). When X, is endowed with the logical topology on
objects t-log,, then the logical topology on arrows t-log, is a factoring topology for arrows.

Proof. By the above discussion, it suffices to check that the X;-action Oz is contin-
uous for each context ¥, i.e. we must show that, for each definable with parameters

[[J?/n_/)l : QD]]X;
OpLey (L%, 72 9 1) = { (G, M), @) [ M5 N € Xi, N & pla(id), ) |

is an open subset of [¥ : T Jlx Xx, X?log‘]. This is easily demonstrated. For each

(11, M), a) € GE}?:T]] ([ %, 7 : ¢ Ix), we note that

0:T
(i, M), 0) € [ 217 : @ Ix Xx, hnq - rﬁﬂ c ot (% 0: plx),
0.1 Iy
where 7’ is a tuple of parameters indexing a~(17). O

Proposition VII.22. Let T be a geometric theory, X = (X; =3 Xo) a model groupoid for T,
and let Ty be a factoring topology for objects and 1 a factoring topology for arrows. If Ty
contains the logical topology for objects when X is indexed by a set of parameters K, then 14
contains the logical topology on arrows.

Proof. We note that

E)Z(P 0:T ;
b e :sl(llﬁ’:go]]x)ﬂﬁgraé’m SRR AR ™)
c_l):gb X 0:T X

As s, t are continuous maps and [7: ¢ [Ix, [ d-: Y JIx are open in XSO, we deduce that

s @lx), 73(0d : wlx) € X

are open. Thus, it suffices to show that 7; contains the subset

0:T
NI;HE}I ={M5NeX;|Mka®) =¢}.
0:7T [l

By Remark WITT8, we may assume that the topology Ty on [¥ : T ]lx, for which
mpery: [X: T ]])Tj — X" is a local homeomorphism, contains as opens the definables
with parameters [ ¥, 771 : ¢ ]x.

Since O z.r is continuous, the subset

Oty (Ix = 2150 N (2 = Dlx X, Xa) = { (G, M), @) | 7 = b, a(i) = &)

is openin [ X : T Ix Xx, X{'. The projection pr, in the pullback square

[[f:T]]XxXOX? —> [[J?ZT]]X

a
prz\L \Ln[f:ﬂ]

T1 s \ T0
X1 > XO




216 CHAPTER VII. TOPOLOGICAL REPRESENTING GROUPOIDS

is an open map since the local homeomorphism 7tz y: [¥: T]x — X’ is an open
map too, and open maps are stable under pullback. Therefore,

0:T
pr; (GE;’;TH(HX =Cclx) N ([[9?2 5]])& XX, Xl)) = l[gH 5“
0:T |l

is an open subset of X7', and thus 7, contains the logical topology on arrows. O

VIL.3.1 Characterising the logical topology for arrows

Let T be a geometric theory and let X = (X; = Xj) a model groupoid for T indexed
by K. By Lemma NVITZT and Proposition VIL.22, for any open factoring topology on
arrows 71, when Xj is endowed with the logical topology for objects t-log,, there is a
factorisation of the geometric morphism

p': Sh(x6 ) &

1-log,

as

Sh (xé ) — ySh (x“ ) — \Sh (x“"gl) s &

1-log 1-log), 1-log,

Moreover, by Proposition V.14 and Remark VT35, the factoring geometric morphisms

Sh(X2,, ) — Sh (X2, ) and sh(X,, | — sh(X}%)
are both hyperconnected morphisms. We may therefore wonder whether the the
factorisation

Sh (xg_log ) — Sh (xjjg?) — &r. (VILii)
0 0
is the hyperconnected-localic factorisation of the geometric morphism p’.
We answer affirmatively under the condition that
XT-log] — (}(’1c-log1 = X;—logo)

1-log,
is an open topological groupoid. In general, there is no reason for nggl to be an open
topological groupoid, though the groupoid eliminating imaginariesois a sufficient
condition, as observed in Lemma VIT28.

The proof that (VITi) is the hyperconnected-localic factorisation is essentially
contained in Lemmas 2.3.4.10-13 of [B6], which deal with the specific case of Forssell
groupoids (which we will study in more detail in Section VIL.5.4)). We sketch some of
the details of the proof to assure the reader that the only required assumption is that

XZ;Z; is an open topological groupoid.

Lemma VII.23 (Lemma 2.3.4.10 [36]). Let (Y, B, q) be an ngz-sheaf. Foreachy €Y, there

exists a basic open [ 11 : & [x of Xg_logo with an open local section f: [ : & x — Y of q such
that
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(i) the point y is in the image of f,
(i) for any M € [ : &lx and an isomorphism M = N € Xy, if a(ii) = 1t (and so
Ne[m:&]), then
B(f(M),a) = f(N).

Recall that the subobjects of a X::}Zi;-sheaf (Y, g, p) are given precisely by the open

subsets of Y that are stable under the action of . If nggl is an open topological
&0

groupoid then, by Lemma V3, the XI'IOgl -action Oz is an open map. Therefore, we
have that

[[fﬂﬁ : (P]]x = 9[[3?;T]]([[3?,Tﬁ : (P]]x XX Xy) € [fi T Ix,
the orbit of a definable with parameters [ ¥, 77 : ¢ ], is an open, stable subset and
hence a subobject of [ ¥ : T .

Proposition VII.24 (Lemmas 2.3.4.11-13 [36]). If

XT—logl _ (}(lf—log1 = X(T)—logo)

T-log, ~

is an open topological groupoid, the factoring geometric morphism

t-log),

p'°¢: Sh (XHOg]) — &Er

is localic.

We sketch the proof to Proposition VIT74. To show that p is localic, it suffices to
1-log;

). Given an
t-log,

show that the subobjects of [ ¥ : T J]x form a generating set of Sh (X

object (Y, g, 8) of Sh (XHOgl) and a point y of Y, by Lemma I 73, there exists a basic

t-log,
t-log),

open [ 171 : & Jix of X, ™ with a local section f: [ 71 : & [x — Y of g such that
(i) the point y is in the image of f,

(ii) for any M € [77 : & [x and an isomorphism M = N € X, if a(i71) = 7 then

B(f(M),a) = f(N).

Let X be a context with the same type as 7. Evidently, there is a local section
g [m:EIx = [X: Tlxof mpzry: [X: T Ix — Xo thatsends M € [ 77 : & Jx to (111, M).
The image of g is thus the open subset [¥: ¥ =M A & lx € [X: T lx. Hence, there is a
commuting diagram of continuous maps

[X:Tlx << [¥:X=mA&]x Y
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The remainder of the proof of Proposition consists of constructing a continu-
ous map h: [¥ =m A &]lx — Y which completes the above diagram and moreover
constitutes a morphism of XT'iOgl -sheaves.

T-10gy

As each element of [¥ = 111 A & [l is of the form {(a(i7i), N) where M 5 N is a T-
model isomorphism in X; and M € [ : £], we take the obvious definition and set
h({a (i), N)) = B(f(M), ).

It must first be checked that this is well-defined, and here we use the fact that X

is a groupoid. Given a second isomorphism M 2, N such that (a(i1), N) = (y(m),N),
then y~! o a is an automorphism of M, contained in X;, such that y~! o a(i) = .
Hence, by hypothesis, B(f(M),y ! o a) = f(M), and so

BV, y) = BBFM), Y™ 0 a),y) = B(F(M), a).

It remains to show that & is continuous and that / is a morphism of ng? -sheaves.
0
For these details, the reader is directed to [36].

Thus, for each object (Y, 4,p) of Sh (XT logl) the arrows of Sh (XT i?) whose do-

mains are subobjects of [ ¥ : T Jix are jointly surjective and therefore the geometric
morphism
plos: Sh( Tlogl) — &1

1-log,

is localic.

Corollary VIL.25. If XT_E? is an open topological groupoid, the geometric morphism
1080

o Sh(X20) s

T-log,

is the localic part of the hyperconnected-localic factorisation of
P Sh(X,, ) — &
Proof. There is a commutative triangle

Sh( Tlog)—)Sh( Tl(’gl)

7-log

\ ll%

STI

where w is hyperconnected by Proposition VT4 and p'°® is localic by Proposition V174,
O
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VIL.4 The proof of the classification theorem

We are now in a position to combine the results of Section VIT2 and Section VI3 to
obtain the classification theorem stated in Theorem VILR. We separate the different
steps of the proof to show clearly the interaction between the two conditions: conser-
vativity and elimination of parameters. Conservativity, unsurprisingly, is equivalent
to the induced geometric morphism being a geometric surjection. Conversely, elimi-
nation of parameters is equivalent the induced geometric morphism being a geometric
embedding. Finally, we also give a sense in which the logical topologies are the only
topologies that need be considered.

Lemma VIL.26. Let T be a geometric theory and let X = (X1 3 Xo) be a model groupoid
for X. Given a pair of factoring topologies to on Xy and t1 on Xy, the factoring geometric
morphism

Sh(X7) — &r
is a geometric surjection if and only if X, is a conservative set of models for T.

Proof. Recall that there is commutative diagram of geometric morphisms

Sets™ ~ Sh(X?) AN Sh(X;") —— Sh(X))

\

where the top horizontal composite u o j is a geometric surjection. Recall also that X,
is a conservative set of models for T if and only if the geometric morphism py is a
surjection.

Thus, using the fact that geometric surjections are the left class in an orthogonal
factorisation system —namely, the (surjection, inclusion)-factorisation (see [63, §A4.2]),
and are therefore closed under composites and have the right cancellation property (if

fogand g are surjections, then so is f), we conclude that Sh (X%) — &ris a geometric
surjection if and only if X, is a conservative set of models for T. |

From a representing groupoid to elimination of parameters. We now continue
with the proof for one implication of Theorem MITB. We first show that an open
representing model groupoid can be given an indexing by parameters for which the
groupoid is conservative and eliminates parameters.

Proposition VIL.27. Let T be a geometric theory, and let X = (X; =3 Xo) be a model groupoid
for T. If X is an open representing groupoid, i.e. there exist topologies on Xy and X; making
X an open topological groupoid such that Sh(X) = Er, then there exist a set of parameters |
and an indexing of X by K for which X is conservative and eliminates parameters.

Proof. We apply Proposition VMIILTZ and Remark VILTS to deduce that there exists an
indexing of X by parameters & and that we can assure that the space [ ¥ : ¢ ]x, i.e. the
image of (¥, T ) under the functor

13

ConP

Con,’ =< FT % Sh(Cony = FT, K1) =~ & ~ Sh(X),
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contains as open subsets the definables with parameters.
Since X is an open groupoid, the orbit of each open subset of the form [ X, 7 : ¢ [Ix

is still an open subset of [¥ : T]x. Therefore, being a stable open, [ %, : ¢ Iy
defines a subobject of [%: T Jx. Under the equivalence &y ~ Sh(X), the subobjects of

Ceon (X, T)and [ X : T J]x mustalso beidentified. Hence, recalling from Section [T2

(cf. [63, Lemma D1.4.4(iv)] as well) that the subobjects of fc(,nifxpr( X, T) are formulae
in the context ¥, we deduce that there exists a formula ¢ such that

[%m: Pl =0%:¢Ix.

Therefore, the groupoid X, as indexed by &, eliminates parameters.
Finally, since an equivalence of topoi is, in particular, a surjection, we can apply
Lemma to deduce that X is also conservative. m|

From elimination of parameters to a representing groupoid. Wenow prove the con-
verse statement of Theorem IVILR that an indexed model groupoid that is conservative
and eliminates parameters yields an open representing groupoid. Unsurprisingly, the
topologies we consider are the logical topologies studied in Sections to MIL3. We
tirst demonstrate that the condition that the model groupoid eliminates parameters is
equivalent to the induced geometric morphism being an inclusion of a subtopos.

Lemma VIIL.28. Let X = (X; =3 Xo) be a model groupoid for T indexed by parameters K. If

X eliminates parameters, then, when both Xy and X, are endowed with the logical topologies,
XHZZ becomes an open topological groupoid.

Proof. We have already seen that XSS? is a topological groupoid in Lemma VIT.20, so
0

it remains to show that either of the continuous maps s, t: Xflogl =3 Xg'k)go are open
too. We will show that t is open.

It suffices to show that the image of each basic open of XI'logl is open in Xg'IOgO.
Suppose that

a:q

Net|ffb-2cf |
d: vy |y
Then there is some isomorphism M < N of X; such that M ¢ ¢(@) and oz(g) = ¢ in
addition to N k ¢(d). Therefore,

@Nye[#d:b=2ng]

X'

Since X eliminates parameters, there is some formula y without parameters such that

We thus conclude that N is contained in the open subset [[3, d:x A Y ]‘x of XS'IOgO.
Given any other N’ € [ ¢, d: X A ¢ Ix, we have that

@NYel#:xIx=[®d:b=%nrp]. .
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Thus, there exists another isomorphism M’ L N’ of X such that M’ E @(d@) and
)/(E) = ¢. Hence, we have that

a:¢
N,N’EI[E),C_Z):)(/\I,D]IXQt b ,
d: vy |y
and thus the topological groupoid Xzizg is open. |

Proposition VIIL.29. Let T be a geometric theory, and let X = (X1 =3 Xo) be a model groupoid
for T indexed by parameters K. The factoring geometric morphism p'°8 is an inclusion of a
subtopos

p'°s: Sh (x”"gl) — Er

t-log,
if and only if X eliminates parameters.

Proof. The first step is to deduce that, under either hypothesis, the geometric mor-

phism p'°¢ is a localic geometric morphism. This is clear if p'° is an inclusion of a

subtopos since every inclusion is localic (see [63, Examples A4.6.2(a)]). Conversely,

if nggl eliminates parameters then, by Lemma VIL78, XTjOgl is an open topological
8o 1108

groupoid. Thus, by applying Proposition VIL74, the factoring geometric morphism

p'°s: Sh (Xr'logl) —> &r

t-log,

is a localic geometric morphism.

Recall that &y is the topos of internal sheaves on the internal locale F' of Sets“*™,
and thus there is localic geometric morphism C . : Er = Sh(F') — Sets“°™. Since
localic geometric morphisms are closed under composition (see [69, Lemma 1.1]),
Sh(XzzZ) is also localic over Sets“". Indeed, by Proposition MII73, it is the topos
of sheaves on the internal locale

SubSh(xT'l"gl)([[ —: T lx): Cony —— Frmpen.

7-logp

Hence, the localic geometric morphism p10g in Section VIT4 is induced by a mor-
phism of internal locales by Proposition [TZ3, namely the internal locale morphism
whose component at a context ¥ is given by the frame homomorphism

X
T-logy

[-1Txz: F'(®) — SUbSh( T-logl)(ﬂfi T IIx),

p[X: @l

By Theorem I3, the geometric morphism p'°¢ induced by the internal locale mor-
phism [ - Jix is an inclusion if and only if [ - ]lx is an internal sublocale embedding,
i.e. [ — IIxy is surjective for each context X.
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Recall that a subobject of [¥ : T Jix is an open subset U that is stable under the
action Opzrq. As the opens of the form [ X, : ¢ Jlx form a basis for the topology on
[%: T Ix, every stable open subset U is of the form

U:U[[a_c’,n_iizlpi]]x.

Therefore, the stable opens of the form [ X, : i ] form a basis for the frame of
subobjects

SUbSh(X:Z?J)([[ X:T]x)
and so [ - Jlxz is surjective if and only if every basic subobject [ ¥, : i ]l is in the
image of [ - JIxz. This is precisely the condition that X eliminates parameters, from
which we deduce the result. O

Remark VII.30. Let T be a geometric theory over a signature X, and let X = (X; = X))
beamodel groupoid for T indexed by parameters 8. Asremarked in Remarks VITAiv),
the condition that X eliminates parameters depends only on the signature of the theory
T. This can be retroactively justified topos-theoretically in light of Proposition
by equating those indexed model groupoids that eliminate parameters with those
indexed model groupoids for which p'°8 is an inclusion.

Let [Eyx denote the empty theory over the signature Y. As T is a quotient theory
of Ey, the theory T is classified by a subtopos &Er > &g, (see [22, §3]), and so,
by Proposition MIL29, X eliminates parameters if andonly if there are inclusions of
subtopoi

Sh (x”"gl) Sy Er 3 Ex,,

7-log),
whence we deduce that X eliminating parameters depended only on the signature X.

Since a geometric morphism is an equivalence of topoi if and only if it is both a
surjection and an inclusion (see [63, Corollary A4.2.11]), we deduce the following:

Corollary VIL31. Let X = (X1 = Xo) be a model groupoid for a geometric theory T, and let
X be indexed by a set of parameters K. The geometric morphism p'°8 is an equivalence of topoi

Sh (x“‘)gl) ~ Ep

t-log),
if and only if X is conservative and eliminates parameters.

Combining both Proposition VITZ7 and Corollary MIT3T completes the proof of
Theorem VILH. Moreover, we can also use the results to deduce the sense in which
the logical topologies are, essentially, the only topologies that need be considered for
model groupoids.

Corollary VII.32. Let T be a geometric theory, and let X = (X; = Xo) be a model groupoid
for . If there exist topologies on X, and Xy making X an open topological groupoid such that
Sh(X) = &r, then there is an indexing of X by a set of parameters | such that

Sh (Xr—logl) ~ ST ~ Sh(X).

t-log
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VIL.5 Applications

In this section we present some applications of Theorem VIIR, divided as follows.

