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Abstract

We study two species of representing data for classifying topoi. First, we
exposit an approach to classifying topos theory using Lawverian doctrines. Con-
tributions are made to relative topos theory and internal locale theory in order
to accommodate our doctrinal approach. Applications of our development are
then made to the study of syntactic completions of doctrines. We also study the
representation of classifying topoi by localic and topological groupoids, culmi-
nating in a model-theoretic characterisation of which open topological groupoids
represent the classifying topos of a theory.
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Introduction

Topoi (by topos unqualified, we mean Grothendieck topos) were originally introduced
by Grothendieck to tackle problems arising in algebraic geometry and algebraic topol-
ogy, but have since become central to the categorical study of logic. In this dissertation,
we study two species of representing data for the classifying topos of a predicate (or
first-order) theory – doctrinal and groupoidal representations:

The classifying
topos of a theory,

the doctrine
of a theory,

groupoids
of models.

Prior to motivating the use of these representing data, we recall some important
examples of topoi and the notion of a classifying topos.

Topos theory and topology. Many natural examples of topoi are generated from
topological starting data:

Examples 0.1. (i) (Sheaves on a space) Given a topological space X, the slice cat-
egory LH/X, where LH ⊆ Top is the subcategory of local homeomorphisms
between topological spaces, is a topos: the familiar topos Sh(X) of sheaves on X.

Topos theory subsumes the point-free incarnation of topology, locale theory
(see [61], [97] or Section II.1), in that the map X 7→ Sh(X) yields a fully faithful
2-embedding

Sh : Loc Topos

of locales into the bicategory of topoi, geometric morphisms, and 2-cells between
these (i.e. natural transformations between the inverse image functors).

(ii) (Topoi of continuous actions) If G is a topological group (or even a monoid), the
category BG of continuous actions by G on discrete sets is also a topos.

There is a sense in which every topos is a generalisation of the notion of topological
space in which ‘points can have non-trivial isomorphisms’. This is expressed by the
representation results of [68] and [17] discussed in Part B. In this manner, topoi can
be likened to orbifolds from differential geometry (cf. [94], [105]).

The notion of a ‘space whose points have isomorphisms’ is captured formally by
an internal groupoid of either the category of topological spaces Top, or locales Loc (if
‘space’ is taken in the pointfree sense). Each localic or topological groupoid can be

ix
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associated with a topos of equivariant sheaves that generalises both species of topoi from
Examples 0.1 (full definitions are given in Chapter V). The representation results [17],
[68] state that every topos (with enough points) is equivalent to the sheaves on an
open localic/topological groupoid.

Classifying topoi. In addition to a topological description, each topos admits a log-
ical representation via the notion of a classifying topos. The terminology ‘classifying
topos’ was inspired by analogy with classifying spaces from algebraic topology. In-
deed, the first examples of classifying topoi from [3, §IV.2.3-4], namely the topoi of
the form BG, play the same role as the classifying spaces of principal bundles (see, for
instance, [90]).

The classifying topos of a theory T is a topos ET for which there is an equivalence

T-mod(F ) ' Geom(F ,ET)

natural in F , where T-mod(F ) is the category of models of T in the topos F (see [63,
§D1] for how to construct models internal to an arbitrary topos) and Geom(F ,ET) is
the category of geometric morphisms from F to ET. By this universal property, the
classifying topos of a theory is unique up to equivalence.

Example 0.2 (Remark D3.1.14 [63]). The Lindenbaum-Tarski algebra LT of a propo-
sitional geometric theory T is a locale, i.e. a ‘pointfree space’, and the topos Sh(LT)
classifies T.

Geometric logic is that fragment of infinitary first-order logic whose permissible
symbols are equality =, truth >, falsity ⊥, finite conjunction ∧, infinitary disjunction∨

and existential quantification ∃. In [1, §2.3], Abramsky describes geometric logic
as the logic of observable properties – those properties that can be determined to hold
on the basis of a finite amount of information. Not only does every geometric theory
have a classifying topos (see [22, Theorem 2.1.10]), but every topos is the classifying
topos for some geometric theory (see [22, Theorem 2.1.11]). Classifying topos theory
lends geometric logic a strong spatial intuition, as explored in [124]. Note, however,
that theories from other fragments of predicate logic can also have classifying topoi.
Intuitively, the classifying topos embodies the essential information about a theory.

(A) Doctrinal representations.

It is therefore of interest for the logician to study representations of classifying topoi,
as these are effectively representations of the logical theory by other data. We first
consider representations of topoi by doctrines in the sense of Lawvere [77]. Doctrine
theory represents another approach to categorical logic, parallel to classifying topos
theory. A doctrine is a categorical generalisation of the notion of a Lindenbaum-Tarski
algebra to the first-order setting, an alternative to the cylindrical algebras suggested
by Tarski [50] and polyadic algebras suggested by Halmos [47].

In Part A, we exposit a classifying topos theory for Lawverian doctrines. We will
observe in Section III.4 that many previously known results in classifying topos theory
admit intuitive proofs when phrased in the language of doctrine theory. Additionally,
we compare our doctrinal construction of the classifying topos of a theory with the
standard textbook account involving syntactic categories.
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A topos-theoretic framework for completions of doctrines. Our classifying topos
theory for doctrines also yields applications to doctrine theory. In recent years, many
syntacitc completions of doctrines have been considered in the literature (e.g. [30], [96],
[119], [121]). In Chapter IV, we introduce the geometric completion of a doctrine, and
develop a topos-theoretic framework for generating completions of doctrines to other
subfragments of geometric logic.

The geometric completion we introduce is semantically invariant, meaning the cate-
gory of models associated with a doctrine and its geometric completion are equivalent.
Thus, we intend to study the semantics for various doctrines with a unified approach
using the familiar language of geometric logic.

(B) Groupoidal representations.