The first two sections justify our use of indexings of models, i.e. presenting mod-
els as a subquotient of a set of parameters. Section VIT51is devoted to the study
of atomic theories. These are the only theories whose models of a representing
groupoid may be indexed by disjoint sets of parameters. We will recover the
logical ‘topological Galois theory’ result of [?1] that the automorphism group of
a single model represents an atomic theory if and only if the model is conser-
vative and ultrahomogeneous. We also give a characterisation of Boolean topoi
with enough points reminiscent of the characterisation established in [[T].

In Section MIT52, we demonstrate that, instead of subquotients, we can present
the models in a representing groupoid as subsets of a set of parameters only in
the case when the theory has decidable equality. We also generate examples of
representing groupoids for decidable theories.

We demonstrate in Section VIT53 that every representing model groupoid is
Morita equivalent to its étale completion, i.e. the model groupoid with the same
objects and all possible isomorphisms between these constituent models, par-
alleling the analogous result for localic groupoids (see [92, §7]). We also show
that the étale completion of a representing model groupoid can be calculated as
a topological closure in the fashion of [52, §4].

We recover in Section VIL54 the representation theorems given by Butz and
Moerdijk in [I7] and by Awodey and Forssell in [5], [37] by demonstrating
that the considered groupoids fall within a general framework of ‘maximal
groupoids’.

Finally, having studied how to generate a representing groupoid of indexed
models for any theory, we answer the converse direction and describe a theory
which is represented by a given groupoid of indexed structures. This extends
the techniques developed in [62, Theorem 4.14] for subgroups of the topological
permutation group on a set.

VII.5.1 Atomic theories

In this section we will study those model groupoids of a theory that eliminate param-
eters when their constituent models are indexed by disjoint sets of parameters. We
will observe in Proposition VI35 that this requires the theory to be atomic.

We revisit Caramello’s ‘topological Galois theory” and demonstrate that the results
of [21] concerning atomic theories can be recovered via the classification theorem.
We also give a characterisation of Boolean topoi with enough points in a manner
reminiscent to [IT].

Definition VII.33 (Proposition D3.4.13 [63]). A geometric theory T is atomic if one of
the following equivalent conditions is satisfied:

(i)
(ii)

for each context ¥, FT(¥) is generated by its atoms,

the classifying topos &y of T is atomic (see §C3.5 [63]).
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If T is known to possess enough points, by [20J, Theorem 3.16] we can add a further
equivalent condition to the above list:

(iii) every (model-theoretic) type of T is isolated, also known as principal and complete,
i.e. for each model M of T and tuple 7 € M, there is a formula x;, the minimal
formula of i, such that

a) for any other tuple 77 of the same sort as 7 in another model N of T,
then N £ x;(ii) if and only if 77 and 77 satisfy the same formulae - i.e.
tp,, (1) = (x@), read as x; isolates the type of i (see [89, §4.1]);

b) for all formulae ¢ in context ¥, either T proves the sequent x; Fz @ or T
proves x; A @ +z L —equivalently, given a pair of tuples in two models, if
tp (1) C tpy (i) then tp,,(17) = tp, (7).

Recall also from [63, Corollary C3.5.2] that, under the assumption that T has
enough points, the properties that T is an atomic geometric theory and that T is a
Boolean geometric theory (i.e. the classifying topos &r is Boolean) coincide.

Examples VIL.34. (i) The terminology minimal formula is derived from the analogy
with minimal polynomials. We define the theory of algebraically closed fields
of finite characteristic which are algebraic over their prime subfield AC]FEIE as
the theory for which, in addition to the usual axioms of an algebraically closed
tield, we also include as axioms the sequents

in which the former expresses that the characteristic is finite while the latter
expresses that the field is algebraic over its prime subfield.

This is an atomic theory with enough points. For each single element a in
an algebraically closed field F algebraic over its prime subfield, the minimal
formula of a is precisely the conjunction of the minimal polynomial of 2 with
the formula T +y 1 +1---+ 1 = 0 expressing the characteristic of the field. For a
tuple @ = (ay, ... ,a,) of F, the minimal formula of 7 is the formula

/\qi(xl,...,xi)/\1+1---+1:O,
i=1

p times

where p is the characteristic of the field F, and gi(a1, ... ai-1, x;) denotes the
minimal polynomial of the element a; over the field extension F(a;, ... ,a;-1) (cf.
Proposition VIL65).

(ii) The theory D, of infinite decidable objects is also an atomic theory. It is the
single-sorted theory with one binary relation # and the axioms
X=YANXFYbryy L,
ThyX=yVx+y,
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and, for each n € IN, the axiom

Tredys, oo, Yn /\x;tyi /\A Yi# Y

i<n i<j<n

The minimal formula of a tuple 77 in a model is the formula

/\Xi:X]‘/\ /\Xiix]'.

ni=n; ni#n;

In a similar fashion, we can deduce that the theory of dense linear orders without
endpoints DILO.,, the theory of atomless Boolean algebras, and the theory of the Rado
graph are all also atomic theories. A formal proof that these theories are atomic can
be found in [18], [21].

Proposition VIL.35. Let X be model groupoid for T that is conservative and eliminates
parameters for an indexing such that the set of parameters used to index each model M € X,
are mutually disjoint. Then T is an atomic theory.

Proof. As each M € X is disjointly indexed from every other N € X, the space X(T)'logo

is discrete. Hence, by [63, Lemma C3.5.3], Sh(Xg'logo) is an atomic topos. Recall from
Lemma V8 that there is an open surjective geometric morphism

T-log,

Sh(X™™*®) — sh (xT‘k’gl) ~ &1,

and thus by applying, [63, Lemma C3.5.1] we obtain, the desired result. |

We now turn to the theory of [?T] and consider the groupoid consisting of the
automorphism group of a single model. We note that for this groupoid there is
essentially only one indexing, the trivial indexing from Examples MIT3(i), since a
parameter can be conflated with the element of the model it indexes. Thus, we will
assume that the automorphism group is trivially indexed. We will show that, if T
is an atomic theory with enough points, then the automorphism group of a single
model eliminates parameters if and only if that model is ultrahomogeneous. Thus,
we deduce the principal result of [2T].

Elimination of parameters implies ultrahomogeneity. We first observe that elim-
ination of parameters by the automorphism group of a single model implies ul-
trahomogeneity. Recall that the model M is ultrahomogeneous if each finite partial
isomorphism

it —— i
Lol
M M

can be extended to a total isomorphism M <> M.

Lemma VIL36. If M is a model of an arbitrary geometric theory T such that the group
Aut(M) eliminates parameters, then M is ultrahomogeneous.
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Proof. For a fixed tuple 1 € M, by hypothesis there is a formula without parameters
such that

[X=rm ]]Aut(M) =[x: @ lautw)-

If there is a partial isomorphism 7 — i, then i, 7 € [ ¥ : ¢ Jauan. Therefore, i is an

element of [ ¥ : X = 771 ]|y, and so there exists an automorphism M = M such that
a(m) = 1. O

Ultrahomogeneity and atomicity imply elimination of parameters. We now give
the opposite implication that, under the assumption that T is atomic, if a model is
ultrahomogeneous then its automorphism group eliminates parameters. Thus, by
combining Lemma above and Lemma MIT37 below, we recover the principal
result of [2T].

Lemma VIIL.37. Let T be an atomic geometric theory with enough points. If M is a ultraho-
mogeneous model, then Aut(M) eliminates parameters.

Proof. We claim that, for each tuple meM,

[3? = 77—”)1 ]]Aut(M) = [[f X ]]Aut(M)/

where x;; is the minimal formula of 7. Since M k x;(111) by definition, one inclusion

[% = Dawny € 0% : X Dawen

is immediate by Remarks VILAV).

For the converse, if 77" € [¥ : x; Jaut, then 7,77 have the same type and so
there is a partial isomorphism 77 — 7i’. As M is ultrahomogeneous, this extends to a
total automorphism a: M — M for which a(i1) = 7i’. Hence, we obtain the converse
inclusion

[X: xa Dawan S [X = 7 Tawon-

By Remarks VIT/[iii}, this suffices to demonstrate that Aut(M) eliminates parameters.
O

Corollary VIL.38 (Theorem 3.1 [21]). Let T be an atomic theory and let M be a model of T.
There is an equivalence of topoi
811" = BAut(M)

if and only if M is a conservative and ultrahomogeneous model. Here, the group Aut(M) has
been topologised with the Krull topology (also called the pointwise convergence topology). It
is the coarsest topology making Aut(M) a topological group for which the subsets

{M&M‘a(ﬁ) =},
for every finite tuple ii € M, form a basis of open neighbourhoods of the identity.

Examples VII.39 (§5 [2T]). We revisit some of the examples of atomic theories from
Examples M1I.34 and describe conservative ultrahomogeneous models for them.
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(a) Any infinite set, in particular IN, is a conservative ultrahomogeneous model
for the theory D, of infinite decidable objects. Therefore, D., is classified by
BAut(IN), the Schanuel topos.

(b) The rationals Q, with their usual ordering, is a conservative and ultrahomoge-
neous model for the theory IDILO... Its classifying topos is BAut(Q).

(c) Let R denote the Rado graph. Itis a conservative and ultrahomogeneous model
for its namesake theory, which is therefore classified by BAut(R).

Recall from [0, Theorem 3.16] that if an atomic theory T is also complete, by which
we mean that any model is conservative (or equivalently, by [20, Proposition 3.9], for
every sentence ¢, either T proves T + ¢ or T proves ¢ + L), then the theory T is also
countably categorical, i.e. any two countable models of T are isomorphic. Therefore, it
suffices in Corollary to take M as the unique countable model of the theory —
if this exists — since this will automatically also be an ultrahomogeneous model (see
[62, §10.1]).

Example VII.40. Let T be an atomic theory and let M be a conservative model of T.
In order to assure the reader that ultrahomogeneity is a non-trivial requirement on
M, despite the hefty conditions placed on T by being an atomic theory, we briefly
describe a conservative model for IDILO, which is not ultrahomogeneous. Let R
denote the real numbers with the usual ordering, and let R + R denote the model
whose underlying set is

{1} xRU{2} xR

given the lexicographic ordering. This is a conservative model of the theory of dense
linear orders without endpoints (since this is a complete theory). However, it is not
ultrahomogeneous.

We note that, for any r € IR, the partial isomorphism (1,7) — (2, ), as visualised in
the diagram

~
(1,7 (2,7)

(——) + (

),

cannot be extended to a total automorphism of R + R. If there did exist such a total
automorphism of R + R, then the subset

{1} X (=00,r) CR+ R,

being the down-segment of (1, r), would necessarily be mapped isomorphically to the
subset
{1} XxRU{2} X (—00,7) CR + R,

the down-segment of (2, ). However, the interval (=0, r) = {1} X (=00, ) is Dedekind-
complete, meaning that every subset of (—oo, ) with an upper bound has a least upper
bound, while {1} X RU {2} X (=00, ) is not Dedekind-complete, namely the subset
{1} XRC {1} xRU{2} X (—00,r) does not have a least upper bound.

This one model therefore serves as a counterexample to several natural questions
arising from the study of representing groupoids for topoi.
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(i) Recall from [68] and [34] that a connected atomic topos is represented by the

localic automorphism group of any of its points. This is because any point of
a connected atomic topos is an open surjection (see [68, Proposition VIL.4.1]).
Being a complete atomic theory, the classifying topos for the theory IDLO,, is a
connected atomic topos. Thus, the theory is represented by the localic group of
automorphisms Aut(R+R)"° but not by the topological group of automorphisms
of R + R (see [21] or Corollary above).

The discrepancy occurs because Aut(R + R)"¢, the localic automorphism
group constructed in [34, Proposition 4.7], is not spatial. The underlying lo-
cale Aut(R + )" of the localic automorphism group can be described as the
classifying locale for the following geometric propositional theory.

a) For each pair of elements x, y € R + IR, we add a pair of basic propositions
[a(x) = y] and [x < y].

b) For every pair x, y € R + R with x < y, we add the sequent T + [x < y] as
an axiom to the propositional theory, and for every quadruple of elements
x,x",y,y € R+ R wherex # x’ and y # y’, we also add to our axioms the
sequents

[a(x) = y] A [a(x) = y]+ L,
[a(x) =yI A la() =y']F L

and

T \/ e =yl

xeR+IR

T+ \/ la@) =yl

yeER+R

expressing that the symbol o encodes a bijection from R + R to itself.
Additionally, we include the bidirectional sequent

[a(x) =yl A [a(x) =y'] A [x <X] 4 [a(x) =yl A la(X) =y 1Ay < V],

as an axiom, expressing that a encodes an automorphism of R + R as a
linear order.

We note the similarities between this propositional theory, for which the locale
Aut(R + R)'* is its classifying locale, and the propositional theory P[T~] from
Section VT3, for which GT is its classifying locale.

A point a: 2 - Aut(R + R)"° of this locale evidently corresponds to an
automorphism of the model R + R. We therefore deduce, by the above analysis,
that the non-trivial open of Aut(RR + IR)* corresponding to the basic proposition
[(1,7) — (2,7)] is evaluated by o ! as

a t([(1,r) = (2,7)]) = L.

Hence, Aut(R + R)'°® is not a spatial locale.
In summary, we have that

Epro. =~ BAut(R + R)'¢ # BPt(Aut(R + R)"°) ~ BAut(R + R).
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It is then natural to wonder: if not DILO.,, what theory is classified by the topos
BAut(R + IR)? Such a theory is described in Example VIL&1 as an application of
the techniques exposited in Section VIT25.

(ii) Let T” be a theory of presheaf type, i.e. the classifying topos of T’ is a presheaf
topos. By [22, §6.1.1], this presheaf topos can be chosen to be the topos

~ op
Setsf.p,'ll" mod(Sets) ,

where f.p.T-mod(Sets) denotes the category of finitely presented models (see [22,
Definition 6.1.11]). We will say, in accordance with [[8, Definition 2.3(a)], that
a model M’ of T’ is homogeneous with respect to the finitely presented models, or
f.p.-homogeneous for short, if for every pair of finitely presented models N, N’
and homomorphisms f: N — M’ and g: N — N’ of T’-models, there exists a
homomorphism of T’-models & such that the triangle

N L

7
g\L 7
// h

N/

commutes. Every ultrahomogeneous model is f.p.-homogeneous (see [I8, Re-
mark 2.4(a)]).

The theory of linear orders is a theory of presheaf type by [79, §VIIL8], and
the finitely presented linear orders are simply the finite linear orders. Moreover,
the dense linear orders without endpoints are precisely those linear orders that
are f.p.-homogeneous (see [?T, Remark 3.8(a)]). Thus, R + IR is an example of a
f.p.-homogeneous model that is not ultrahomogeneous.

Boolean topoi with enough points. Extending Corollary MII38, we can use the
classification theorem to characterise Boolean topoi with enough points in a manner
reminiscent of [[T]. Recall that a topos with enough points is Boolean if and only if it
is atomic.

We first require one lemma on the quotient theories of a theory classified by a
Boolean topos. Recall from Definition [IT48 that a quotient theory T” of T is a theory
over the same signature whose axioms include the axioms of T.

Lemma VIIL.41. If T is a geometric theory whose classifying topos is Boolean, then every
quotient theory of T is determined by the addition of a single extra sentence T +y @ as an
axiom.

Proof. There are two ways to see this: one topos-theoretic, and one syntactic. We
include both, though of course they are merely translations of one another.

A quotient theory T’ of T is classified by a subtopos of &Er. Every subtopos of a
Boolean topos is open by Corollary 3.5 [68]. Therefore, being an open subtopos of &,
& corresponds to a subterminal in &, i.e. a sentence {0 : ¢ }.

Alternatively, if &y is a Boolean topos, then we recall from [63, §D3.4] that every
formula of infinitary first order logic (i.e. including negation —, implication —, universal
quantification ¥, and infinitary conjunction /\) is T-provably equivalent to a geometric
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formula. This is equivalent to requiring that the doctrine F': Cony — Frmgpe, associ-
ated to the theory factors through complete Boolean algebras CBool. We are therefore
free to manipulate geometric sequents as though they existed in infinitary first order

logic. Hence, we easily see that any quotient theory T’ = T U {(pi 2, P | iel } of T is
equivalent to the theory

T = TU{T ko V¥ p; — lpl-[iel} ESTU{T Fo /\vfl-@i — lpi},
i€l
i.e. the quotient of T by a single sentence. O

Corollary VIL.42. A topos & with enough points is Boolean if and only if there is a set of
topological groups { G, | x € Xy } such that

Proof. Firstly, we recognise that a topos of the form [[,.x, BG, is really just the topos
of sheaves for the topological groupoid

HGx:;]_IlEXg

XEXO XEXO

G =

This topological groupoid is, of course, automatically open. We could call groupoids
of this form the bouquet groupoids since, when written out diagrammatically, they
appear as a collection of ‘flowers’ — the group elements g € G, being the ‘petals’, e.g.

O O
GO GO

By Proposition MIL35, if there is an equivalence & ~ [y, BG, for some set of topo-
logical groups { G, | x € X }, then & is Boolean.

For the converse direction, let T be a geometric theory classified by the topos &.
By the hypotheses, T is an atomic theory with enough points. We can therefore find
a conservative set of models X, for T. In fact we can choose each model M € X, to
be ultrahomogeneous since, via a standard result in model theory, every model is an
elementary substructure of a ultrahomogeneous model (see [62, §10.2]). Moreover,
we can evidently choose the models M € X to be pairwise elementarily inequivalent
(i.e. no two models satisfy all the same sentences) and also pairwise disjoint. There-
fore, by Lemma WVIT37 we deduce that each automorphism group Aut(M) eliminates
parameters.

Thus, when given the trivial indexing, the model groupoid
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obtained by taking as objects the models M € Xj and as arrows all automorphisms,
also eliminates parameters.
To see this, we first note that for each definable with parameters

|ERTERY T ipex, Autan),

the parameters 71 are only instantiated in one model M € X, (since the models of X,
were chosen to be pairwise disjoint). Therefore, since there are no arrows between
distinct models of our groupoid, (modulo a transparent abuse of notation) we have
that

Lx,m: ¢ ]]HMexo Aty = L7102 T p -

Let ¢ be a formula without parameters such that

[[J_C),ﬂ—’)l : wHAut(M) = [[f (P]]Aut(M)-

We are not quite done since [ X : ¢ Jauton) # [%:¢ ]]HMEXO Aut(Mm)- Instead, we must
find a formula that isolates those realisations of ¢ in M from those in other models
M’ € X,. This is achieved by Lemma VIT41. Let Ty, denote the theory of the model M,
i.e. the set of geometric sequents

Ty = {x rz E| 2 x I CIZ: EDu )

Thisis evidently a quotient theory of T. Thus, by Lemma VIT4T, there exists a sentence
Em such that M is the only model in X, which satisfies £y — since the models of X
were chosen to be pairwise elementarily inequivalent. Therefore, we have that

— S >
[x,m:y ]]HMEXO AutM) — [X:pAEum ]]HMEXO Aut(M)

as required. Thus, [];cx, Aut(M) is a conservative model groupoid for T that elimi-
nates parameters and so, by Proposition MIL.29, we conclude that & ~ [[;,cx, BAut(M),
once each automorphism group has been suitably topologised. m]

Example VIL.43 (Proposition 2.4 [?5]). We return to the theory AC]FEIE defined in
Examples VII34(i). Being an atomic theory with enough points, by Corollary VITL42
we know it can be presented as a coproduct of topoi of actions by topological groups.
Indeed, the theory is classified by the topos

[] BAut(z/p)),

p prime

where Z/(p) is the algebraic closure of Z/{p), and Aut (Z/ (p)) has been topologised
with the usual Krull topology. This is precisely [?5, Proposition 2.4].

The principal result of [TT] classifies Boolean coherent topoi. As coherent topoi
automatically have enough points, the result can be obtained from Corollary VITZ2
by discerning when the topos [[,cx, BG is coherent. This occurs when Xj is a finite
set and each Gy is a coherent topological group. We refer to [[[1] for the details.
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VIL.5.2 Decidable theories

We saw in Proposition VI35 that we cannot, in general, require that the models in
a representing model groupoid be disjointly indexed. In this subsection, we demon-
strate further that nor can we remove the requirement that multiple parameters may
index the same element of a model, i.e. that each model is presented as a subquotient
of its set of parameters rather than a subset. We will observe that this is possible only
if the theory is decidable.

Definition VII.44. A geometric theory T over a signature X. is decidable if, for each pair
of free variables x, x’ of the same sort of X, there is a formula in context x,x’, which
we suggestively denote as x # x’, such that T proves the sequents

X=X AX#FX by L, Thypyx=x"Vx#x.

Let X = (X; 3 Xo) be a model groupoid for a geometric theory T. Consider the
trivial indexing of X, described in Examples VIL3(i), with parameters as the elements
of the constituent models Jy;cx, M. For this indexing, each element n € M € X is
indexed by precisely one parameter.

It is not hard to see that, up to isomorphism, this is the unique indexing of X with
this property. Suppose that Xisindexed by a set of parameters & in such a way that, for
each n € M € X, there is a unique parameter m € { that indexes n. This is equivalent
to presenting each model M € X as a subset of the set of parameters, rather than a
subquotient. By replacing the underlying set of M with the corresponding subset of
parameters, we have now trivially indexed X (we have ignored the fact that our set
of parameters may include some unused parameters).

Proposition VIL.45. Let X = (X; =3 Xo) be a conservative model groupoid for a theory T.
If, when X is given the trivial indexing, X eliminates parameters, then T is a decidable theory.

Proof. We must show that, for each pair of free variables x, x" of the same sort, the
formula x = x’ has a complement in FT(x,x’). As X is conservative and eliminates
parameters it is a representing model groupoid by Theorem WVITH, and so by the
isomorphism

T N~
F (x,x") = SubSh(x

T-logl)([[ xl x, :T ]]x)l
7-logg
finding a complement for the formula x = x” is equivalent to showing that [ x = x’ Jlx
has a complement.

We claim that this complement, which we denote by [ x # x’ ], is given by

U [x=mAx"=m]x
mm’ €Upex, M
m#Em’

We must first show that [ x # x’ ]x does indeed define a subobject, i.e. a stable open
subset, of [ x, x" : T ]lx. The subset [ x # x’ ]ix is the union of opens, and therefore open
itself. Now suppose we are given an element (11, n’, M) € [ x # x’ ]x. By the definition,
n # n’ and so a(n) # a(n’) for any isomorphism M % N. Therefore, (a(n,1’), N) is also
an element of [ x # x’ ]x. Thus, [ x # x’ ]Ix is a stable open as desired.
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It is now not hard to conclude that [ x # x’ ]Ix is a complement to [ x = x” [x. Given
(n,n’,M) € [ x,x" : T ]lx, either n = n’ or n # n’, yielding

[x=x"IxVUllx#x"Ix=0xx":Tlx.
It is similarly easy to conclude that [x =x" [x N [x # x" [Ix = 0. O

Since not every geometric theory is decidable, we cannot in general require that
each element of a model groupoid is indexed by a unique parameter. Even when our
theory is decidable, we must allow for the models of our groupoid to share elements,
i.e. parameters.

Examples of representing groupoids for decidable theories. Finally, we present a
useful result from which it is possible to easily generate representing groupoids for
many theories. Note that the only theories that can be represented by the groupoids
generated using the below method must also be decidable. This can be seen by an
application of Proposition VILZ5.

Proposition VII.46. Let T be geometric theory over a signature .. Suppose that a conser-
vative set of models for T can be found as substructures of an ultrahomogeneous X-structure
U whose theory Th(U) (i.e. the theory over ¥ whose axioms are all sequents satisfied by U)
is atomic, and moreover the minimal formula x; of any tuple of elements i € U is quantifier
free. Then the model groupoid Subyt(U) of T,

(i) whose objects are the substructures of U that are models of T,

(ii) and whose arrows are all isomorphisms between these,

is a representing model groupoid for T, i.e. there is an indexing of Suby(U) such that

Ex = Sh (Subs (W7 ).
0

Proof. By hypothesis, the model groupoid Suby(U) is conservative. It remains to show
that the the groupoid Suby(U) has an indexing by a set of parameters for which the
groupoid eliminates parameters. The indexing set we use are the elements of the
L-structure U. The indexing of a model M € Suby(U) is determined by the inclusion
M C U of M as a substructure of U.

Since U is an ultrahomogeneous model of the atomic theory Th(U), we have that,
by Lemma NMIT37, for each tuple 1 € U,

[[J_C) =1m ]]Aut(U) = [[3_5) X ]]Aut(u)/

where x;; is the minimal formula of m € U.
We claim that

[X = 1 lswean = [X 2 X Dsubr-

Since x;; is a quantifier free formula, M E x;(7) for any T-model M C U that contains
m. Thus, the first inclusion

[X =7 supyan S [X : X Dsubruy
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follows from Remarks VILAv). Conversely, given another witness 7 of x;; in a T-
model N C U, there exists, by the ultrahomogeneity of U, an automorphism « of U
that sends 77 to 7i. We have that a”!(N), N C U constitute a pair of T-models, and

al(x‘l(N): 0(_1(N) — N

is an isomorphism of Z-structures that sends 71 € a™'(N) to 7 € N. Therefore, we have
that (i, N) € [ ¥ = 77 [lsp, ), completing the reverse inclusion. O

Examples VII.47. We apply Proposition VITZA to give a pair of simple examples of
model groupoids for decidable theories.

(i) (§2.4.1 [B]) The theory of decidable objects is the single-sorted theory with one
binary predicate # and the axioms

X=X AX#X by L, Thapyx=x"Vx#x.

As observed in Examples VITL3%a), the natural numbers is an ultrahomogeneous
model of the theory of decidable objects. The theory of IN is the theory of infinite
decidable objects ID., from Examples VIL34(ii), an atomic theory whose minimal
formulae are quantifier free.

Moreover, the subsets of IN are a conservative set of models for the theory of
decidable objects. Hence, by an application of Proposition MIL48, the theory of
decidable objects is classified by

Sh (SubN)? %% ).
0
(ii) Let Kbe a field. We denote by Tk, the theory of algebraic extensions of K. This is
the single-sorted theory over the signature consisting of the standard signature
of a ring with an additional constant symbol for each element of K. The axioms
of Tk, consist of the following:

a) the standard axioms of a field and an axiom T + (p(l?) for each sentence ¢
with constants k € K satisfied by K, ensuring that each model of T(_x) is a
field extension of K,

b) and the sequent

Tr \/ 90 =0,
qeK]x]
expressing that any model is an algebraic extension of K.

The algebraic closure K of K is an ultrahomogeneous structure whose theory is
atomic and whose minimal formulae are quantifier free (cf. Examples MIL34(i)).
Hence, by an application of Proposition MITL486, the theory Tk, is classified by

the topos
—\ 7-log;
sh (sub (K)., "),
t-log,
where Sub (K) is the groupoid of intermediate extensions of K, and all isomor-
phisms between these.
By Proposition MIT25, the theory Tk is decidable. Indeed, we can identify
the complement of the equality predicate as the formula dy v - (x —x’) = 1.
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VIL5.3 FEtale complete groupoids

We now study the behaviour of a representing model groupoid when we expand its
set of arrows, inspired by the consequence of the descent theory of Joyal and Tierney
that every open localic groupoid is Morita equivalent to its étale completion (see [92,
Definition 7.2] and Remark VTA above). Here we study the equivalent topological
definition.

Definitions VIL.48 (cf. Definition 7.2 [97]). Let T be a geometric theory and let
X = (X; 3 Xp) be a model groupoid for T.

(i) The groupoid X is said to be étale complete if every T-model isomorphism be-
tween models M, N € X is instantiated in X;.

(ii) We denote by X the étale completion of X. This is the model groupoid X whose
set of objects is the same set of models X as for X, but whose arrows are all
T-model isomorphisms between models M, N € X.

So far in Section MIL52 and Section VITHT, the only specific examples of repre-
senting groupoids we have considered have all been étale complete model groupoids.
Our classification given in Theorem VITH is powerful enough to also recognise a rep-
resenting model groupoid even when it is not étale complete. We give an example of
a representing model groupoid that is étale incomplete in Example VI 29. However,
we will observe that, just as is the case for localic groupoids, every open topological
groupoid is Morita equivalent to its étale completion, by which we mean that their
topoi of equivariant sheaves are equivalent.

Example VII.49. Let T be an atomic theory and M a ultrahomogeneous and conser-
vative model of T. We note that we do not require all the automorphisms of M in
order to extend every possible partial isomorphism of finite substructures. Therefore,
by taking a certain subgroup of Aut(M), we would still be able to use the ultrahomo-
geneity property that was so crucial in proving that Aut(M) eliminates imaginaries in
Lemma MIT37. We manufacture such an example below.

We once again consider the theory DLO,,. Recall from Examples that this
theory is represented by the automorphism group Aut(Q). We will show that we
can take a (topologically dense) subgroup X of Aut(Q) which does not contain all
automorphisms, and yet X eliminates parameters and hence is a representing group.

We note that, for any rational number r € Q, the map p + p+ris an automorphism
of Q. We will say that an automorphism a: Q — Q is boundedly additive if, apart from
a bounded interval, it is given by addition. Explicitly, a is boundedly additive if there
are bounded (closed) intervals [g1,71] € Q and [g2, 2] € Q such that:

(i) firstly, a maps [g1,71] to [g2, 2],
(ii) on the interval (—o0,q1), v actsbyp > p+q.— ¢,
(iii) and on the interval (11, ), ¢ actsby p = p + 1, — 1.
The identity is clearly boundedly additive, and if a and y are boundedly additive,
then by choosing a sufficiently large interval we can ensure that their composite a0y is

boundedly additive too. Let X denote the subgroup of Aut(Q) of boundedly additive
automorphisms.
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We claim that for any tuple 7, € Q, we have that

[7=d1x=17:x;Ix

where x; is the minimal formula of 7;, and thus that X eliminates parameters. We
automatically have one inclusion

[y=d1xcl7:xsIx

For the converse, we must show that for any other tuple 7, € Q with the same order
type as §,, there is a boundedly additive automorphism a: Q — Q that maps §,
onto q} This is straightforward. Let q; and r; denote, respectively, the least and
greatest elements of ”71/ and similarly define g, , for 072. Using the standard back-
and-forth methods one uses to show that Q is ultrahomogeneous (see [62, §3.2]), we
can construct an order isomorphism [g1,71] = [g,, 7,] that maps ¢, onto ,. It is now
clear that this can be extended to a total and boundedly additive automorphism of
Q. Thus, X is an automorphism subgroup on a conservative model that eliminates
parameters, and hence a representing group of the theory.

The subgroup X is not the whole group Aut(Q). An example of an automorphism
of Q that is not boundedly additive can be constructed out of one which is. Firstly
we note that Q is order isomorphic to countably many copies of itself given the
lexicographic ordering since, given some irrational 4,

QEU(a+n,a+n+1)EHQ.

nez

Let a be aboundedly additive automorphism whose non-additive part [g1, 71] = [92, 72]
is truly non-additive (the automorphism a could be, for example, the total automor-
phism induced by the partial isomorphism1 <2 < 4+~ 1 < 3 < 4). Anautomorphism
of Q which is not boundedly additive is now obtained via the composite

e=[Joe —2 [[e=e

Proposition VIL.50. Let X = (X; =3 X,) be a model groupoid for a geometric theory T,
indexed by a set of parameters K, that is conservative and eliminates parameters. For any
other model groupoid X' = (X] =3 X{) such that X, = X[, and X; C X7, i.e. X is a surjective
on objects subgroupoid of X', then X' is also a conservative model groupoid that eliminates
parameters when the models M € X, = X are given the same indexing by K.

Proof. We first note that, since X and X’ contain as objects the same models given the
same indexing by the parameters &, for a formula ¢ and a tuple of parameters 77, we
have that [ ¥, : ¢ ]x = [ X, 7 : ¢ [x. We also conclude that X’ is conservative since
Xis.

Let [ X, 7 : ¥ ]lx be a definable with parameters. Since X eliminates parameters,
there is a formula ¢ such that

[xm:]=0%:¢lx



VIL.5. APPLICATIONS 237

We claim that [ X, 71 : ¢ ], = [ ¥ : ¢ I too. One inclusion is immediate since
[X:@lx =0%:@lx=0Xm: ¢l CIXm:PIy.

For the converse inclusion, for each element (i1, N) € [ ¥, : ¢ I, there exists some
model M and 7 such that M & (i, ) and a T-model isomorphism M = N € X
such that a(i7') = #. Hence, M k ¢(ii’) since

(M) elZi:pIxCIZm: ¢l =[2:lx
and so N k ¢(f) too. |

Hence, we are immediately able to deduce the following;:

Corollary VIL51. If X = (X5 = Xo) is a representing model groupoid for T, then X is
Morita equivalent to its étale completion, i.e. there exists an indexing of the models M € X,
such that

Sh (x”"gl) ~ Sh (X”"gl) .

7-log, -log,

The étale completion as the topological closure. The étale completion of a model
groupoid can be calculated entirely topologically via an adaptation of [62, Theorem
4.14]. Therein, it is demonstrated that, for a subgroup G € Sym(A) of the permutation
group on a set A, the following are equivalent.

(i) The subgroup G € Sym(A) is a closed set, when Sym(A) is endowed with the
Krull topology (also called the pointwise convergence topology).

(ii) The group G is the automorphism group of the set A when equipped with a
L-structure, for some single-sorted signature X.

We present how this result can be adapted to calculate the étale completion.

Let X = (X1 = Xp) be a model groupoid for a geometric theory T over a signature
L with an indexing 8 — X by a set of parameters K. For each pair M,N € X, we
define the hom-space Homx(M, N) as the subspace

Homx(M, N) = s/ (M) N t7/(N) € X °%".

Equivalently, Homx(M, N) is the set of isomorphisms M 5 N € X; endowed with the
topology generated by the basis

= i = (M N’a(ﬁ) =2},

for each pair of tuples of parameters b,2e K.

If we were to forget that the models M and N had X-structure, we could still
construct a hom-space Iso[M, N] of all isomorphisms between the underlying sets
interpreting the sorts of M, N. The space Iso[M, N] is endowed with the analogous
topology generated by the basis

= E]]ISO[M,N] = (M5 N‘a(l;) =2},

for each pair of tuples of parameters b2 e K. Evidently, Homx(M, N) can be embedded
as a subspace into Iso[M, N].
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Proposition VIL.52 (Theorem 4.14 [B2]). Suppose that X eliminates parameters. For each
pair M,N € X, the hom-space Homg (M, N) in the étale completion X is the topological
closure of the subspace

Homy(M, N) C Iso[M, N].

Proof. We must show that a point M = N € Iso[M, N] is an accumulation point of
Homx (M, N) if and only if it is an isomorphism of M and N as Z-structures.