A classical result of model theory asserts that an ℵ0-categorical theory is entirely
determined, up to the level of bi-interpretability, by the topological automorphism
group of its unique countable model (proven by Ahlbrandt and Ziegler in [2, §1],
attributed to unpublished work of Coquand). Explicitly, given ℵ0-categorical theories
T1 and T2,

T1,T2 are bi-interpretable ⇐⇒ Aut(M) � Aut(N)

where M and N are countable models of T1 and T2 respectively. As shown in recent
work by Ben Yaacov [9], the assumption that the theories are ℵ0-categorical can be
removed by replacing a topological group with a topological groupoid (however, this
groupoid is not a groupoid of models).

However, in many ways bi-interpretability is too fine an equivalence on first-order
theories – there are theories that ought to be considered ‘equivalent’, but which are
not bi-interpretable (see [7], [70, Example 8.4], [123, §4.7]). In the topos-theoretic
approach to predicate logic, it is more natural to consider a strictly weaker notion of
equivalence between theories (which is satisfied by the examples referenced above,
see for example [122]).

Definition 0.3 (§D1.4.13 [63], §2.2.1 [22]). Given two theories T,T′ with classifying
topoi, there is a (natural) equivalence

T-mod(F ) ' T′-mod(F )

of models, for each topos F , if and only if there is an equivalence of topoi ET ' ET′ .
We call such equivalences Morita equivalences, after Morita equivalence for rings [95].

The representation of classifying topoi by topological groupoids. Part B of this
dissertation concerns a study of Morita equivalence of first-order theories employ-
ing topological groupoids, paralleling the classical model theoretic account for bi-
interpretability. We seek to characterise Morita equivalence of theories in terms of
which open topological groupoids ‘represent’ a given theory in the following sense.

Definition 0.4. An (open) topological groupoid is said to represent a theory if its topos
of sheaves classifies the theory.

Morita equivalence of theories can thus be translated into Morita equivalence of
their representing groupoids, that is if their topoi of sheaves are equivalent. Already in
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the case of topological groups, the question of Morita equivalence is rather involved,
as evidenced in [91].

Relation to Stone-type and Galois-type representations. As a ‘generalised space
in which points have isomorphisms’, the classifying topos of a theory is the gen-
eralised space whose points are models of a theory, and whose isomorphisms are
isomorphisms of these models. Thus, as explained in [5], [4, §5-6], we intuit that the
representation of classifying topoi by a topological groupoid of models is a predicate
extension of Stone duality for propositional theories [111], [112], which associates a
theory of propositional logic to its space of models (this contrasts with the ‘first-order
duality’ of Makkai [86, §5-8], [85] where a groupoid of models is equipped with
ultracategory structure rather than topological structure).

Moreover, as formalised in [14, §7], the representation of topoi by localic/topological
groupoids also represents an abstraction of Grothendieck’s Galois theory (see [44,
§V.4]). Thus, the representation of classifying topoi by a topological groupoid rep-
resents a common generalisation of Stone-type and Galois-type representations for
logical theories.

Classification result and consequences. In Part B, we characterise which groupoids
of models constitute a representation of the classifying topos of a theory, subsuming the
previous topological representation results [5], [11], [17], [21], [36], [37] found in the
literature. Intuitively, this expresses which groupoids of models ‘have enough infor-
mation to recover’ the theory. Our characterisation has a distinctly model-theoretic
flavour, contrasting with localic representation results of [34], [68].

Subsequently, we demonstrate that every geometric morphism between topoi with
enough points is induced by a homomorphism of topological groupoids, and thereby
establish a biequivalence for topoi with enough points, giving a topological parallel
for the analogous result in the localic setting [92, §7]. Informally, this expresses that,
just as topoi are ‘spaces whose points have isomorphisms’, geometric morphisms are
‘continuous maps that respect isomorphisms between points’.

As a consequence, in Corollary VIII.15, we will observe that two theories with rep-
resenting groupoids are Morita equivalent if and only if their representing groupoids
can be compared via a cospan of weak equivalences. Thus, we have transformed the
problem of Morita equivalence into the domain of topological algebra.

Chapter overview

Since, at times, we will detour through subjects that could seem distant to our original
motivation, we include an overview motivating the content of each chapter as it relates
to our overarching aims.

Chapter II is adapted from the preprint [127]; modified content from the preprint
[128] is split across Chapter III and Chapter IV, while the preprint [126] has become
Chapter V and Chapter VII; Chapter VI is taken from joint work with Graham Manuell
in the preprint [88].
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Relative topos theory

Relative topoi. Chapter I concerns relative topos theory in the sense of [26]. Because
doctrines, in whose language we develop our logical applications, are examples of
fibred categories, it is natural to seek a relative formalism. If topos theory is the study
of the bicategory Topos of topoi, geometric morphisms, and natural transformations
(between the inverse image functors), then relative topos theory is the study of the
bicategory RelTopos of relative topoi,

(i) the bicategory whose objects are geometric morphisms f : F → E,

(ii) whose arrows are squares of geometric morphisms

F G

E H

k

f � g

h

that commute up to isomorphism,

(iii) and whose 2-cells (k, h) ⇒ (k′, h′) consist of a pair of 2-cells β : k ⇒ k′ and
γ : h⇒ h′ between geometric morphisms for which the 2-diagram

F G

E H

f g

k

k′

h

h′

β

γ

commutes (where the empty 2-cells g ◦ k ' h ◦ f and g ◦ k′ ' h′ ◦ f represent the
distinguished isomorphisms), i.e.

g ∗ β ' γ ∗ f .

Much of the necessary work regarding relative topos theory has been developed in
[26], [24] and [8]. Chapter I both recalls this background theory, and extends the
previous literature in the necessary directions for our intended, logical applications.

What is the benefit of relative topos theory? By fixing a base topos E for F , we
have presented F internally to E (see [63, Theorem B3.3.4]). In particular, F is the
topos of internal sheaves on an internal site. Many internal constructions inside topoi,
and in particular internal sites, can be of interest outside of topos theory.

Examples 0.5. For example, given a monoid M, any internal notion of the topos
BM comes equipped with an M-action and internal constructions are naturally M-
equivariant.
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(i) In particular, the internal language of the topos BN, for the monoid (N, 0,+), is
exploited in [116] for the study of difference algebra.

(ii) In the topos BG, for a discrete group G, an internal (pointfree) space X of BG
corresponds to an action of G on a space X (see, for instance, [63, Example
C2.5.8(d)] or Section II.3.2). Moreover, the cohomology theory of the topos of
internal sheaves ShBG(X) coincides with Borel’s equivariant cohomology for the
group action G × X→ X (see [45] and [110]).

For some applications of relative topos theory, the literature on internal sites (see,
for instance, [32] or [63]) is already sufficient. However, as explained in [26], the more
flexible notion of relative sites can often be preferable as a formalism.

A cylindrical Diaconescu’s equivalence. We present a ‘cylindrical’ variant of the
relative ‘Diaconescu’s equivalence’ (so-named for [32]) found in [24, Theorem 3.3]
and [8, Theorem 3.6]. Our cylindrical version will play the same role as the standard
Diaconescu’s equivalence in establishing a classifying topos theory for doctrines.

Internal locale theory

Internal locales and geometric theories. In Chapter II, we pursue a systematic study
of one, ubiquitous kind of relative sites: internal locales. As observed in [63, Theorem
D3.2.5] (and generalised in [99], [22, §7.1] and Section III.4), an internal locale of
the object classifier SetsFinSets may be identified with a single-sorted geometric theory.
Thus, to study the algebraic structure of (single-sorted) geometric theories, it suffices
to study the internal locale theory of SetsFinSets (as performed in Chapter III).

Therefore, it is important to proceed with a well-developed theory of internal
locales. For applications, it is especially important to have concrete methods of
externalising properties of internal locales, as these will be of tangible interest to the
practising mathematician. External treatments of internal locale theory appear in [68],
[63, §C1.6] and [24].

Pointwise properties of internal locales. We will show that

(i) surjections of internal locales,

(ii) embeddings of internal sublocales,

(iii) and the co-frame operations on the co-frame of internal sublocales

can all be computed ‘pointwise’.

Classifying topoi via doctrines

Classifying topoi for doctrines. Having developed the necessary background ma-
terial in Chapter I and Chapter II, in Chapter III we develop a theory of classifying
topoi for Lawverian doctrines. As exposited in Section III.1, any first order system
of deduction, satisfying the weakest of requirements, admits a representation by a
doctrine, making them the perfect formalism for our philosophical aims.
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Doctrines vs. syntactic categories. A textbook account of classifying topos theory,
as can be found in [22], [63], [79], constructs the classifying topos ET of a regular,
coherent, or geometric theory T via the syntactic site. However, as discussed in
Section III.3.2, the fact that a syntactic category can be constructed for the theory T
presupposes that it exists in a fragment of logic with at least the expressive power of
regular logic.

We demonstrate that, when the necessary underlying structure is present, it is
equivalent to represent theories using either doctrines or syntactic categories, in as
much as they have equivalent classifying topoi.

The geometric completion of a doctrine

Significant interest has been shown in syntactic completions of doctrines, such as the
existential and universal completions [119], [121] or the canonical extension [30].

The geometric completion. In Chapter IV, we provide another logical completion:
the geometric completion. This sends a doctrine to a geometric doctrine, a member of a
class of doctrines with the expressive power of geometric logic.

Unlike other completions of doctrines considered in the literature, the geometric
completion takes a Grothendieck topology as a second argument. As a result, the ge-
ometric completion is not only universal, but also semantically invariant and idempotent.

Our development yields a general framework for generating completions of doc-
trines for sub-fragments of geometric logic. In this fashion, we recover Trotta’s existen-
tial completion (see Proposition IV.31), as well as identifying the coherent completion
of a doctrine. We are also able to relate completions of doctrines to completions
of categories, such as the regular completion (see [27]), via the syntactic category
construction studied in Section III.3.

Sheaves on a groupoid

Chapter V begins our study of the groupoidal representation of predicate theories.
Every localic or topological groupoid comes equipped with a natural notion of a topos
of equivariant sheaves. Chapter V establishes the pertinent properties of topoi of sheaves
on a topological groupoid that will facilitate our subsequent study of representing
groupoids. Section V.2 includes a comparison between the representation of topoi by
topological groupoids and localic groupoids.

A localic representing groupoid

In the landmark paper [68], Joyal and Tierney famously proved that every topos
is equivalent to a topos of equivariant sheaves on an open localic groupoid, giving
sense to the statement that every topos is a ‘space whose points can possess non-trivial
isomorphisms’.

Because the localic representation of classifying topoi contrasts with their topologi-
cal representation studied in Chapter VII, we give in Chapter VI an explicit description
of a representing localic groupoid for the classifying topos of a geometric theory and
sketch its providence via the methods of [68]. As expressed in [63, Remark C5.2.8(c)],
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the argument via geometric theories is the most natural way to witness the Joyal-
Tierney representation result. The localic groupoid we give is directly comparable
to the representing topological groupoids studied in [5], [36], [37] and, with a slight
modification (see Remark VI.23), also the representing topological groupoids studied
in [17].

Topological representing groupoids

Topological representation. In [17], Butz and Moerdijk give the topological parallel
to the Joyal-Tierney result [68] by showing that every topos with enough points is
equivalent to the topos of sheaves on an open topological groupoid. Equivalently, this
expresses that every geometric theory whose set-based models are conservative has
a representing groupoid of models. In [5], [36], [37], an explicitly logical description
of a representing open topological groupoid is given for the classifying topos of a
geometric theory with enough points. Special cases of representing groupoids are
considered in [21] and [11].