First, suppose that a preserves Z-structure, and let [[l; 7 ]‘ be any basic

Iso[M,N]
open neighbourhood of a. Since X eliminates parameters, there exists a formula x

over X such that

[#=p], =07 xIx =17 x1x
The isomorphism a preserves the interpretation of x, and so
ap)=ce[2:xIx=[%= b]]x.
Therefore, there exists an isomorphism

M- N e Homy(M, N) € Iso[M, N]

such thaty € [ bis @ lisopmny- Hence, a is an accumulation point of Homy (M, N).
Conversely, if a is an accumulation point of Homx(M, N), then for each tuple

of parameters 7 € K, there is an isomorphism of X-structures M L N such that
a(n) = y(m). Thus, since every tuple of elements of M is the interpretation of some
tuple of parameters, a preserves the Z-structure. m|

VIL.5.4 Maximal groupoids

We now turn to the topological groupoids considered in the works of Awodey, Butz,
Forssell and Moerdijk [5], [17], [37] and demonstrate that these too fall within our
general framework. Let X be a model groupoid for a geometric theory T indexed
by a set of parameters &. Recall from Remarks that if X is conservative
and eliminates parameters, then for every tuple of parameters 7 € K, the formula in

context
>
X /\ Xi = Xj

m,-:m]-

can be thought of as a ‘universal upper bound’ for elimination of parameters in that
we always have an inclusion

P g S
[x=m]x C x:/\xi:xj .
m,-:m]' X

The particular model groupoids X considered in [5], [[7], [37] can be considered to be
maximal in the sense that this inclusion is an equality

[[f:nz]]xsz: A xi:xjﬂ .
X

mi:mj
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As observed in Section VL33, the topological groupoids considered in [5], [17], [37]
are also closely related to the original Joyal-Tierney representation result [68, Theorem
VIIIL.3.2] recalled in Section MI2.

We briefly motivate the use of what we will call Forssell groupoids. 1f we were
to equate open representing groupoids of a theory T with those model groupoids
from which all other models can be reconstructed, then intuitively the groupoid
of all models contains ‘sufficient information’. However, since a theory can have
unboundedly many models, this is not a small groupoid. We might imagine that it
suffices to restrict to the groupoid of all models of some sufficiently large cardinality.
That this is the case is demonstrated in [B], [36], [37Z].

Definition VIL.53 (§1.2 [5], §3.1 [37]). Let T be a geometric theory and let ! be an
infinite set. The Forssell groupoid ¥ G(R) is the étale complete groupoid of all models
whose underlying sets are subquotients of &, i.e. the groupoid of all R-indexed models.

If T is a geometric theory whose R-indexed models are conservative, then the
groupoid ¥ G(R) is an open representing groupoid. Thus, by the classification in
Theorem VIT8, we know that there exists an indexing of ¥ G(&) for which the groupoid
eliminates parameters. Given the construction of ¥ G(f), we would expect this to be
the already present indexing by &. Indeed, that ¥ G(R) eliminates parameters for this
indexing was shown in [37, Lemma 3.4] (see also Corollary below).

A similar idea is pursued in the work of Butz and Moerdijk [I7] through the use
of enumerated models.

Definitions VII.54 (§2 [17]). Let T be a geometric theory and let & be an infinite set.

(i) A T-model M is said to be K-enumerated if it is K-indexed and each element
n € M is indexed by infinitely many parameters.

(ii) The Butz-Moerdijk groupoid BM(K) is the étale-complete groupoid whose objects
are all R-enumerated models.

We will show that both the Forssell groupoids of all R-indexed models studied in
[6], [B6], [37] and the Butz-Moerdijk groupoids of all R-enumerated models of [I7] fall
within our framework via the following consequence of Theorem VITH.

Proposition VIL.55. Let X be an étale complete model groupoid for T with an indexing by a
set of parameters K satisfying the following properties.

(i) The indexing set & is infinite.

(ii) The set of models X, is closed under finite re-indexing — by which we mean that for
each M € X, with an indexing } — M, then for any injective endomorphism K > K
whose image is cofinite, X, also contains an isomorphic model M’" = M whose indexing
is given by the composite ] »» ] — M = M’, i.e. we can change finitely many of the
parameters for any model M € X.

(iii) The set of models X is closed under further indexing — by which we mean that for
each model M € X, with an indexing & — M, and each tuple of parameters 1 not in
the domain of & — M, X, also contains the isomorphic model M’ = M whose indexing
is given by any extension of § — M = M’ to include 1 in the domain, i.e. we can add
any unused parameters to the indexing of a model M € X,.
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Then the model groupoid X eliminates parameters.

Proof. By Remarks VITA(ii), it suffices to show that, for each tuple of parameters
m € K, [X = m ]y is definable without parameters. We claim that, for each tuple of

parameters 71 € &,
T >
ﬂx:mﬂxzmx: /\xi:xj]l ,
X

m,-:m]'

where the (finite) conjunction /\m,:m]- x; = xj ranges over the elements m;, m; € m that
are equal. As observed in Remarks VITAV), there is an evident inclusion

[[J?Zn_l)]]xgﬁf: /\ xi:x]}l ’
X

mi:mj

so it remains to demonstrate the reverse inclusion.

Given an element
<T_l),M> S ﬁf /\ X;i = x]N
X

m,-:m]-

for which 17 does not appear in the indexing & — M, we can use the hypothesis
to deduce the existence of an model M’ € X, such that M = M’ and that the tuple

i € M’ is indexed by the parameters 171, where i € M’ and 71 € M are identified under
the isomorphism M = M’. Thus, since X is étale complete, we obtain that

(M) e[ =y

as required.

It remains to consider the case where the tuple 7 is not disjoint from the domain of
the indexing & — M of the model. Since our indexing set is infinite by [ij, there exists
some injective endomorphism & > & whose image is cofinite and does not contain
the tuple 7. Thus, by hypothesis [ii), X, contains an isomorphic model M’ = M in
whose indexing the tuple of parameters 7 does not appear. Thus, as above we can
apply to deduce that 77 is the image of a tuple of elements indexed by 7 in some
model M” € X, under an isomorphism M"” = M’ = M, completing the proof. |

Corollary VII.56 (Theorem 1.4.8 [5], Theorem 5.1 [B7], [IZ]). Let T be a geometric theory
and let K be an infinite set.

(i) The K-indexed models of T are conservative if and only if, by endowing F G(K) with

the logical topologies we obtain a representing groupoid

Sh (?g(R)T‘l"gl) ~ &r.

1-log,

(ii) The K-enumerated models of T are conservative if and only if, by endowing BM(K)
with the logical topologies we obtain a representing groupoid

Sh (BM(R)“Ogl) ~ Er.

T-log
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Proof. The proof is simply to recognise that Forssell groupoids and Butz-Moerdijk
groupoids satisfy the conditions of Proposition VIL55.

We expand the details for Butz-Moerdijk groupoids. By hypothesis, R is infinite,
and by construction BM(R) is closed under further indexing. Since the set of param-
eters that index each n € M € BM(SR) is infinite, we can change finitely many of the
parameters and still end up with a &-enumerated model, and so BM(K) is also closed
under finite re-indexing. O

Using Proposition VIL55, we can easily deduce that other similar indexed model
groupoids are representing, such as the groupoid of all K-finitely indexed models of
a theory T - i.e. those models that are R-indexed and whose equivalence class of
each n € M is finite. Also using maximal groupoids, we are able to deduce a useful
construction for positing the existence of representing model groupoids with certain
structures present in the objects.

Corollary VIL.57. Let T be a geometric theory and let W be a set of T-models.

(i) If W is a conservative set of models, then there exists a representing model groupoid
X = (X = Xo) for T for which every model M € X, is isomorphic to some M’ € W.

(ii) If the theory T has enough points, then there exists a representing model groupoid
X = (X3 = Xo) for T such that X, contains W.

Proof. First, suppose that W is a conservative set of models for T. Let & be an infinite
indexing set for W, and let X = (X; = Xj) be the étale complete model groupoid of
all K-indexed models of T that are isomorphic to some model contained in W. By
construction, X is a conservative groupoid, and X also eliminates parameters since it
satisfies the hypotheses of Proposition VIL55.

Now suppose instead that the theory T has enough points. By [67, Corollary 7.17],
we can expand W to a set W’ 2 W of conservative models for T. We can now apply
the above construction to W’'. m|

VIIL.5.5 A theory classified by an indexed groupoid

Let T be a geometric theory over a signature X with enough set-based models. The
methods of Section MIL54 ensure that we can always find a groupoid of X-structures,
with an indexing by parameters &, for which the resulting open topological groupoid
is a representing groupoid for the theory T.

In this section, we consider the converse problem: given a groupoid X of X-

structures with anindexing & — X, what is a theory classified by the topos Sh (XEZ?)
0
of sheaves on the resulting topological groupoid? It arises that, in general, we cannot
choose a theory over the same signature . Instead, we must choose a localic extension.
This extends the correspondence between localic extensions and closed subgroups of

the permutation group found in [62, Theorem 4.14] and discussed in Section VII53.

Definition VIL.58. Let X be a signature, and let X be a groupoid of X-structures with
an indexing 8 — X (i.e. X is an indexed model groupoid for Ey, the empty theory
over the signature ). We denote by X_,x the relational extension of the signature ©
which adds, for each tuple of parameters 771 € &, a relation symbol Rj; of the same sort
as 1.
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The groupoid of Z-structures X = (X; =3 X)) is automatically a groupoid of Xq_,x-

structures. For each Z-structure M € X,, we interpret R;; as the subset [ ¥ = 77 ] NM™.
The subset
[%:Rylx=0%=mlx HMm

MeXy

is, by definition, stable, and thus every isomorphism M -5 N € X; preserves the
interpretation of the relation R;. Hence, « is also an isomorphism of Xg_,x-structures.

Definition VII.59. Let X be a groupoid of L-structures with an indexing & — X. We
denote by Tg_,x the theory of the indexed groupoid. 1t is the theory over the signature
La_x Whose axioms are precisely those sequents ¢ +z ¢ over Lg_,x which are satisfied
in all structures M € X (once each M € X is interpreted as a Xs_,x-structure).

Corollary VIIL.60. Let & — X be an indexed groupoid of X-structures. There is an equiva-
lence of topoi

Tlog; |
Sh(X[1%) = &x,
Proof. By the definition of the theory Tg_,x, the groupoid Xis a conservative groupoid
for Ta_,x. Next, by the construction of the signature Lg_,x, the groupoid X eliminates
parameters as a groupoid of Xq_,x-structures. Explicitly, for each tuple of parameters,
we have that

[X=mlx=0%:Rz]x
Thus, by Theorem V1T, the topos Sh (XT logy ) classifies the theory Tg_,x. O

Example VIL.61 (The theory of a generic Dedekind section). Let X be a groupoid of
L-structures with an indexing & — X. While the signature Xg_,x constructed in
Definition ensures that X eliminates parameters over the signature Xq_ x, we
may however wish to refrain from adding too many symbols to our signature.
Evidently, we do not need to add a new relation symbol R;; for every tuple of

parameters /M € &, but only those for which the orbit [ ¥ =] is not definable
without parameters. By making astute choices about how to expand the signature,
we can minimise the number of new symbols we must add.

Recall from Example MTLZ0 that R + R is a model for the theory IDILO,, that is not
ultrahomogeneous, and consequently the automorphism group Aut(R + IR) does not
eliminate parameters. We describe a theory classified by the topos BAut(IR + IR) using
the above techniques.

For i = 1,2, the automorphism group Aut(R + IR) acts transitively on the subset
{i} X RCR+R,ie foranyre€R,

MAM(IRHR) ={i}xRCR+R,

and so we are motivated to consider the localic extension of the theory of dense linear
orders without endpoints by the addition of a pair of unary relation symbols U; and
U,, where these symbols are interpreted in the model R + IR as the subsets

[U(x) Irsr = {1} X R,
and [Ux(x) lr+r = {2} X R.
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The automorphism group Aut(R + R) eliminates parameters over this expanded
signature. Namely, we have that [ X = 77 |y ,«r4r) iS given by

X: /\xizx]-/\/\xi<xj/\ /\ U(x;) A /\ U(x;)

mi,m]-a%, mi,m]'en?, m,‘EI’?l, Mj€ﬂ7l,
mi=m; m;<m; m;e{1}xR mj€{ 2 }xR Aut(R+R)
Thus, in amanner similar to Corollary VIL&0, we deduce that the topos BAut(IR+IR)
classifies the localic expansion of IDILO., by two unary predicates whose axioms are
those sequents satisfied in the model R + IR, which we denote by Tr,r. The sequents

Ui (x) A Un(x) Fx L, X <Y by Ur(x) vV Ua(y),
T ko dx Uq(x), T ko dy Ua(y),
Up(x) Ay <x by Un(y), Wa(y) Ay < x Fyy Un(y),
Ui(x) b Jy h(y) Ax <y, Ux(y) by Ix Ub(x) Ax <y

(in addition to those for a dense linear order without endpoints) suffice to generate
this theory.

The theory Tr;r can be likened to a theory of Dedekind sections for an arbitrary
dense linear order without endpoints”. Indeed, the rationals Q can be made into a
model of Tr,r with the interpretations

[ Ui(x) I = (=00,a) and [ U(x) llq = (4, )

for any irrational a. Of course, not every automorphism of Q as a linear order
will preserve the further U; and U, structure. In contrast, R does not admit an
interpretation as a Tr,r-model.

VIL.6 The theory of algebraic integers

Wehave seen in Section VIL5 T that the examples of representing groups and groupoids
considered in [1T1] and [2T] can be subsumed by the classification result Theorem VILH.
Similarly, in Section MIL54 we showed that the ‘maximal’ representing groupoids con-
structed in [B], [17], [36], [B7] also fall within the scope of Theorem VILH. Examples of
representing groupoids that do not directly originate via the methods exposited in the
surrounding literature have been given in Examples VTLZ7(ii) and Example V149,

As a worked example, in this section we study in further detail another represent-
ing groupoid that does not arise from the previous approaches found in the literature.
The theory we consider is the theory of algebraic integers.

n [123, §3.5], Vickers describes, as a localic expansion of the theory of dense linear orders without
endpoints, a theory of Dedekind sections on the rationals. Tacitly, an interpretation of the rationals is
fixed by introducing a constant symbol ¢, for each rational 4 € Q and axioms

(1) T F ¢y <cy, for each pair of rationals p, g withp < g,
p <6 p p.q p<4q
(i) and T kx Ve x = ¢4

Consequently, there are no non-trivial isomorphisms of models.
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The theory of algebraic integers. For each prime p, the monic minimal polynomial
of each element of the field Z/(p) has integer coefficients. In this sense, the algebraic
numbers and algebraic integers modulo p coincide, and the field Z/{p) is a model for

a theory of algebraic integers. Along with the standard ring of algebraic integers Z,
these rings can be axiomatised as follows.

Definition VII.62. We denote by Al the (geometric) theory of algebraic integers. It is
the single-sorted theory over the signature of rings whose axioms are the following;:

(i) the standard axioms of a commutative ring,

(ii) the sequent
x-y=0ty, x=0VvVy=0,

expressing that any model is an integral domain,

T\ 4w,

qu[x]monic

(iii) the sequent

where Z[x]monic denotes the set of monic polynomials with integer coefficients,
expressing that every element is in the integral closure of the prime subring,

(iv) and for each n € IN, the sequent
T |-Xn—1,...,x0 Ely yl’l + x}’l—lyn_l E R o xO/

expressing that the model is algebraically closed with respect to monic polyno-
mials.

Lemma VIL63. Every model of Al is either isomorphic to Z. or to Z./{p) for some prime p.

Proof. A model R of Al is an integral domain, and it is isomorphic to Z or Z/ (p)
for some prime p depending on the characteristic of R. We will show that if R has
characteristic 0, then R = Z. The proof in the case where R has finite characteristic is
almost identical.

Since R is an integral domain, we can form its field of fractions Frac(R) as well as

the algebraic closure Frac(R) of this field. Subsequently, there exist isomorphic copies
of Z,7Z,Q and Q inside Frac(R) along with the inclusions of rings

e

R © > Frac(R)
Viewed as subrings of Frac(R), the condition that R is algebraic over its prime subring

ensures that R C Z, while the condition that R is algebraically closed with respect to
monic polynomials ensures the converse inclusion. O

Z

Frac(R).
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Since Allis not an atomic theory (for example, there is no single geometric formula
that is provably equivalent to the infinite conjunction A, ime P # 0), the classifying
topos Ear cannot be equivalent to a topos of sheaves on a simple disjoint coproduct of
automorphism groups as in Corollary MITZ2. Instead, we must search further afield
for a representing groupoid.

We note as well that the standard ring of algebraic integers Z plays a special role
amongst all models of the theory AI. It is not a conservative model — this is clear

since Z satisfies the sequent

1+1+---+1=0+1,
N’

p times

but AI has a model of cardinality p. However, Z does have the property that Z.
satisfies a (geometric) sentence ¢ if and only if T proves the sequent T + ¢. For this
reason, we will say that Z is sentence-complete. Below, we construct a representing

groupoid for All where the fact that Z is a sentence-complete model can be captured
topologically, as seen in Corollary MIL6Z.

A representing groupoid for the theory of algebraic integers. Let a € Z be an
algebraic integer, and let g, be its minimal polynomial. For any ring homomorphism

f:Z — ZJ/{p), the image f(a) is also a root of the polynomial g,. However, over
Z./{p), the polynomial g, may no longer be irreducible. Suppose that g, factors into

irreducible polynomials as g142 ... gt over Z/{p). Then f(a) € Z/{p) has as its minimal
polynomial ¢!, for some i.