The classification result. Our contribution in Chapter VII is to characterise the
open topological groupoids that represent a given geometric theory. Intuitively, this
characterises which groupoids of models ‘have enough information’ to recover the
theory.

We will observe that it is not merely enough for the underlying models of a
groupoid to be conservative. Instead, we must also impose a model-theoretic con-
dition, elimination of parameters, on the groupoid. The representation of geometric
theories using doctrines, as set out in Chapter III, is used to simplify our calculations.
The results on internal locale morphisms from Chapter II are also essential to our
proof.

Our classification result recovers the representations of topoi by open topological
groupoids considered in the literature. We are also able to demonstrate, using the
classification result, that every open topological groupoid is Morita equivalent to its
étale completion, giving a topological parallel to the same result for localic groupoids
found in [92, §7] (see also Remark VI.6).

Representing groupoids for doctrines. Finally, the language of doctrines, used in
Part A, is married to the language of representing groupoids from Part B when
in Section VII.7 we translate our classification of the representing groupoids of a
geometric theory, across the geometric completion from Chapter IV, to deduce a
classification of the representing groupoids of a doctrine, thus fulfilling the intended
purpose of the geometric completion: to produce one study of semantics within the
familiar syntax of geometric logic.

Weak equivalences of groupoids

Moerdijk’s equivalence. We continue our study of the groupoid representation of
topoi in Chapter VIII. In [92, §7], Moerdijk demonstrates that the category Topos
is equivalent to a subcategory of localic groupoids localised by a right calculus of
fractions (see [40, §1]).
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A topological parallel. We aim to give the topological parallel, where topoi are
replaced by topoi with enough points, and localic groupoids are replaced by topo-
logical groupoids. Informally, this expresses that, just as topoi can be thought of as a
‘space whose points have isomorphisms’, geometric morphisms can be thought of as
‘continuous maps that preserve isomorphisms of points’.

We demonstrate that, unlike the Moerdijk result [92], in the topological setting we
cannot obtain our desired equivalence by taking a right calculus of fractions on any
subcategory of topological groupoids. A left (bi)calculus of fractions must instead be
employed.

Logical motivation. As explicated in Section VI.1, a geometric morphism

f : ET ET′

between classifying topoi (with enough points) is identical to a (pseudo-natural)
functor

FF : T′-mod(F ) T-mod(F )

between model categories, or informally: instructions on how to transform aT′-model
into a T-model. Our biequivalence thus expresses that the geometric morphism f is
determined by the action of FSets restricted to a representing groupoid of models for
T′, lending credence to the slogan that representing groupoids are those groupoids of
models that ‘have enough information’ to recover the theory.

Moreover, from the biequivalence we are able to deduce a characterisation of
Morita equivalence for topological groupoids, and thus a characterisation of Morita
equivalence for theories in terms of their representing groupoids.
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Chapter I

Relative topos theory

What is relative topos theory? There are many equivalent ways to define what a
(Grothendieck) topos is.

(i) A topos E is a category satisfying the Giraud axioms (see [79, Appendix]), includ-
ing the requirement that E has a small set of generators.

(ii) A topos is a category that is equivalent to the category of sheaves on some site
(in Sets, i.a. a small site).

(iii) A topos E is an elementary topos with a bounded geometric morphism E → Sets
(see [63, Definition A2.1.1, Definition B3.1.7]).

Thus, broadly conceived, (Grothendieck) topos theory is the study of topoi over the
topos Sets.

The focus on Sets is not strictly necessary. Given any elementary topos E, a
bounded geometric morphism between elementary topoi f : F → E with codomain
E yields an internal site (C,J) of E (see [63, Theorem B3.3.4]). Even when F and E
are both Grothendieck topoi, in which case they are both presented by some pair of
sites in Sets, it may still be valuable to fix a certain geometric morphism f : F → E or
base topos for F . This is because the choice of geometric morphism f : F → E is akin
to a particular ‘perspective’ on F , relative to E. Relative topos theory embraces this
relative perspective – the fundamental objects of study being the geometric morphisms
between topoi.

A cylindrical Diaconescu’s equivalence. The purpose of this chapter is to exposit
a relative site theory, in the sense of [26, §8], suitable for our applications to doctrine
theory. Recall that Diaconescu’s equivalence establishes an equivalence between the
geometric morphisms f : F → Sh(C, J) whose codomain is the sheaf topos Sh(C, J)
with certain functors C → F , the flat functors. A relative version of Diaconescu’s
equivalence appears in [24, Theorem 3.3] and [8, Theorem 3.6], work inspired by a
particular case tackled in [42]. In Theorem I.21, we present a ‘cylindrical’ variant that
emphasises a change of base, which will facilitate our definition of the classifying
topos of a doctrine in Chapter III.

Relative vs. internal site theory. There are two approaches found in the literature
that generalise site theory to a relative setting. In addition to relative sites, as in-
troduced in [26], there is also the internal site theoretic approach, which translates

3
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standard site theory into the internal language of a topos (see, for instance, [32]). As
also discussed in [26], on the whole relative sites present a more attractive formalism
for the study of relative topoi.

(i) Relative sites are a slightly weaker notion than internal sites, and thus more sites
can be compared, although every relative site is Morita equivalent to an internal
site. In this regard, there are two chief benefits to relative sites.

− Firstly, a relative site may be large. The benefit of this can be likened to how
the canonical site (E, Jcan) of a topos E is not small, and therefore not strictly
internal to Sets, but it is still a useful site to consider.

− Secondly, a relative site may be pseudo-functorial, and thus higher categorical
notions can be considered using relative site theory.

(ii) Being explicit by definition, when working with those relative sites that are also
internal sites, there is no need to translate between internal and external notions.
This is especially useful for applications outside of topos theory.

Overview. To prefigure the subsequent development: a relative site consists of a
comorphism of sites that is also a Street fibration. The first half of this chapter consists of
recalling the necessary background material to make sense of this definition, before
the latter half turns to its use in relative topos theory. The chapter is divided as
follows.

(A) We first recall in Section I.1 the notions of a comorphism and a morphism of
sites.

(B) In Section I.2, we recall the theory of fibrations and their relation to fibred
categories. We recall the theory of Grothendieck fibrations and Street fibrations
separately, although we will not differentiate between the two.

(C) Having recalled enough background material, in Section I.3 we recall the defi-
nition of relative sites and define their morphisms. We show that a morphism
of relative sites induces a morphism of relative topoi.

(D) The final addition, Section I.4, is devoted to a cylindrical version of the rel-
ative Diaconescu’s equivalence found in [24] and [8]. We also prove some
consequences of this result, including an extension of the notion of subcanonical
topology to the relative setting.

I.1 Morphisms and comorphisms of sites

Morphisms and comorphisms of sites constitute two methods of generating geometric
morphisms from their generating data, i.e. sites, and can therefore be compared with
defining homomorphisms on free algebras by functions on their generators. Indeed,
we will observe in Section II.4 that morphisms of sites generalise the practice of
defining frame homomorphisms in terms of generators and relations for a frame.
Morphisms and comorphisms of sites were originally introduced, under different
names, in [3]. For a modern treatment, the reader is directed to [79, §VII] and [23].
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Comorphisms of sites. Comorphisms of sites are functors of the underlying cate-
gories of sites that induce geometric morphisms covariantly.

Definition I.1 (Definition 2.1, Exposé III [3]). Let (C, J) and (D,K) be sites. A comor-
phism of sites

F : (C, J) (D,K)

is a functor F : C → D with the cover lifting property – for each object c of C and
K-covering sieve S on F(c), there exists a J-covering sieve R on c such that F(R) ⊆ S.

A comorphism of sites F : (C, J)→ (D,K) induces a geometric morphism

CF : Sh(C, J) Sh(D,K)

(see [3, §III.2] or [79, Theorem VII.10.5]) for which the inverse image C∗F is given by
aJ(− ◦ F). The composite of two comorphisms of sites F and G is still a comorphism of
sites whose induced geometric morphism is the composite CF◦G = CF ◦CG. Moreover,
any natural transformation

(C, J) (D,K)

F

G

γ

between comorphisms of sites induces a natural transformation aJ(− ◦ F)⇒ aJ(− ◦G)
and thus a 2-cell of geometric morphisms CF ⇒ CG.

Thus, taking the geometric morphism induced by a comorphism of sites is natu-
rally bifunctorial. Let ComorphSites denote the bicategory whose objects are sites,
whose 1-cells are comorphisms of sites and whose 2-cells are natural transformations
between comorphisms of sites. By above, there is a bifunctor ComorphSites→ Topos
that sends a site to its topos of sheaves, and a comorphism of sites F to its induced
geometric morphism CF.

The Giraud topology. Recall from [3, §3.1, Exposé III] that, given a functor F : D→ C
and a Grothendieck topology J on C, there is a unique finest topology onDmaking F
a comorphism of sites. In [3], the name ‘topologie induite’ was used, but the topology
was subsequently dubbed the Giraud topology in [26] due to its pioneering use in [42].

Definition I.2 (Definition 3.1, Exposé III [3], cf. §2 [42]). Let (C, J) be a site, and let
F : D → C be a functor. The Giraud topology JF onD is the Grothendieck topology on
D defined by the following universal property. For any other Grothendieck topology
K onD, the following are equivalent:

(i) firstly, JF ⊆ K;

(ii) the functor F defines a comorphism of sites

(D,K) (C, J);F
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(iii) for each J-covering sieve S on F(d) ∈ C, the sieve{
d′

g−→ d ∈ D
∣∣∣∣ F(g) ∈ S

}
is K-covering.

Morphisms of sites. Morphisms of sites, on the other hand, are functors of the
underlying categories of sites that induce geometric morphisms contravariantly.

Definition I.3 (Definition 3.2 [23]). Let (C, J) and (D,K) be sites. A morphism of sites

F : (C, J) (D,K)

is a functor F : C → D satisfying the following conditions.

(i) If S is a J-covering sieve on c ∈ C, then F(S) is a K-covering family of morphisms
on F(c).

(ii) Every object d of D admits a K-covering sieve { di → d | i ∈ I } such that each
object di, for i ∈ I, has a morphism di → F(ci) to the image of some ci ∈ C.

(iii) For any pair of objects c1, c2 of C and any pair of morphisms

d F(c1), d F(c2)
g1 g2

ofD, there exists a K-covering family{
di

hi−→ d
∣∣∣∣ i ∈ I

}
of morphisms inD, a pair of families{

ci
f 1
i−→ c1

∣∣∣∣∣ i ∈ I
}
,

{
ci

f 2
i−→ c2

∣∣∣∣∣ i ∈ I
}

of morphisms in C, and, for each i ∈ I, a morphism di
ki−→ F(c′i) such that the

squares

di d di d

F(ci) F(c1), F(ci) F(c2)

hi

ki g1

hi

ki g2

F( f 1
i ) F( f 2

i )

commute.

(iv) For any pair of parallel arrows

c′ c
f1

f2

of C, and any arrow d h−→ F(c′) of D such that F( f1) ◦ g = F( f2) ◦ g, there exists a
K-covering family {

di
hi−→ d

∣∣∣∣ i ∈ I
}
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of morphisms ofD, a family of morphisms{
ci

ei−→ c′
∣∣∣∣ i ∈ I

}
of C such that f1 ◦ ei = f2 ◦ ei for all i ∈ I, and, for each i ∈ I, a morphism di

ki−→ F(ci)
such that the square

di d

F(ci) F(c′)

hi

ki g

F(ei)

commutes for each i ∈ I.