Assuming the axiom of choice, there exists a maximal ideal M of Z. which contains

both the prime p and gi(a). Taking the quotient ring yields a field Z/M which is
moreover an algebraic closure for its prime subfield Z/{p). Hence, by the uniqueness
of algebraic closures, we deduce the existence of a surjective ring homomorphism

with the property that 7,;(4) has minimal polynomial ¢

Definition VIL.64. Let AJ = (A1, 3 Al)denote the étale complete model groupoid
for All whose underlying set of objects AJ is constructed as follows:

(i) AL, contains one copy of the model Z;

(ii) we add, for each prime p and each maximal ideal M C Z. containing p, a copy of
the model Z/{p).

That is, AT is the groupoid

— M C Z a maximal —
Aut (Z) + H ConGrpd ({ ideal containing p } ,Aut (Z/ {p >>) ’

p prime
where we use the notation ConGrpd(Y, G), for a set Y and a group G, to denote the
(unique) connected groupoid whose objects are Y and ConGrpd(Y,G)(y, ') = G, for
each pair y, ' € Y.
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We endow AT with the indexing whose set of parameters are the algebraic integers
Z. The model Z is given the trivial indexing of itself by its own elements. Mean-

while, the indexing of the model Z/{p) corresponding to the maximal ideal M C Z is
determined by the surjective frame homomorphism

i Z — ZJM = Z[{p)

To make this indexing explicit, we will not abuse notation (as we have done in the
rest of this chapter) and instead denote the interpretation of the parametera € Z in a

copy of Z/{p) by mm(a).

Proposition VIL65. The groupoid AT of All-models, with the indicated indexing Z. — AL,
is conservative and eliminates parameters. Therefore, there is an equivalence of topoi
1-log,

Ear ~ Sh (ﬂf‘l"gl).

Proof. By Lemma VI 63, the set of objects A7 is a conservative set of models. By
Remarks VITATii), to show that AT eliminates parameters it suffices to demonstrate

that, for each tuple of parameters @ € Z, the orbit [ % = 7] 4; is definable without
parameters. We claim that

[X¥=dlar =[X:qa(x1) = 0AGa,(x1,%2) =0 A+ Ay, (x1,...,%,) = 0]z,

where ¢,,(a1,...,a;-1,x;) is a minimal polynomial of 4; € @ over the ring extension
Z[a],...,ﬂi_]]. _
By definition, the tuple 7 € Z satisfies the formula

Zk Ja,(@1) = 0 A goy(a1,a2) =0 A -+ - A gy (as,...,a,) =0.

Moreover, since the interpretation of the parameters 7 in any other model Z/(p) € AL,
is determined by a ring homomorphism 7, : Z 7] (p), we conclude that

Z.[{p) & Ttpm(Ga, (@1)) = O A - A Ttae(Ga, (@1, - . ., a,)) = 0,
F o, (Ttm(a1)) = O A - A qq, (im(@r), - - ., tm(@n)) = 0.

Consequently, there is an inclusion

[X=alar CIX=a1ar SIX:qa(x1) =0A -~ Age(x1,...,%,) = 0]ar.

We turn to the converse inclusion. Since the automorphism group Aut (Z) acts
transitively on the set of solutions to an irreducible polynomial, we have that

[%: 0, (x1) =0A-Aga,(x1,..., %) =0]ar NZ C [%=d]suz)

Now let @ € Z/{p) be a tuple for which

Z[{p) E qo,(w1) =0 A ga,(w1,wp) =0 A - Agp, (wW1,...,w,) =0,
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and let q,,(x1, . . ., x;) be a minimal polynomial of w; over Z /{p)[w;, ..., w;i-1]. By Zorn’s
lemma, we can extend the non-trivial ideal on Z generated by the set

{p/ le(al)/ cee /qwn(al, . ,an) }

to a maximal ideal M C Z. Hence, there is an isomorphic copy of Z/M = Z/(p) in
AT, in which my(a;) is a root of the irreducible polynomial qq, (1ta(a1), . . ., Tm(@i-1), x).

Thus, there exists an isomorphism Z/M=27] (py sending my(d) to @, completing the
proof of the converse inclusion

[X:g.,(x1)=0AAqgs(x1,...,%,) =0]ar C[X¥=23]xs

O

Properties of the space of objects. We now describe the space of objects ALy %
1-log,
0

homeomorphism, in entirely topological terms. Recall that a basic open of AT, (T)'k)go is
given by the interpretation of a sentence with parameters [ 77 : ¢ Jar € ALy Recall
also from Remark VITTS that it suffices to consider only the atomic sentences with
parameters, which in the case of rings amounts to formulae of the form g(@) = 0, for
some tuple of parameters 7 and a polynomial 4.

in more detail. Eventually, we will observe that AJ can be described, up to

We first note that the subset of AJ, consisting only of models of the form Z/(p) is
an open subset in 7-log,. Namely, it is the subset

[p=0]ar= {M - Z|p eM, Mamaximalideal} C AT,.
Lemma VIL.66. For each prime p, the subspace

[r= 0]]71[ ~ {MgZ'peM,Mamaximalideal}

of ALY % is homeomorphic to the Cantor space 2N,

Proof. We first remark that the Cantor space 2N is homeomorphic to any uncountable
closed subspace of itself (this is a consequence of Brouwer’s characterisation of the
Cantor space). Thus, it suffices to show that [p = 0]l47, an uncountable space, is
homeomorphic to a closed subspace of 2.

There is an evident inclusion of sets

=0 ~[M CZ|p e M, M a maximal ideal | € 2Z = 2N,
[p =014 ={ |

t-log
0
is the same as that induced as a subspace of 2Z. The topology on 2Z js generated by
the basic opens {M|a € M} and { M |a ¢ M}, for each algebraic integer a € Z.

Under the bijection [p = 0]ar = {M | p € M}, the subset { M |a € M} corresponds
to the open

We must first show that the induced topology on [p = 0] 4, as a subspace of AT,

[a=00arnllp=0]ar.
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To show that {M|a ¢ M} is also open, we note that if a ¢ M, then m(a) is a non-zero
element of the field Z/M = Z/ (p) and hence invertible. Thus, under the bijection
[p=0]ar= {M|p € M}, we have that

[dya-y=11arnllp=0]ar={Mlag¢a}.

Hence, the topology on [p = 0 ].ar induced as a subspace of AT S_IOg" contains that as

induced as a subspace of 2Z. For the reverse inclusion of topologies, by Remark VILTH
it suffices to note that

[9@ =0Tar N[p=01lar = {M|q@) e M}.

Thus, [ p = 0] a7 is a subspace of 2Z,
It remains to show that [p = 0] a7 is a closed subset of 2Z. It is straightforward
to demonstrate that the complement 2% \ [p = 0] a7 is open once we recall that, in

Z, the maximal ideals are precisely the non-zero prime ideals. If P fails any of the
conditions to be a prime ideal containing p, it easy to find an open neighbourhood

of P that is contained entirely in the complement 2% \ [p = 0]la7. As an example, if
P C Z contains the product a - b but neither a nor b, i.e. P is not prime, then

{P§Z|a-beP}O{PQZ|a¢P}ﬂ{PQZ|b§£P}

is such an open neighbourhood of P. Thus, [p =0 J.ar € 2Z is closed, from which the
result follows. O

Next, we deduce that the point Z € AT is a universal accumulation point of AL,
by which we mean that Z is an accumulation point of every subset S C AT, \ {Z},
or rather: the only open containing Z is the whole space. This is because if Z is
contained in a basic open [g(@) = 0]az, i.e. Z £ q(@) = 0, then Z/{p) £ q(n(@)) for
each maximal ideal M of Z containing p. Hence, each copy of Z/{p) € AL, is also

contained in the open [ §(@) = 0] a7, and thus [ ¢(@) = 0].ar = AZy. Asa consequence,
we deduce that:

Corollary VIL67. The algebraic integers Z. are a ‘sentence-complete’ model of the theory AlL

Combining the above, we are able to give an entirely topological description of the
space AT, g'logo devoid of any mention of algebraic structures from which it derives.

Corollary VIL68. The space of objects ALy °® is obtained by the addition of a universal
accumulation point to the coproduct of countably many copies of the Cantor space.

VIL.7 Representing groupoids for doctrines
While conservative sets of models are commonly considered in other fragments of

logic, we have defined elimination of parameters only for model groupoids of geo-
metric theories. The reader may rightly wonder how our theory of elimination of
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parameters generalises beyond geometric logic, and thus how to apply our classifica-
tion of representing open topological groupoids to theories of from other fragments
of logic, e.g. classical logic.

Recall that, irrespective of the underlying syntax, the classifying topos of a theory
(or indeed a doctrinal site) also classifies a geometric theory to which we can apply the
classification result of Theorem WIL8. The purpose of Part Al was to identify a suitable
choice of such a geometric theory/doctrine — the geometric completion. The properties
of conservativity and elimination of parameters identified in Theorem VILS, defined
on the geometric completion, can be translated back into properties on the original
theory (respectively, doctrine).

This section contains that calculation. Hence, we will obtain a classification of the
representing open topological groupoids of any formal system of predicate reasoning,
as represented by a doctrinal site. We outline the necessary adjustments that must be
made to the method pursued in Sections to MIT4 (since we no longer assume
that our geometric doctrine is fibred over a category of contexts Cony) before giving
the statement of the classification result for doctrinal sites in Theorem NIL72.

Indexed models of a doctrine. Recall that a (set-based) model M of a doctrinal site
(P, ]) is a morphism of doctrinal sites (P,]) — (£, K»), which we suggestively write
as being composed of the pair consisting of

(i) aflat functor M: C — Sets,

(ii) and a pseudo-natural transformation[[ - Jly: P = £?2oM°P for which the induced
functor

M>[=1Qm: (C=xP,]) — (Sets =7, Ky)

is a morphism of sites.

By the universal property of the geometric completion, the pseudo-natural transfor-
mation [ - i can be uniquely extended to a natural transformation

()

P 1 3]
|
- T -
P

that yields a morphism of geometric doctrines 3(P, J) — &. We will not differentiate
between the pseudo-natural transformation [ — J;: P = &2 o M°P and its extension to
the geometric completion 3(P, J).

Just as in Definition VI, we can define a notion of indexing for the models of a
doctrinal site.

Definition VII.69. Let M be a model of the doctrinal site (P,]). An indexing of M
consists of

(i) acovariant presheaf of parameters {: C — Sets,
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(ii) and, for each object c € C, a partial surjection 8. — M(c) which is natural in the
sense that the square

Rc f—ﬁ> Rd
L L (VILiii)
M) =22 Ma).

commutes.
We write 8 — M to denote such an indexing.

Remark VIL70. Let T be a geometric theory. Recall that a model M of T in the
usual sense is equivalent to a model of the associated geometric doctrine FT. The
two notions of indexings of M given in Definition MITT and Definition are not
identical, but can be identified up to equivalence.

Suppose that, for each singleton variable x of the theory T, there is a given partial
surjection 8, — MY, i.e. M is an indexed model according to Definition MTLT. We
obtain a presheaf of parameters R : Con,’ — Sets by setting &; as the product [T, ¢ K,
and, for each relabelling of contexts o:  — ¥, setting ¢ as the universally induced
map

!

-2 T, =8,

i€y
T
Flato \LP Ty,

Koy —— K

vir

By a similar universal construction, there exists a natural partial surjection &z — M*
for each context .

Conversely, an indexing & — M of M according to Definition evidently
yields an indexing of M in the sense of Definition VI since, for each singleton
context x, we have a partial surjection 8, — M*.

In fact, these two processes are mutually inverse up to equivalence. The only
discrepancy arises because, for an arbitrary presheaf of parameters & : Con,; — Sets,
it is not necessarily the case that Kz = [], .z 8,,. However, the induced indexings on
the model M are equivalent since the partial surjection 8¢ — M* necessarily factors
as

Ky

N

[[8 — &

T

MY —— M,

Classification of the representing open topological groupoids of a doctrine. In the
aid of intuition, during Sections VIL2 to MIT4 we worked in the familiar language
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of a theory of geometric logic, or less transparently, by Proposition [IL42, an internal
locale of a topos of the form Sets“°™¥. However, every step of the proof followed in
Sections VT2 to VT4 generalises readily to doctrines over an arbitrary base category.

The only results whose generalisations to arbitrary doctrines deserve clarification
are Lemma VITTA and Proposition MILTZ.

Proposition VIL.71. Let P: C°? — PreOrd be a doctrine with a classifying topos Ep and let
Xo be a set of models of P. A topology T on X is a factoring topology, by which we mean that
there is a factorisation of the canonical geometric morphism

Sets™ — 3 Sh(X¥) ---3 &),

if and only if there is an indexing of each M € X, by a presheaf of parameters ] : C — Sets
such that to contains the corresponding logical topology, i.e. the topology generated by the
basic opens

[m:Ulx,={MeXolme[Ulu S M)}
foreachc e C,m € K. and U € P(c).

Proof. By an evident generalisation of Proposition ML T2, a topology 7, is a factoring
topology if and only if there is a factorisation

Sets™®

T

Sh(X™) <--- C=P,

if and only if, for each object c € C, there is a topology T. on [, M(c) such that
(i) the projection
T. -
et (Laex, M(0)) - ——> X;

is a local homeomorphism,

(ii) for each U € P(c), the subset

[Uly, = [JIulvc [] M@

MeX MeXy
is open in the topology T,
(iii) and for each arrow d J, c € C, the map

(HMEXU M(d))T" on:UM—exOM(@ (

Tc
HMEXO M(C))

is continuous.
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First, suppose that M € X, is indexed by a presheaf of parameters R: C — Sets.
We identify a topology T, on | [x, M(c) which satisfies conditions [i] to when X
is endowed with the topology 7-log, generated by the basic opens [m : U ]x,.

The topology T. we choose is the obvious generalisation of the topology generated
by definables with parameters from Lemma VITTA — it is the topology generated by
the two species of basic opens

[x=mlx = {(n,M>

e = M(0) } c [[ Mo

sends m ton
MeXj

and
[Ulx, = [J1uluc [] M.
MeX, MeXy
Condition (i) is automatically satisfied, and it is easily shown that 7. is a local home-
omorphism for this topology. Finally, the functoriality condition follows from
the naturality of [ - Jx, and the indexing (MIIiid). Namely we have that, for any

arrow d 5 ¢ of C, fxo ([Ulx,) = [P(H(U) Ix, and £ ([x = m1x,) = [y = f40m) Ix,-
Therefore, any topology 7o on X, containing 7-log, admits a factorisation

Sets™ —— Sh(X[") — Sh(X; ™) ---3 &p.

Now supposing the converse - that there is a choice of topologies T, on [ [cx, M(c),
for each ¢ € C, satisfying conditions (i} to [iii), we identify an indexing of the models
in X, for which 7y contains the opens [m : U ]x,. Just as in Proposition VILT7, we
choose to index a element n € M(c) by the local sections s: U — []ex, M(c) of
et [pex, M(c) = Xo with open domain and open image, i.e. the open local sections
of 1., for which 7 is in the image s(U). Since 7. is a local homeomorphism, this defines
a partial surjection

{ open local sections of . } — M(c).

It remains to show that this indexing is natural in sense expressed in (VIT1ii).

This follows since, for each arrow d i> ¢ € C, and each open local section s of 4,
the composite fx, o s is an open local section of .. As the triangle

[HM(d)]Td B [HM(C))TC

MeXy MeXy
X

0

commutes, fx, is an open map by [63, Lemma C1.3.2] and so fx, o s is still an open
map, and secondly fx, o s is evidently a section of 7. since

. 0 fx, 05 = 1y 05 = idy,.

Therefore, for this indexing, the topology T, contains as opens s(U) = [ x = s ], and
[ U]x,- Thus, since the local homeomorphism 7, is, in particular, an open map, 7o
contains the open

e (s(U) N[ Ux,) =[m: Ulx,
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and hence the logical topology. |

The other results from Sections M3 to VIT4 generalise without difficulty. Thus,
as in Proposition and Corollary VI 32, we arrive at the fact that, for a doctrinal
site (P, ]) and a groupoid X = (X; =3 Xj) of models of P, the groupoid can be endowed
with topologies making it a representing open topological groupoid if and only if the
canonical localic geometric morphism

p°s: Sh (x“‘ng) — Sh(C=P,]) =~ Sh(3(P,))) ~ &p, (VILiv)

7-log,

yields an equivalence of topoi Sh (X;izz) ~ &Ep, where
(i) the topology 7-log, on X, is generated by basic opens [ m : U Jlx, for each ¢ € C,
m € ] and U € P(c), as in Proposition VIL7T,

(ii) and the topology 7-log, on X; generated by basic opens

mq € [[u]]M/
ag(my) =ms, ¢,

mlzll,
my—ms, || =!I MSNeX;
X my € [Vn

WI41V

where c,d,e € C,my € K, U € P(c), my, mz € Ky, my € K, and V € P(e).

Hence, just as in Section V1T, the problem of identifying a representing open topo-
logical groupoid resolves down to identifying when the morphism between internal
locales

SubSh(XT.mgl)(uMexo M(=)) — 3(P.)),

t-logg

corresponding to (VII1d), whose component at ¢ € C is the frame homomorphism

[= D" 5(P.)) = Stibg ( I1 M(c)],
MeX

7-logg

SISk

is an isomorphism of internal locales in Sets“”. We can easily identify conditions
corresponding to injectivity and surjectivity of the frame homomorphism [ - Jx;"
that generalise the conditions of conservativity and elimination of parameters iden-
tified for model groupoids of geometric theories in Theorem VIS, thus yielding our
characterisation of the representing open topological groupoids of a doctrinal site:

Theorem VIIL.72 (Classification of representing open topological groupoids for doc-
trinal sites). Let P: C°? — PreOrd be a doctrine whose desired set-based models are encoded
by a Grothendieck topology ] on C = P, i.e.