Remark I.4. In Definition I.3, conditions (ii) to (iv) express that a functor preserves
finite limits relatively, including those finite limits that do not appear in C (cf. the
discussion in [71]). Condition (ii) expresses that the terminal object is preserved, (iii)
products, and (iv) equalizers. If C andD are both cartesian categories, then a functor
F : C → D that preserves finite limits satisfies conditions (ii) to (iv). The converse is
also true K is a subcanonical topology (see [107, Corollary 4.14]).

A morphism of sites F : (C, J)→ (D,K) induces a geometric morphism

Sh(F) : Sh(D,K) Sh(C, J)

for which the direct image Sh(F)∗ sends a sheaf P : Dop → Sets of Sh(D,K) to P◦Fop (see
[79, Theorem VII.10.2]). Morphisms of sites were originally defined in [3, Definition
1.1, Exposé III] as the hypothesis in the following result:

Proposition I.5 (§3.2 [23]). A functor F : C → D is a morphism of sites F : (C, J)→ (D,K)
if and only if there exists a geometric morphism

f : Sh(D,K) Sh(C, J)

such that the square

C D

Sh(C, J) Sh(D,K)

`C

F

`D

f ∗

commutes (here, `C denotes the canonical functor of the site (C, J), i.e. the composite aJ ◦よC
of the Yoneda embedding followed by sheafification). If so, the geometric morphism f is unique
up to unique isomorphism.

It follows that the composite of two morphisms of sites is still a morphism of sites
and that Sh(F ◦G) = Sh(G) ◦ Sh(F) for any two composable morphisms of sites F and
G. Similarly, a natural transformation

(C, J) (D,K)

F

G

γ
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between morphisms of sites evidently yields a natural transformation

Sh(F)∗ = − ◦ Fop − ◦ Gop = Sh(G)∗

and therefore a 2-cell of geometric morphisms Sh(G) ⇒ Sh(F) (see also [63, Remark
C2.3.5]).

Thus, just as with comorphisms of sites, taking the geometric morphism induced
by a morphism of sites is naturally bifunctorial. Let MorphSites denote the bicategory
whose objects are sites, whose 1-cells are morphisms of sites and whose 2-cells are
natural transformations between morphisms of sites. By above, there exists a bifunctor
MorphSitesop → Topos that sends a site to its topos of sheaves and a morphism of
sites to its induced geometric morphism.

Dense morphisms of sites. Many properties of geometric morphisms can be com-
puted at the level of morphisms and comorphisms of sites, as is demonstrated in [23].
Of particular interest is when a morphism of sites induces an equivalence of topoi.
Sufficient conditions are described in [75, §2]. Necessary and sufficient conditions
are given in [23, Proposition 5.5 & Theorem 5.7], however we won’t need the extra
generality.

Definition I.6 (§2 [75]). A dense morphism of sites

F : (C, J) (D,K)

is a functor F : C → D such that:

(i) S is a J-covering family in C if and only if F(S) is K-covering inD,

(ii) for every object d ofD, there exists a K-covering family of morphisms F(ci)→ d,

(iii) for every pair of objects c1, c2 of C and an arrow F(c1)
g−→ F(c2) in D, there is a

J-covering family of arrows c′i
fi−→ c1 and a family of arrows c′i

ki−→ c2 such that
g ◦ F( fi) = F(ki),

(iv) for any pair of arrows

c1 c2

f1

f2

in C such that F( f1) = F( f2), there exists a J-covering family of arrows{
c′i

ki−→ c1

∣∣∣∣ i ∈ I
}

such that f1 ◦ ki = f2 ◦ ki for all i ∈ I.

By [107, Theorem 11.2], each dense morphism of sites is a morphism of sites. The
induced geometric morphism is an equivalence of topoi.

The comparison lemma, as originally formulated for (full) subcategories in [3,
Theorem 4.1, Exposé III], can be recovered via the special case of a dense morphism
of sites whose underlying functor is the inclusion of a subcategory.
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Definition I.7. A subcategory C ⊆ D of a site (D,K) is dense if

(i) for every d ∈ D, there is a covering family S ∈ K(d) generated by morphisms
whose domains are in C,

(ii) for every arrow c
g−→ d ∈ D, there is a covering family S ∈ J(c) generated by

morphisms b
f−→ c such that g ◦ f is in C.

Lemma I.8 (The Comparison Lemma). Let (D,K) be a site and letC be a dense subcategory.
There is an equivalence of topoi Sh(D,K) ' Sh(C,K|C).

I.2 Fibrations

In this section, we recall the theory of fibrations. Just as the datum of a presheaf
P : Cop → Sets can be collected into a single category using the category of elements
construction, so too can the datum of a functor P : Cop → Cat, or a pseudo-functor
P : Cop → CAT, be concentrated into a single category: the Grothendieck construction
C o P (see [44, Eposé IV]). The category C o P comes equipped with a canonical
projection πP : C o P→ C, and fibrations characterise those functors of this form. We
would expect the theory of fibrations to appear in the study of internal sites since,
by [63, Corollary D1.2.14], an internal category of a presheaf topos SetsC

op
is simply a

functor P : Cop → Cat.

I.2.1 Grothendieck fibrations

Although we will eventually consider the more general notion of Street fibration, for
ease of development we first recall the theory of (Grothendieck) fibrations. Recall
from [63, Definition B1.3.4] that a fibration A : C → E is a functor such that, for each

object c of C and an arrow e
f−→ A(c), there exists a cartesian lifting d

g−→ c of f , that is an

arrow of C such that A(g) = f and, for any arrows d′
g′−→ c of C and A(d′) k−→ A(d) of E

for which the triangle

A(d′) A(d)

A(c)

k

A(g′)
A(g)

commutes, there exists a unique arrow d′ k′−→ d of C such that the triangle

d′ d

c

k′

g′
g

commutes and A(k′) = k (note that we are using the terminology ‘cartesian arrow’
where Johnstone uses ‘prone’). Recall also that, given a pair of fibrations A : C → E
and B : D → F , a morphism of the fibrations A → B consists of a pair of functors
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F : C → D and G : E → F such that the square

C D

E F

F

A B

G

commutes and, if d
g−→ c ∈ C is cartesian, so too is F(d)

F(g)−−→ F(c).

Cloven fibrations and fibred categories. Recall that a cleavage for the fibration A is

a choice of cartesian lifting for each arrow e
f−→ A(e).

Any (strictly) fibred category, i.e. a functor P : Cop → Cat, yields a fibration via the
Grothendieck construction. We denote by C o P the category

(i) whose objects are pairs (c, x) where c is an object of C and x is an object of P(c),

(ii) and an arrow (c, x)
( f ,g)−−−→ (d, y) is a pair consisting of an arrow c

f−→ d of C and an
arrow x

g−→ P( f )(y) of P(c).

The projection functor πP : C o P→ C, which acts by

(c, x) 7→ c,

(c, x)
( f ,g)−−−→ (d, y) 7→ c

f−→ d,

is a fibration. The cartesian lifting of an arrow e
f−→ πP(c, x) in C can be taken as the

arrow (e,P( f )(x))
( f ,idP( f )(x))−−−−−−−→ (c, x), yielding a cleavage for the fibration πP : C o P→ C.

Example I.9. The Grothendieck construction of a presheaf P : Cop → Sets, viewed as
a strictly fibred category, coincides with the category of elements of P.

Let P : Cop → Cat and Q : Dop → Cat be a pair of strictly fibred categories. A
morphism of strictly fibred categories, by which we mean a functor F : C → D and a
natural transformation α : P⇒ Q ◦ Fop, also yields a morphism of fibrations. We will
denote by F o α the functor F o α : C o P→D oQ that acts by

(c, x) 7→ (F(c), αc(x)),

(c, x)
( f ,g)−−−→ (d, y) 7→ (F(c), αc(x))

(F( f ),αc(g))−−−−−−−→ (F(d), αd(y)).

The square

C o P D oQ

C D

Foα

πP πQ

F

commutes, and F o α sends cartesian arrows to cartesian arrows. Therefore, the pair
(F,F o α) is a morphism of fibrations πP → πQ.

Definition I.10 (Definition 7.1, Exposé IV [44]). Fibrations of the form πP : C o P→ C
are known as cloven fibrations.
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Proposition I.11 (Theorem 1.3.5 [63]). If we assume the axiom of choice, every fibration is
cloven.

Therefore, we will often elect to work in the notionally and conceptually conve-
nient framework of (strictly) fibred categories rather than fibrations.

I.2.2 Street fibrations

For the majority of this thesis, we will be working with functors valued in skeletal
categories, in particular PoSet, where every isomorphism is an equality, and therefore
the above formalism suffices for our applications. However, for the more general
development of the theory of relative sites, fibrations will not be enough. Namely,
fibrations break the so-called ‘principle of equivalence’ – that constructions in category
theory should only be defined up to equivalence and not equality. Instead, we must
work with a variation of the above theory of fibrations.

The necessary generalisations to the flavour of fibrations studied above were
introduced by Street in [113] and developed further in [114]. Just as cloven fibrations
correspond to strictly fibred categories, cloven Street fibrations correspond to fibred
categories in the bifunctorial sense (see [10]).

Definitions I.12 (Definition 4.1 [10], Definition 2.8 [114]). (i) By a fibred category we
mean a pseudo-functor P : Cop → CAT, essentially a functor where we have
relaxed the condition that P preserves identities and compositions of arrows; P
now only needs to preserve these up to equivalence, i.e. P consists of the data:

a) a category P(c) for each c ∈ C,

b) a functor P( f ) : P(c)→ P(d) for each d
f−→ c ∈ C,

c) a distinguished natural isomorphism Pidc : idP(c)
∼
=⇒ P(idc) for each c ∈ C,

d) and a distinguished natural isomorphism

P f◦g : P(g) ◦ P( f ) ∼=⇒ P( f ◦ g)

for each pair e
g−→ d, d

f−→ c ∈ C,

satisfying the coherence axioms:

e) for each arrow d
f−→ c ∈ C,

P(c) P(c) P(d) = P(c) P(d) P(d)
P( f )

idP(c)

P(idc)

P( f )

P( f )

idP(d)

P(idd)

P( f )

Pidc∼

Pidc◦ f∼

Pidd∼

P f◦idd ∼
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f) and for each triple of arrows e′ h−→ e, e
g−→ d, d

f−→ c ∈ C,

P(d) P(e)

P(c) P(e) P(e′) = P(c) P(d) P(e′)

P( f ) P(g)

P( f◦g)

P(h)

P( f◦g◦h)

P( f )

P(g) P(h)

P(g◦h)

P( f◦g◦h)

P f◦g∼

P( f◦g)◦h∼

Pg◦h∼

P f◦(g◦h) ∼

(ii) A Street fibration is a functor A : C → E such that for each object c ∈ C and an

arrow e
f−→ A(c), there exists a (weak) cartesian lifting d

g−→ c of f , by which
we mean that there exists a distinguished isomorphism h : e ∼−→ P(d) such that
P(g) ◦ h = f and that g is cartesian in the same sense as before – i.e. for any

arrows d′
g′−→ c ∈ C and A(d′) k−→ A(d) ∈ C for which the triangle

A(d′) A(d)

A(c)

k

A(g′)
A(g)

commutes, there exists a unique arrow d′ k′−→ d of C such that the triangle

d′ d

c

k′

g′
g

commutes and A(k′) = k.