P-mod(Sets) ~ DocSites((P, ]), (¥, K%)).

Let X = (X1 3 Xo) be a small subgroupoid of P-mod(Sets). The following are equivalent.
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(i) There exist topologies on Xy and X, making X = (X; =3 Xo) an open topological
groupoid for which there is an equivalence of topoi

Sh(X) = Sh(C=P,]) =&

(ii) The groupoid X satisfies the following two conditions.
a) The groupoid X is J-conservative, by which we mean that, for all U, V € P(c), if

[UTm =1V Ium
for all M € X, then there is a set of pairs

{(r.w)]a L cec, wi< P, P |

such that both of the resultant families of arrows in C < P

{@,wy 5w

i 1} and {(di, W) L (e, v)

ieI}
are J-covering, or equivalently n"’(U) = n" (V).
b) There exists an indexing of X by parameters K: C°? — Sets for which X geo-
metrically eliminates parameters, by which we mean that, for each of parameter
m € K, there is some S € 3(P, J)(c) such that

[[x:m]]xz{(n,N)‘BMgNeXl suchthata(m):n},

[Jrulu|.

MeXp

=[SIx= | J fu

(f,U)eS

Example VIL.73. Let T be a theory over a fragment of logic that interprets regular
logic, e.g. T could be a coherent or a classical theory. Note that since the associated
doctrine FT is still fibred over the category Cony, by Remark NI 70, the notion of an
indexed model of FT given in Definition coincides with the usual notion offered
in Definition VL.

Considering how the geometric completion of an existential doctrinal site is com-
puted (see Proposition [V.H), we recognise that an indexed groupoid of T-models
! — X eliminates parameters if and only if, for each tuple of parameters 77 € &, there
is a set { ¢; | i € I} of formulae in context ¥ (over the appropriate fragment of logic, e.g.
classical formulae if T is a classical theory) for which

—):”_/)l U[[x (Pz]]X

iel



Chapter VIII

Weak equivalences of groupoids

Geometric morphisms as generalised continuous maps. The results of [68], [17]
express that topoi (with enough points) can be thought of as ‘spaces whose points
can have non-trivial isomorphisms’, in either a pointset or pointfree sense. Given
this perspective on the objects of Topos, it would complete the intuition if geometric
morphisms, the arrows of Topos, could also be thought of as ‘continuous maps of
spaces that respect isomorphisms of points’.

There is already a sense expressed in the literature in which this is true in the
localic setting. Because multiple localic groupoids may represent the same topos, it
is unsurprising that we must employ weak equivalences and (bi)categories of fractions,
as introduced in [40] and extended to the bicategorical setting in [102]. Informally,
a category of fractions is obtained by quotienting the arrows of the category by a
class of arrows that ‘should’ be isomorphisms. In [92, §7], Moerdijk demonstrated an
equivalence between the category of topoi Topos and the category of étale complete
localic groupoids and their homomorphisms, localised by a right calculus of fractions.

Key result. Our aim in this chapter is to establish a topological parallel in the
biequivalence

Toposiif;p. ~ [ '|LogGrpd, (VIILi)
where
(i) Toposius]."e.p. is the bicategory of topoi with enough points, geometric morphisms,

and isomorphisms between these,
(ii) LogGrpd is a bicategory of topological groupoids,
(iii) and 2 is a left bicalculus of fractions on LogGrpd.
This gives a sense in which every geometric morphism between topoi with enough
points is a ‘continuous map that respects isomorphisms of points’, but in a pointset
rather than pointfree setting. Because the biequivalence (VIIT1) involves a left bical-

culus of fractions while the equivalence established in [92] uses a right calculus, our
biequivalence has a notably different flavour.

Logical motivation. Why is the biequivalence (VIILJ) of interest to the logician? Re-
call from Section VI that, given a pair of geometric theories T and T, any geometric

255
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morphism between classifying topoi
f: 8’]1" } ST/

yields a functor
F: T-mod(F) —— T’-mod(¥)

thatis natural in 7, and vice versa. We can think of the latter as instructions on how to
transform a T-model into a T’-model. The biequivalence (VIIT3) expresses that, up to
a weak equivalence, such transformations can be detected on the level of representing
groupoids, lending credence to the intuition that a representing model groupoid is
one that ‘possesses enough information” recover the whole theory.

Overview. The chapter proceeds as follows.

(A) We begin in Section VIITT by recalling Moerdijk’s equivalence from [92, §7]. In
contrast to the localic setting, because there exist geometric morphisms that are
not surjective on points, we cannot obtain a similar biequivalence for topoi with
enough points using right calculi on topological groupoids, as demonstrated in
Proposition VIIT4.

(B) Having negated the possibility of obtaining a biequivalence with a right calculus
of fractions, the biequivalence (VIITI3) is established in Section MIIT2.

VIII.1 Topoi as a right category of fractions

Bifunctoriality of the topos of sheaves construction. Recall from [92, §5] that send-
ing a localic groupoid to its topos of sheaves is a bifunctorial construction with respect
to homomorphisms of localic groupoids and their transformations.

Definition VIIL.1 (Definition 4.1 [92]). A homomorphism of localic groupoids X L Yisa
pair of locale morphisms ¢@y: Xo — Yoand ¢;: X7 — Y;, between the locales of objects
and arrows respectively, which commute with the respective structure morphisms of
the groupoids as in the diagram

(PquJU(Pl
X1 XX, X1 — Y, XY, Yy

e "y (VIILi)
R
Xo ——— Yo

This is precisely what it means to be a functor between internal categories.

Each homomorphism of localic groupoids X % Y induces a geometric morphism
Sh(p): Sh(X) — Sh(Y). The inverse image functor Sh(¢)* sends descent datum
(W, 0) € Sh(Y) to the pair consisting of ¢;(W) and the map

({);(6) * L/% * *
sy (W) = pis™ (W) —— @it (W) = t'py(W).
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That ¢7(0) satisfies the required equations to define descent datum on ¢j(W) follows
from the commutativity of (VIIIi). Each morphism (W, 0) ER (W’,0") of descent

data is sent by Sh(¢p)" to the map (¢5(W), ¢31(0)) %—(f)> (py(W’), 1(6")). The required
commutativity condition ¢3(0’) o s"py(f) = '@y (f) o ¢1(0) follows, since

P1(07) 05" po(f) = 1(6) 0 5" (f)
= 01(0"05"(f))
= 1(t"(f) 0 0)
= @it (f) 0 91(0)
= F@p(f) © 1(0).
Remark VIIL2. In this chapter, we are following [97] in that we are using homomor-

phisms of localic/topological groupoids to induce geometric morphisms. In a later
paper [93, §4-5], Moerdijk shows that it is also possible to use bispaces.

Definition VIIL.3. Given a pair of parallel homomorphisms

—
X IP;Y

between localic groupoids, a transformation ¢ = 1 is a locale morphism a: X, — Y;
such that

(i) the equations s’ oa = @y and t’ o a = 1) are satistied, expressing that a sends a
(generalised) point x € X to its component ¢(x) a0, Y(x) € Yy,

(ii) and the square

(¢ ,a0s)
X; ——= Y, Xy, Y1

(aot,(pl)l/ \Lm'

Y1 Xy, Yq —— Y
commutes, expressing that the choice of components is natural.

This is precisely what it means to be an internal natural transformation.

While it is clear how to define identity homomorphisms and composite homomor-
phisms for localic groupoids, it is perhaps less evident how to define a categorical
structure on the transformations.

id
(i) Theidentity transformation ¢ == ¢ isnamed by the composite locale morphism

Po e
Xo > Yo > Yi,

(ii) while the composite of two transformations ¢ = ¥, ¥ = X is given by the locale

morphism

a><y0a’ -
Xo —> Y1 Xy, Y1 — Yi.
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Together, localic groupoids, their homomorphisms and transformations of these, yield
a bicategory which we denote by LocGrpd.

A transformation ¢ = 1 induces a natural transformation between the inverse
image functors Sh(a): Sh(p)* = Sh(y)’. The component of Sh(a) at the descent
datum (W, 0) € Sh(Y) is given by the morphism

Sh(a)y,0)

P (Y,0) —— (Y, 0)
as induced by the universal property of {j(Y) in the diagram

Sh(@)(y,6)

- - -

0
-~ T Y

() — s (V) FOY) — i (Y)

lJ lJ i\/Li Ll

\
14
a s t a
Go > H,y > Ho Hy < Go

w\ﬂ/

since s oa = ¢ and t o a = ¢ and every square is a pullback. In summary, there is a
bifunctor

Sh: LocGrpd —— Topos.

All natural transformations between standard (set-based) groupoids are invertible.
The same is true for transformations between homomorphisms. Let

¢
X Y

¥

be a pair of parallel homomorphisms of localic groupoids, and let ¢ = ¢ be a trans-

formation. It is easily shown, using a pointed argument (see Remark V18), that the
inverse to a is given by the composite locale morphism

a i’
Xo > Y > Y.

Therefore, the bifunctor Sh: LocGrpd — Topos factors through the bisubcategory
Topos™°, the bicategory of topoi, geometric morphisms and invertible 2-cells between
these.

Moerdijk’s equivalence. Recall from [68] or Theorem VLT that every topos is rep-
resented by an étale complete open localic groupoid. Thus, the restriction

ECG —— LocGrpd Shy Topos'™

to the 1-full subcategory ECG C LocGrpd of étale complete open localic groupoids
is essentially surjective. It can moreover be shown that it is faithful on 1-cells. How-
ever, it is not full on 1-cells, and so the functor does not witness a biequivalence of
bicategories.
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Instead, as shown in [92, §7] and the bicategorical extension in [T02], a biequiva-
lence
ECG[W™'] ~ Topos

can be obtained by quotienting ECG by a right bicalculus of fractions W on the category
ECG. In particular, for every geometric morphism

£: Sh(X) — Sh(Y),

there is a span of étale complete open localic groupoids

W —s Y

|

X

such that W 5 X € W and the triangle

Sh(W) 224 gh(Y)

w7
P) | |

commutes and Sh(y) is an equivalence of topoi.

The homomorphisms X LY € W, the weak equivalences, are those sent by Sh to
equivalences of topoi, and these can be characterised as those homomorphisms that
are open and, in the pointfree sense, essentially surjective and fully faithful. That is,

(i) the locale morphisms ¢, and ¢; are open,

(ii) the composite

p1; N N
Xo Xy, Yq > Y3 > Yo

is an open surjection, expressing that ¢ is essentially surjective,
(iii) the square
X ——— Y,
o e
Xy X X, m Yo X Yo

is a pullback of locales, expressing that ¢ is fully faithful.

VIIL.1.1 Right calculi of fractions on topological groupoids

Just as with localic groupoids, taking the topos of sheaves on a topological groupoid
is bifunctorial with respect to homomorphisms and transformations of topologi-
cal groupoids. These are defined by replacing ‘locale” with “topological space’ in
Definition VI T and Definition VITL3. Alternatively,
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(i) ahomomorphism X 5 Yof topological groupoids is a functor on the underlying
groupoids such that the action on objects ¢(: Xy — Y, and the action on arrows
@1: X3 — Yj are both continuous,

(ii) a transformation ¢ = 1 between a pair of parallel homomorphisms of topo-

logical groupoids is a natural transformation of the underlying functors of ¢
and ¢ such that the map a: X, — Y; that sends an object to its component is
continuous.

As before, there is a bifunctor
TopGrpd —=% Topos™.

This bifunctor factors through the 1-full 2-subcategory Topos:° ~C Topos™, the 2-
subcategory of topoi with enough points. The result of Butz and Moerdijk [17] (see
also Section MIL54) expresses that the functor Sh is essentially surjective.

We may therefore wonder if, in analogy with localic groupoids, there is a biequiva-
lence between Toposizif;p. and a category of right fractions on a suitable 2-subcategory

of TopGrpd. This is, however, never possible.

Proposition VIIL.4. For any 2-subcategory C € TopGrpd, and any bicalculus of right
fractions ¥ on C, _
Topos™ # C[Z!].

w.e.p.

Proof. We construct an example of a geometric morphism that cannot be obtained
by a span of topological groupoids. Let X = (X; =3 X)) be a topological groupoid
contained in C € TopGrpd such that the topos Sh(X) has a point p: Sets — Sh(X)
that does not correspond to a point of Xy, i.e. there is no factorisation

Sh(Xo)

’\/ g \L”x

Sets — Sh(X),

where ux: Sh(Xy) — Sh(X) is the ‘forgetting action” geometric morphism from Sec-

tion VT For example, Sh(X) could be the classifying topos for a theory with

unboundedly many models, which ensures the existence of such a p for any X.
Suppose that there is a biequivalence Topos®® =~ C[Z™!]. Then there is a homo-

w.e.p.

morphism of topological groupoids Y % X € C such that

Sh(p)=p

Sh(Y) ~ Sets —————— Sh(X).
Consequently, there is a commutative square of geometric morphisms

Sh(po)

Sh(Y;) ————— Sh(Xy)

Sh(Y) ~ Sets —— Sh(X).
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Any point of the space Y| yields a section of uy, as in the diagram

Sh(po)

Sh(Y;) ———— Sh(Xy)

uy \ ux
|

Sh(Y) ~ Sets —— Sh(X).

But such a point would yield a factorisation of p through uy, a contradiction. So
we conclude that Y is the empty space. But then, by Lemma V8, there would be a
surjective geometric morphism

Ofopos = Sh(Y) ——> Sh(Y) = Sets,

but no such surjection exists”. Hence, Topos°_ # C[Z]. |

w.e.p.

iso
w.e.p.

Nonetheless, the bifunctor Sh: TopGrpd — Topos does induce a biequiva-

iso

lence if we also restrict to suitable 2-subcategories of Topos,; , .

establishes in [[02, Theorem 27] a biequivalence

For example, Pronk

I:Ztenduei:;O ~ FtaleGrpd[W™']

between the bicategory of (spatial) étendues (see [B, §1V.9.8.2(e)]) and a localisation of
the bicategory of étale topological groupoids, i.e. those groupoids whose source and
target maps are étale/local homeomorphisms.

VIIL.2 Topoi as a left category of fractions

Although, as expressed in Proposition VIIT4, we cannot hope to represent the entire
bicategory Toposijf;p_ by a bicalculus of right fractions on a 2-subcategory of TopGrpd,
we can establish an equivalence if we instead consider a left bicategory of fractions.
In this section, we identify a 1-full 2-subcategory of TopGrpd, which we tentatively
denote by LogGrpd and call the objects logical groupoids, and a bicalculus of left
fractions MW on LogGrpd for which there is a biequivalence
Topos:® =~ [W'|LogGrpd.

wep.

w.e.

given two logical groupoids X, Y € LogGrpd, there is an equivalence Sh(X) =~ Sh(Y)
if and only if there is a cospan of homomorphisms

XAW\/#} Y

In particular, the biequivalence Topos'® b = [W~']LogGrpd would entail that,

where X 5 W, Y %, W e . Recall from Chapter I that, given some theory T clas-
sified by the topos Sh(X) =~ Sh(Y) =~ Sh(W), the groupoids X, Y, W can be associated

10f course, here we are assuming that Sets # Ogypos, i-€. our chosen model of set theory is consistent.
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with groupoid of models of T which think of as ‘containing enough information to
recover the theory’. With this perspective, it is therefore not too surprising that given
two groupoids of models X, Y ‘with enough information’, then we can expand them
to a third model groupoid W which also has ‘enough information’.

VIIL.2.1 Logical groupoids

We first identify the 2-subcategory LogGrpd C TopGrpd. Recall (from [79, §II1.9],
say) that, given a group G and two topologies 7; and 7, on G for which G™,G™ are
both topological groups, G and G™ are Morita equivalent, i.e. BG™ ~ BG™, if and
only if 7; and 7, share the same open subgroups. For example, the group of the
rationals Q with addition is a topological group for either the Euclidean topology or
the co-discrete topology, but both have a unique open subgroup, and so there is an
equivalence of topoi BQ = BQ® = Sets. Logical groupoids intend to capture the same
behaviour. They can also be compared to the powder monoids of [104, Definition 5.2.16
& Theorem 5.2.18].

Definition VIIL5. A topological groupoid X7} = (X' =3 X°) is said to be a logical
groupoid if it is open, the spaces X;° and X[ are sober, and X7} is étale complete in the
sense that:

(i) for a pair x,y € Xp, any isomorphism of the corresponding points

Sets —— Sh(X,)

I

Sh(Xo) —— Sh(X

is instantiated by an arrow x 5 y € Xy,

(i) and for any other topology 7] on X, if X:; is a topological groupoid with
Sh(X(i) = Sh(X3),

then 7} 2 ;. That is, 7, is the coarsest topology on X; determined by the topos
Sh(X7)).

We denote by LogGrpd the 1-full 2-subcategory of TopGrpd of logical groupoids.

Remark VIIL.6. Why have we suggested the name logical groupoid? Let X} be a
logical groupoid according to Definition MIIT5. Let T be a geometric theory classified
by the topos Sh(X:!). In fact, we can require that T is an inhabited theory. To see
why, note that any theory T’ is Morita equivalent to the same theory with an added
inhabited ‘dummy’ sort, i.e. the expansion of T’ by a sort A, a constant c of type A,
and the axioms T ky.4 ¢ = x. We can then apply [63, Lemma D1.4.13] to deduce that
T’ is Morita equivalent to a theory with a (single) necessarily inhabited sort.

By Theorem NMILH, the groupoid X can be identified with an indexed groupoid
of T-models that is conservative and eliminates parameters. By Remark VILTS,

Proposition VIT72 and the fact that X7} satisfies Definition VIITH, we deduce that



VIII.2. TOPOI AS A LEFT CATEGORY OF FRACTIONS 263

7o and 7, are the logical topologies for this indexed groupoid of T-models. Moreover,
since X satisfies the étale completeness condition Definition VIITH(T), then X is also
étale complete in the sense of Definitions VIT48.

Conversely, given a groupoid X of indexed X-structures that eliminates parameters
and which is étale complete according to Definitions V148, by Proposition VTL.72 and
Lemma VIT78, the corresponding topological groupoid X;ggé is a logical groupoid
according to Definition VIITH. Hence, a topological groupoid is a logical groupoid if
and only if it is obtained from an étale complete, indexed groupoid of Z-structures
that eliminates parameters, for some signature X.

Lemma VIIL7. For a pair X, Y of logical groupoids, the functor on hom-categories
Sh: LogGrpd(X,Y) — Topos™°(Sh(X), Sh(Y))
is faithful.

Proof. Let = 1 be a transformation. By sobriety, the component @o(x) CEN Po(x) € Yq
at x corresponds to the composite 2-cell

Sh(e)
Sets —=% Sh(X;) —= Sh(X) ﬂsm) Sh(Y).
Sh(y)

Hence, if Sh(a) = Sh(a’) for another transformation ¢ LN Y, then a(x) = a’(x) for all x,
ie.a=a'. |

Proposition VIIL8. Let f: ¥ — & be a geometric morphism between topoi with enough
points. Let X = (X1 =3 Xo) be a representing logical groupoid for F, i.e. there is an equivalence
¥ =~ Sh(X). Then there is a representing logical groupoid Y of & and a homomorphism of

topological groupoids X Y such that there is an isomorphism of geometric morphisms

Sh(p)~

Sh(X) = F —L y &= Sh(Y).

Proof. Let T be a geometric theory, over a signature X, classified by the topos €. By
[272, Theorem 7.1.5], the geometric morphism f is, up to isomorphism, induced by
a geometric expansion T’ of T. That is, T” is a geometric theory over an expanded
signature X’ D X (that potentially adds new sorts) which contains the axioms of T,
and there is an isomorphism of geometric morphisms

&r,zg_‘%—zf>gz&r_

By Theorem NMILH, the groupoid X = (X; =3 X)) is a conservative groupoid of T’-
models with an indexing & — X such that X eliminates parameters, and moreover,
Xpand X, are endowed with the respective logical topologies induced by this indexing.
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Each point M € X, which corresponds to a model of T’, therefore yields a model
of T via the composite

-
Sets L} ST/ L 811‘.
We denote this T-model, the T-reduct of M, by M|r. The underlying sets interpreting
the sorts of M|t are simply the sets interpreting those sorts contained in the unex-
panded signature X C ¥’. Thus, each T-reduct M|y still has a R-indexing, and more-
over each isomorphism M - N of T’-models automatically yields an isomorphism of
the T-reducts
My <5 Niy.

By Corollary VIL57(ii), there exists a choice of representing groupoid Y = (Y; =3 Y))
of & ~ &1 where Y| contains an isomorphic copy of M|y for each T’-model M € X,.
Note that the groupoid Y can be chosen as the Forssell groupoid of all {’-indexed
T-models ¥ G(!’) for some set of parameters where & 2 K.

Therefore, by making some choice of M|y = M’ € Y, for each M € X, we obtain a
functor of the underlying groupoids ¢: X = Y,

MEXOI—)MlerMIEYO,
[M&N]eX1H|M’zM|T“—”>N|TgN' €Y.

We must choose the models M|y = M’ € Y in such a way that the map on objects
@o: Xo — Yy and the map on arrows ¢;: X; — Y; are continuous with respect to the
respective logical topologies.

We obtain this by setting ¢o(M) as the T-reduct M|y with the already present
indexing & 2 & — M]y. It is easily checked that, thus defined, both ¢, and ¢,
are continuous with respect to the logical topologies. That Sh(p) ~ f follows from
Lemma NIIT7 since they agree (up to isomorphism) on the points of ¥ and the
isomorphisms of these points corresponding to the groupoid X. m|

Lemma VIIL.9. For a pair X,Y of logical groupoids, the functor on hom-categories
Sh: LogGrpd(X,Y) — Topos*°(Sh(X), Sh(Y))
is also full.

Proof. Let,¢: X =3 Y be a pair of homomorphisms, and let Sh(¢) L Sh(y) be aniso-
morphism between the induced geometric morphisms. Thus, by Definition VITTH(i),

x € Xy, there is corresponding arrow ¢g(x) LN Yo(x) € Y;. This defines a natural

transformation y’: Xy — Y; between the underlying functors of ¢ and ¢. It remains
to show that )’ is continuous.

Just as in Proposition VTILH, we can assume that Sh(Y) classifies a geometric theory

T, and ¢ and ¢ are induced by geometric expansions T” and T” of T, i.e. there is a

diagram
Sh(p)=el’
Y
8]"' =~ 8jf~ =~ Sh(X) Hj’ Sh(Y) =~ 8’][‘.

A

Sh(y)=el”
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Hence, Y can be associated with a conservative groupoid of K-indexed T-models
that eliminate parameters. Similarly X can simultaneously be identified with a repre-
senting groupoid of {’-indexed T’-models and a representing groupoid of R”-indexed
T”-models, where we can also assume that 8’, 8" 2 }. The homomorphism ¢ (respec-
tively, 1) sends the T’-model M (resp., T”-model N) corresponding to an object x € X
to its T-reduct M|y (resp., N|r) with the same & C {’-indexing (resp., 8”-indexing).
The transformation )’: Xy — Y; sends each point x € X, to an isomorphism of the
corresponding reducts M|t = N|r.

By Remark VIITH, we can assume that Y7 is endowed with the logical topology for
arrows and that X is endowed with the logical topology for objects (for both the T’
and T"” logical structure with which it is associated). Thus, a point x € Xj is contained
in the inverse image

P

- C

P Iy

if and only if M £ (@), N E gb(c_i)), and 5,3 are identified in the T-reducts M|r = Nlr

(recall that & C &’,K” and the signatures of T’, T” expand that of T, so all these
conditions are well-defined). Therefore,

N
a
r—1 I;

4

L

a:q
[7:@Ixnld:pIxn[b=CIlx=y"||bmE| |,
d:y v
and so y’ is indeed continuous. m]

VIIL.2.2 Weak equivalences of logical groupoids

We now turn to describing the weak equivalences of logical groupoids. As currently
formulated, Definition MIITT0 relies on the logical approach to representing topolog-
ical groupoids developed in Chapter VTI. Following this, we are able to establish our
desired biequivalence.

Definition VIIL.10. A homomorphism of logical groupoids X % Y is said to be a weak
equivalence if the following are satisfied.

(i) There is a common choice of geometric theory T and a set of parameters ! such
that X'and Y are groupoids of R-indexed T-models, endowed with the induced
logical topologies, and moreover X is contained in Y, i.e. there are inclusions of
topological subgroupoids

XCYCFGEK).

(ii) Viewed as groupoids of indexed T-models, both X and Y are conservative and
eliminate parameters.

We denote the class of weak equivalences by 2.

As an immediate corollary of Theorem IVILE, we obtain that:
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Corollary VIIL11. IfY %S W is a weak equivalence of logical groupoids, then Sh(i)) induces
an equivalence Sh(Y) =~ Sh(W).

We are almost ready to demonstrate the biequivalence

Topos:® =~ [W'|LogGrpd.

w.e.p.

We must first show that 28 defines a bicalculus of left fractions on LogGrpd according
to [M02].

Proposition VIIL.12. The class W of weak equivalences defines a bicalculus of left fractions
on LogGrpd.

Proof. Recall from [102, §2.1] that there are three conditions required to be a bicalculus
of left fractions. The class 2 must be wide, satisfy the left Ore condition, and the left
cancellability condition (all in the bicategorical sense). We demonstrate each in turn.

(i) (Wideness) Evidently, 2 contains all identities, is closed under composition,
and if ¢ = 1 is a (necessarily invertible) transformation with ¢ € I, then ¢ is

contained in W too. Thus, W is wide.

(ii) (Left Ore condition) Let
Yy 2w

|

X

be a span where Y % W is a weak equivalence. We wish to find a square of
homomorphisms

<

Y — W
ol = |y (VIILiii)
N
X —V
that commutes up to isomorphism, where 1)’ is a weak equivalence.
The homomorphism Y % X induces a geometric morphism

Sh(W) =~ Sh(Y) 4 Sh(X).
By applying Proposition MIILS, there is a representing logical groupoid V of

Sh(X) and a homomorphism of topological groupoids W . By Corollary MITLEZ(ii),
we can ensure also that V contains X as a subgroupoid in such a way that the

square (MIITLiid) commutes up to isomorphism. The inclusion X 5w is, by
construction, a weak equivalence.

(iii) (Left cancellability) Let
P
X 25y Tw

¥
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be a fork of homomorphisms of logical groupoids that commute up to iso-
morphism, and where X % Y € W. We wish to find another homomorphism

\%Y% L) V € W such that the fork
¢ ’
Y w23 v

¥

also commutes up to isomorphism.
Since the induced geometric morphisms
Sh(p)

Sh(y)

Sh(X) ~ Sh(Y) Sh(W)

also commute, i.e. Sh(p) = Sh(y’), by Lemma MIIT7, we have that ¢ ~ 1), and so
we can simply take idy as the desired weak equivalence.
We must also show that, for any other weak equivalence of logical groupoids

W L) V € W that makes the fork

P
H X,
Y lP;WV—>W

commute up to an isomorphism, then there are a pair of weak equivalences
W5V, V5L Ve Wand a coherent choice of isomorphism p oidyw = p’ o x’.

: ' id .
But we can simply choose pas W 25 V € Wand p’ as V =% V € WM. Itis
trivial to show that the identity transformation y’ o idw = idy o }’ satisfies the
necessary coherence condition expressed in [102, §2.1].

Thus, 2 defines a bicalculus of left fractions on LogGrpd. m|

In [T02], Pronk provides a bicategorical extension to Gabriel and Zisman’s locali-
sation result (see [40, Proposition 1.1.3]).

Lemma VIIIL.13 (Proposition 24 [02]). Let G: C — D be a bifunctor and let X be a class
of 1-morphisms in C admitting a left bicalculus of fractions. Suppose that

(i) the bifunctor G is essentially surjective on objects and fully faithful on 2-cells,
(ii) for each f € W, G(f) is an equivalence,

(iii) and for any arrow G(c) % G(d) € D, therearea pair of arrows ¢ LeecanddSeex
such that the triangle

Go) — G(d)

G
c% l @

Gle)
commutes up to isomorphism.

Then there is a biequivalence of bicategories [L']C =~ D.
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Theorem VIIL.14. There is a biequivalence

[ |LogGrpd ~ Topos™°

w.ep.”

Proof. The functor
Sh: LogGrpd — Topos™°

w.e.p.
is essentially surjective by [[I7] (see also Corollary VIL56) and fully faithful on 2-cells
by Lemma VIITZ and Lemma VTITY. By Corollary VITLTT, Sh sends arrows in 2 to
equivalences of topoi.

Let f: Sh(X) — Sh(Y) be a geometric morphism. By Proposition MVIILS, f is iso-
morphic to the geometric morphism Sh(g) induced by a homomorphism of logical
groupoids X L W, where W is a representing groupoid for the topos Sh(Y). By
Corollary MIL57(ii), we can also choose W to contain Y as a subgroupoid, and more-
over this inclusion Y < W can be chosen to be a weak equivalence. Hence, by
Lemma VIIT T3, there is the desired biequivalence [W™!]LocGrpd =~ Toposijf’&p, m|

The logical interpretation. As a consequence of the biequivalence

-1 ~ iso

[~ [LogGrpd ~ Topos,; ,,

we are able to transform the problem of detecting Morita equivalences between logical
theories into a problem of topological algebra, as promised earlier. The full biequiv-
alence [W'|LogGrpd =~ Topos,; , is not necessary to deduce the following result;

it could instead be proven as a consequence of Theorem VI8 and Corollary MIL57
alone.

Corollary VIIL15. Let T and T’ be two geometric theories with representing groupoids of
models X and Y respectively. The theories T and 1" are Morita equivalent, meaning that there
is an equivalence of topoi

811" = STI

if and only if there is a cospan of homomorphisms of logical groupoids
X Y
qx x_/t#
w

such that X 5 W and Y £ W are both weak equivalences of logical groupoids.



Appendix A

Elementary proofs for syntactic
categories

This appendix is intended to supplement Section I3 by providing entirely elemen-
tary proofs of those results therein that make use of the internal language of a doctrine.
Explicating an elementary proof elucidates those parts where the structure of an exis-
tential doctrine is necessary.

Let P: C°? — MSLat be an existential doctrine. In Section T3, we used the
internal language of P to intuit the following results.

(1) For each arrow (c, U) J, (d,V)ofC=P,
Hidcxfu € P(c xd)
defines a provably functional relation (c, U) — (d, V).

(2) Given composable arrows

U == @V) == W)
in C < P, there is an equality
TidxgofU = Fpr, ,(P(PT 5)Tids U A P(Pr, 5)Jid xg V),
i.e. (¥ preserves composites.

(3) If W € P(c x d) defines a provably functional relation (c, U) LR (d,V), then the
composite of the pair

EIidcxd Xpry w

(cxd, W) — 5 (,u) —X— @, V)

3i X r2W
is the provably functional relation (c X d, W) BN d,V).

We provide an elementary proof of each in turn, without use of the internal language.

Lemma A.1. Let P: C°? — MSLat be an existential doctrine. For each arrow (c, U) 4 d,V)
of C > P, i.e. whenever U < P(f)(V), the proposition

Fig.xfU € P(c x d)
is a provably functional relation (c, U) — (d, V) € Syn(P).

269
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Proof. We must check the three conditions from Definition [TL32(ii) are satisfied. Using
the inequalities U < U = P(pr, oid, X f)(U) and U < P(f)(V) = P(pr, oid, X f)(V), we
obtain the first desired inequality
< P(pr, oid, x f)(U), P(pr, oid. x f)(V)
= U < P(id. x f)P(pr,)(U), P(id. x f)P(pr,)(V),
= Jidoxs(U) < P(pry)(U) A P(pr,)(V).
The second desired inequality,

P(prl,z)flidcxfu A P(pr1,3)flidcxfu < P(pr2,3)ElAd T4,

is effectively transitivity of the internal equality predicate. We first note that all the
squares in the diagram

f idex f pry

d < c > cXd > C
Ad\[ @ idxf @ (de.fid) @ J:dcx f
dxd&c;dM) xdrxd—> X d

pr @ Pris
M oSN c;;d

are pullbacks, where (id,, f,id,) and (id., id4, f) denote the universally obtained maps

c&exd%d c&c)(d%d

\ I (1d ,fidg) \ (1df idg, f)
c X d xd c X d X d dg
\/\ \Lpr \/ \/\\LPI‘Z pr}

We note also that (f,ids) = pr,; o (id,, f,ids). Beginning with the identity inequality
Fida.xfTe < Jig.xf Te, we conclude that

FiaoxfTe < Jidexf Te
FiaxfP(ide X f)(Texa) < FiaxsP(f)(Ta),
P(id,, f,ida)Jga, ids, ) Texa < P(f,ida)da, Ta by @, @ and B.-C.,
P(id,, f,id4)Jga, i, ) Texa < PG, f, idd)P(pr2,3)3Ade,
P

. fid)(Texa A P(ide, f,1da) A, idy,p) Texd) < P(pry5)3da, Ta

N

Aad.,fida) Texd A Aiideidy, ) Texd
Hid,,£,idy PET)(Te) A Aid,idg, nP(PT(Te) < P(pry5)3n, Ta,
P(pr, ))Fiaoxf Te A P(Pry ) Fiaxs Te < P(pry5)dn, Ta - by (3), @ and B.-C.

P(pr, 5)da, Ta by Frobenius,

L el



We need now only note that U < T, to achieve our desired inequality that
P(pr, ))FiaxrU A P(pry 3)FiaxrU < P(pr, 5)da, Ta-
The final inequality is obtained via

u= 3pr]O(idcxf u= E]prl diq Xfu

Lemma A.2. Given composable arrows

U) —5 @,v) —5 W)
in C = P, there is an equality
TidoxgofU = Fpr, ,(P(pry 5) Fiax s U A P(pr, 3)Fiaxg V),
i.e. the assignments

(c,U) = (c,U),

1dg><f

()L @, V) ( U) =25 @,v)
define a functor C: C < P — Syn(P).

Proof. There is a pair of composable arrows

U —= @) —5 W)
inC=Pif U< P(f)(V)and V < P(g)(W). The composite of the arrows

1dC ><f ldd g

(cU) —> d, V) — (e W)
in Syn(P) is given by the predicate
S " (P(plrl,z)ElidCX U A P(pr2,3)Elid xgV).
Thus, C* preserves composites if we are able to prove that

FidoxgorU = Fpr, ,(P(PTy 5)Fidax s U A P(Pr, 5)Fid g V).

To demonstrate this equality, we first note that all the squares in the diagram

idex f pr
c - S exd = S d
idcxgof @) (id¢,idyxg) ©) \Liddx g
A (idex fide) M

cXe ——— "% ¢ dee—>d><e

pry @ Pri»

~
g idex f
c : S exd
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are pullbacks. Therefore, we have a chain of equalities

Fp:, ,(P(pry 5)FiaexsU A P(pry5)Fid g V)

Fpr, , Fiacxfian P(Pr)(U) A Jia,idyx P (L) (V) by @, @ and B.-C.,
= Jpr,, Jdxpia) (P(pry)(U) A P((Ade X f,1de))d,idix9P(Pr,)(V)) by Frobenius,
= P(pr))(U) A P((dc X f,1de))Jia, idxg P(Pr2)(V)),

= P(pr,)(U) A Fig xgofP(idc X f)P(pr,)(V) by @ and B.-C.,
= Jig.xgor(PAd. X gf)P(pr,)(U) A P(id. X f)P(pr,)(V)) by Frobenius,
= 3idc><gof(ll A P(f)(V)),

= JiguxgorU since U < P(f)(V).

Thus, we achieve the desired equality
3pr13(P(pr1 Q)Hidcxfu A P(pr2 3)3idd><gv) = 3idc><gc>fu-

We observe also that the 1dent1ty arrow (c, L[) > (¢, U) in C = P gets assigned to
the identity arrow (c, U) (c U) in Syn(P). Hence, * is functorial. O

Lemma A.3. If (c, U) AN (d,V) is a provably functional relation, then the composite of the
pair

Hidcxdxprl W W
(cxd W) ———— (c,U) ———— d,V)

aidcxd xprp 4

is the provably functional relation (c X d, W) (d, V) and thus in the image of C'.

Proof. If (c, U) — AN (d,V) is a provably functional relation, i.e. an arrow of Syn(P), then
as W < P(pr,)(U) there is an arrow (c X d, W) > (c, U) of C = P. The composite of the
pair

CP(Prl):Hidcxdxprl W

(cxd, W) s (c, U) il s> (d,V) (A.a)

is given by Jp:,,, (Pr) 5 3didegxpr, (W) A pr, ,(W)). We wish to show that this arrow lies
in the image of C*, namely that there is an equality
Fid,gpr, W = Hprlm (P 2 3Fid,sgpr, (W) A pr2,4(W)).
We ftirst gather the necessary observations we will need. Both the squares

PTio
cxXdxd > cXd

(idexaXpry ,idd)i lielcxdxpr1 (A.b)

PT1.23

cXdXexd ———> cxXdXc

and
idexaXpr,

cXd ———> cxdXxd

przl l/p (A.c)

d My dxd
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are pullbacks, and by definition there is the inequality
P(pr, ,)(W) A P(pr, 5)(W) < P(pr, 3)3a, Ta. (A.d)

Therefore, there is a chain of equalities

3Pr1,2/4 (P (prl,z,S)Hidcdeprl(W) AP (Pr2,4)(W))

= Fpr, ., (Fidoaxpr,id P(PTy ) (W) A P(pr, ,)(W)) by (AB) and B.-C.,
= Jpr,, , tidaxpr, id 2(P(pr; ) (W) A P(idexa X pry, ida)P(pr, 4, )(W)) by Frobenius,
= P(pr, ,)(W) A Plpr, ) (W),

= P(pr; ,)(W) A P(pr, 3)(W) A P(pr, 5)da, Ta using (Ad),
= P(pr, ,)(W) A P(pr; 3)(W) A Fiaxpr, P(PT,)(Ta) by (A-d) and B.-C,,

=P(pr, ,)(W) A P(pr, 3)(W) A Jid_yxpr, Texds

= Jid,, yxpr, (P(idexa X pr,)P(pr, o) (W) AP(idexa X pr,)P(pr; ;)(W)ATx4) by Frobenius,
= Tid,, gxpr, (P(idexa) (W) A P(idexa)(W)),

= Jid,,  xpr, W-

Hence, we conclude that the composite of (A3) is the image under C” of the arrow

cxd,W)Z d,V)eCxP

as desired. O






Appendix B

Descent data and equivariant sheaves

In this appendix we explicitly spell out the equivalence between the datum of a
compatible X;-action on a local homeomorphism g: Y — X, and descent datum (Y, 0)
for a topological/localic groupoid X. Thereby, we are free to using either definitions
when discussing the topos of sheaves Sh(X). The equivalence is merely a case of
unravelling definitions, but since this can at times be fiddly, we include an exposition
here. We will argue in the language of point-set topology, but recall from Remark VT8
that this also demonstrates the equivalence for locales.

Given a local homeomorphism g: Y — X, with a compatible X;-action
B:Y Xx, X1 —— Y,
the corresponding descent datum is the pair (Y, 63) where 0; is the induced map
s'(Y)
tY) — Y

(I

X1 —— Xo,

where the outside square commutes by the axiom g(f(y, a)) = t(a) of B.
The spaces s*(Y) and t*(Y) are

s'(Y) ={(y,a) € Y x X1 | s(a@) = q(v)},
(YY) ={(y,a) € Y X X1 | t(a) = q(v)},

and 0p is the map which sends (y, @) € s*(Y) to (B(y, @), @) € t'(Y). We first show that
0p does indeed define descent datum on Y.

The condition e*(05) = idy asserts that the map ¢*(6p) in the composite pullback
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diagram below is canonically the identity on Y.

e’s*(Y) —) s*(Y)

m * b

(Y) — #(Y)
i |
Xo — X4

The space e's*(Y) is given by
e's'(Y) ={(x,y,a) € Xo X Y X X1 | e(x) = a, s(a) = q(y)}
and similarly
etrY)=1{(xya) e Xo XY XX |e(x) =a, ta) =q(y)}.
The map e*(6p): e's*(Y) — e't*(Y) acts by
(x,y, @) = (x, f(y, @), ).

But since x = s(e(x)) = s(a) = g(y), a triple (x,y,a) € e's*(Y) is entirely determined
by y. Thus, there is a canonical homeomorphism e*s*(Y) = Y given by projecting
onto the second component of the tuple. Similarly, the same projection yields a
homeomorphism e*t'(Y) = Y. Since a = e(q(y)) for each (x, y, a) € e's*(Y), we observe
that B(y, &) = B(y,e(q(y))) = y. Thus, we have a commuting triangle

e's*(Y)
e LW
AN
e't*(Y),

as required.
Now we turn to the condition that m*(6p) = pr;(6;) o prj(6s). The spaces involved
can be expressed as

pris’(Y) = {(y,a,7) € Y X Xq X X1 | s(pr,(a,y)) = s(a) = q(y), Ha) = s()},
prit’(Y) ={(y,a,y) € Y X X3 X X | t(pry(a, y)) = ta) = q(y), ta) = s(y)},
prys'(Y) = {(y,a,7) € Y X Xa X Xy | s(pry(a, ) = s(y) = q(y), @) = s(y)},
prot (V) ={(y, &, p) € Y X X1 X Xy | Hpry(a, 7)) = H(y) = q(y), Ha) = s(y)}-

Using the equations s o m = s o pr, and t o m = t o pr,, and the commutativity of the
pullback square

X1 Xx, X4 L X

o0

X3 EE— Xo,



we conclude that

m's*(Y) = prys'(Y),

m't'(Y) = pryt'(Y),

prit'(Y) = pr;s’(Y)
Thus, the equation m*(0g) = pr;(0;) o pry(6p), i.e.

nr* () pr}(6p)

[m*s*(Y) ——— m*t*(Y)] = [prjs*(Y) — prit'(Y) = pr3s’(Y) —— pryt'(Y)

type-checks.
The map pr}(6;) is the map in the double pullback

pris’(Y) — (V)

”i(eﬁ)l - iQﬁ

prit(Y) —— t'(Y)
X1 Xx, X1 LN X1,

and therefore acts by

(v, a,7) > By, a),a,p).
Similarly, pr;s*(Y) o), pr;t*(Y) acts by
v, 7) = By, ), a,7)
m*(6p)

and m’s*(Y) —— m"t'(Y) acts by

(v, ) = (B(y, m(a, y)), a, ).

Thus, we observe that

pr5(0p)

(pr3(6p) 0 pry(Op)(y, @, y) = pry(Op) (B(y, @), @, y)

= BBy, a),p),a,y)
= (.B(y/ m(a/ V))/ a, 7/)
=m"(0p)(y, @, 7).

Hence, the pair (Y, 63) indeed constitutes descent datum.

|
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Anequivariantmap Y L, Y'between spaces with respective X;-actions s and ’ also

constitutes a morphism of descent data (Y, ) EN (Y’, B’). The required commutativity

condition,

t'(f) 0 0p = Op o s*(f),
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is forced by universal property of £*(Y’) in the commutative diagram
: s (Y
s(Y) ————— s'(Y)
. Op f ﬁ\L Op
' | ™

Y N\——— Y
(YY) ———— t'(Y)

N

<
N

Sy

X3 Xj.

For the other direction, suppose we are given a descent datum (Y, 0). We then
obtain a compatible X;-action y: s*(Y) — Y by taking g to be the composite

Y xx, X; = s1(Y) =2 #(Y) =5 Y.

Checking that B¢ defines a legitimate X;-action, or that a morphism of descent data

(Y, 0) EN (Y’, 0") yields an equivariant map (Y, fs) 4, (Y’, Ber), essentially amounts to
the reverse of what we have done above, and so we omit the details. Finally, note that
the two correspondences are mutual inverses since, for all (y, a) € Y Xx, Xi,

Bos(y, @) = pry(B(y, a), @) = B(y, a)

and similarly 6z, = 6.



Concluding remarks

Relative topos-theoretic techniques in doctrine theory

In Part [A], we saw how the techniques of relative topos theory can be successfully
applied to the study of completions of doctrines. Broadly speaking, there are two kinds
of completions of doctrines considered in the literature. There are those completions
which add structure to the fibres, such as Trotta’s existential completion [ITT9] or
Coumans’ canonical completion [30], and then there are those which add structure
to the indexing category, exemplified in the work [8T]. The geometric completion
considered in Chapter [M belongs to the first species, but a continuation of the work
commenced in this dissertation encompasses the latter as well.

Exact completions of doctrines. As observed in [119, §6], by composing the pseudo-
adjunctions coming from the existential completion, the syntactic category construc-
tion and the exact completion of a regular category (see [?8, §2.3]), as in the diagram

E—
PrimDoc - ExDoc - Reg . Exact,

we obtain the exact completion of a primary doctrine in the sense of [83]. The work of
Maietti, Pasquali and Rosolini [83], [80] has been fundamental in understanding the
exact completion of a doctrine via a series of doctrinal completions. The composite
functor PER: ExDoc — Exact is the so-called ‘tripos” construction (see [b3], [100]), also
called the partial equivalence relation construction since the objects of the resultant
category are partial equivalence relations in the internal language of the doctrine.

Since the geometric completion of a primary doctrine interprets geometriclogic, we
could also consider taking the analogous category whose objects are finite, or indeed
infinite, tuples of internal partial equivalence relations. In the case of finite tuples,
this would obtain a doctrinal version of the pretopos completion from [87, §8.4]. More
generally, we recover a whole spectrum of ‘tripos-like” completions for doctrines,
akin to the analogous exactness completions for categories (see [107], [TT5]). Not
only are such ‘tripos-like” constructions employed to construct notable examples of
elementary topoi, such as Hyland’s effective topos, but their connection to the model-
theoretic Shelah’s elimination of imaginaries construction has also been noted (see [48]).

While the infinite partial equivalence relation construction for a (primary) doctrine
is only “syntactically parsable” when the doctrine also interprets geometric logic, this
restriction can be evaded by first taking the geometric completion. The unifying role
of the geometric completion in relating the various ‘tripos-like” constructions will be
the subject of future work.
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Removing hypotheses. Thus, our approach parallels the burgeoning interest in
describing exact completions for weaker and weaker initial structures. For example,
the exact completion of a category with finite limits given in [?7] is extended by
Carboni and Vitale in [?8] to describe the exact completion of a category with only
weak finite limits. This interest has been paralleled by recent work for doctrines, e.g.
in [29].

Our use of relative topos theory permitted a construction of the geometric com-
pletion at the extreme end of this spectrum in that it can be defined for entirely
unstructured doctrines (that is, any PreOrd-valued pseudo-functor). Since morphisms
of (relative) sites ‘preserve finite limit data relatively’ (see Remark [4), a relative topos
theoretic approach to exactness completions will similarly facilitate the construction
of exact completions with only the weakest viable hypotheses.

Representing groupoids and Morita equivalence

Our original motivation in pursuing a marriage of topology and predicate logic was to
turnish the tools needed for a further investigation of Morita equivalences. Recall that
two theories T, T” with classifying topoi are Morita equivalent if there is an equivalence
of topoi Er =~ &y, or equivalently if there is an equivalence of model categories

T-mod(F) =~ T’-mod(¥),

natural in any topos . From the point of view of the category theorist, for whom
equivalence replaces identity, a Morita equivalence between theories ought to be
‘trivial” in some sense. However, superficially this is far from the case. Just as with
bi-interpretability, every theory is Morita equivalent to infinitely many other theories,
and syntactically these theories can be very different (e.g., a single-sorted theory
can be Morita equivalent to a multi-sorted theory, see Remark VI2). Indeed, such
equivalences are at the heart of Caramello’s theory of ‘topos-theoretic bridges” (see
22, §2.2]).

We proposed the use of topological groupoids as a syntax-invariant perspective on
Morita equivalence, intending to translate the problem of identifying Morita equiv-
alences of theories into one of topological algebra, with the additional benefit that
the working mathematician often has a firmer grasp on a spotlighted tomogram of
models of a theory than its entire syntax.

To conclude, we evaluate the efficacy of our contributions in respect to this goal.
The omnipresent time restraints of a doctorate have also precluded some extensions
to our study, which we highlight as potential avenues for future research.

A topological description of weak equivalences. Consider a weak equivalence

X5 Y of logical groupoids. As currently formulated in Definition MIILT0, that ¢ is
a weak equivalence relies on an oracular choice of theory simultaneously classified
by the topoi Sh(X) and Sh(Y). To be considered a complete translation of the logical
problem of Morita equivalence into one of topological algebra, an entirely topological
characterisation of weak equivalences is required.

The Moerdijk site for Sh(X) (see [92, Definition 6.1]) provides a promising source
of such a characterisation. Let X be a logical groupoid. The choice of a theory T
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over a signature X classified by Sh(X) corresponds to a choice of definable sheaves
[X:lx T el O12:01)- We can therefore eliminate the need for a choice of definable
sheaves by instead considering a suitable topologically defined set of sheaves. We
note that the objects of the Moerdijk site are characterised in entirely topological
terms and, moreover, it can be demonstrated that for any choice of theory classified
by Sh(X), there exists a generating set of objects for Sh(X) that are definable sheaves
contained in the Moerdijk site (cf. [, Lemma 2.1.5]). The properties of conservativity
and elimination of parameters ought thus to be translated into properties of the
sheaves in the theory-invariant Moerdijk site.

Non-invertible 2-cells. When constructing the biequivalence

[W!]LogGrpd =~ Toposij‘;p.
in Theorem VIITT4, we were required to restrict our investigation to the invertible
2-cells of the bicategory Topos,,,, C Topos since a transformation between homo-
morphisms of topological groupoids is necessarily invertible. However, the slogan
that representing groupoids possess ‘sufficient information to recover” their topoi of
sheaves suggests that the groupoids X, Y do contain knowledge, in some fashion, of
the non-invertible 2-cells

Sh(p)
/\
Sh(X) HV Sh(Y),

~_ A

Sh(y)

for any pair of parallel homomorphisms of topological groupoids ¢, .
As suggested by the analysis of 18, §16], [B1, §5], Sierpiniski-valued homotopies

offer a potential solution. Recall that, in common parlance, a homotopy f N g between

parallel continuous maps f, g: X =3 Yis a continuous map H: [0,1]: X — Y such that
H(0,x) = f(x) and H(1,x) = g(x) for all x € X. A Sierpiniski-valued homotopy is the
same basic concept where the interval [0, 1] is replaced by the Sierpiriski space 5. Such
homotopies can be generalised, as in [b1, Definition 5.1], to the setting of topological
groupoids. Importantly, Sierpifiski-valued homotopies are not invertible. This is the
subject of on-going work with Graham Manuell.

Topos-theoretic invariants of topological groupoids. Given a theory T with a rep-
resenting model groupoid X, we can restrict which theories can be Morita equivalent

to T by identifying topological properties of the topological groupoid ijzzl that are
preserved under weak equivalences. These will correspond to topos—theoret%c invari-
ants of the classifying topos Sh(X) =~ &y, and thereby contribute to the theory of
‘topos-theoretic bridges” from [22, §2.2].

We have highlighted some syntactic properties already: in Proposition M35
and Proposition VIT45. The literature abounds with other examples, such as the
aforementioned link between étale groupoids and étendues (see [B, §VI.9.8.2(e)]).

Given the equivariant nature of the groupoid representation of logical theories, it is
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natural to expect the tools of algebraic topology to generate fruitful applications to
logic. Steps have already been taken in this direction (see [I6] and [[I5], for instance).
The benefit of such a development can be bidirectional: both [65], [66] and [9] employ
logically inspired intuition in the study of the cohomology theory of topoi.
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