Proposition I.13 (Corollary 3.8 [114]). For each fibred category

P : Cop CAT,

the Grothendieck construction C o P yields a Street fibration πP : C o P→ C.

Example I.14 (The canonical fibration of a geometric morphism). We give some exam-
ples of pseudo-functors that are not functors, and hence Street fibrations that are not
Grothendieck fibrations, culminating in what will become for us a recurring example
of a Street fibration: the canonical fibration of a geometric morphism.

(i) For a category Cwith all pullbacks, we obtain a pseudo-functor

C/(−) : Cop CAT

by sending each object c ∈ C to the slice category C/c and, for each arrow

d
f−→ c ∈ C, the functor C/ f acts by sending e

g−→ c ∈ C/c to the pullback

e′ e

d c.

⌟
g

f
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Since pullbacks are only defined up to unique isomorphism, in general C/(−)
is a pseudo-functor not a functor. The corresponding Street fibration coincides
with the functor

tgt : C2 C

whose domain is the arrow categoryC2 ofC and which acts on objects by sending
an arrow to its target.

(ii) We can perform a relative version of the above construction. For a category
C with all pullbacks and and any functor F : D → C, we obtain, analogously
to above, a pseudo-functor C/F : Dop → CAT by sending each object d ∈ D
to the slice category C/F(d) and each arrow d′

f−→ d ∈ C to the functor C/F( f ).
The corresponding categoryDoC/F coincides with the comma category, usually
denoted by (idC ↓F).

In particular, a geometric morphism f : F → E yields pseudo-functor

F / f ∗ : Eop CAT

and hence a Street fibration E o F / f ∗ → E, the canonical fibration of a geometric
morphism.

Morphisms of Street fibrations. We should also eliminate the use of equality in
our definition of a morphism of fibrations. We therefore define a morphism of Street
fibrations A : C → E and B : D → F to be a pair of functors F : C → D and G : E → F
such that F sends cartesian arrows to cartesian arrows and the square

C D

E F

F

A � B

G

commutes up to natural isomorphism. Given two fibred categories P : Cop → CAT
and Q : Dop → CAT, a morphism of fibred categories consists of a functor F : C → D and
pseudo-natural transformation α : P→ Q◦Fop, that is a functor αc : P(c)→ QF(c) for each

c ∈ C, and a natural isomorphism α f : QF( f )◦αc
∼
=⇒ αd : P( f ), for each arrow d

f−→ c ∈ C,
satisfying the coherence conditions

QF(c) QF(c)

P(c) P(c) Q(c) = P(c)

P(c)

αc

idP(c)

P(idc)

αc

idQF(c)

Q(idF(c))

P(idc)

αc

αidc∼Pidc∼

QidF(c)∼



14 CHAPTER I. RELATIVE TOPOS THEORY

and, for each pair e
g−→ d, d

f−→ c ∈ C,

QF(d) QF(c)

P(c) QF(c) QF(e) = P(c) P(d) QF(d) QF(e).

P(e) P(e)

αc QF( f )

P( f ) αd

α f

QF(g)

P(g)
αe

αg

∼

∼

P( f◦g)

QF( f ) QF(g)

QF( f◦g)

αc

αeP( f◦g)

P f◦g

QF( f )◦F(g)∼

α f◦g∼ ∼

As before, the pair (F, α) yields a morphism of Street fibrations (F,Foα) : πP → πQ (see
[26, §2.2]).

Since fibrations in the sense of Grothendieck and the sense of Street share the same
pertinent properties, we will not bother differentiating the two notions. Indeed, a
cloven Street fibration is equivalent to a Grothendieck fibration (see [26, Proposition
2.2.5]).

I.3 Relative sites
We have now recalled enough background material to recall the definition of a relative
site.

Definition I.15 (Definition 8.2.1 [26]). Let (C, J) be a site. A relative site over (C, J)
consists of

(i) a fibration A : D→ C,

(ii) and a topology K on C such that K contains the Giraud topology JA (see
Definition I.2).

Equivalently, a relative site is a fibred category P : Cop → CAT and a topology K on
C o P such that the fibration yields a comorphism of sites πP : (C o P,K) → (C, J).
Thus, (modulo some size requirements discussed below) every relative site defines a
relative topos

CπP : Sh(C o P,K) Sh(C, J).

Remark I.16. Although our fibred category P : Cop → CAT is allowed to take values in
large categories, there are some size requirements we must impose. Firstly, we require
that, for each c ∈ C, the category P(c) is locally small. Secondly, we require that the
site (CoP,K) has a small set of generators, i.e. a small set of objects { (ci, xi) | i ∈ I } ⊆ CoP
such that any other object (d, y) ∈ CoP admits a K-covering by arrows whose domains
are taken among the set { (ci, xi) | i ∈ I }. All of the examples of fibred categories with
topologies on C o P one considers in practice satisfy these size conditions.

These conditions are necessary since we desire the two facts to be true of a relative
site:

(i) the category of sheaves Sh(C o P,K) is a (Grothendieck) topos (in particular,
Sh(C o P,K) has a small set of generators),
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(ii) and secondly, there is a Yoneda functorよCoP : CoP→ Sets(CoP)op
and hence also

a canonical functor `CoP : C o P→ Sh(C o P,K).

The notion of a relative site generalises the notion of an internal site (see [63, §C2]).
An internal category of a presheaf topos SetsC

op
, i.e. a functor P : Cop → Cat, can be

assigned a topos of internal presheaves, which is given by the presheaf topos Sets(CoP)op

(see [63, Lemma C2.5.3]). An internal Grothendieck topology can also be introduced,
and it is shown in [63, Proposition C2.5.4] that the topos of internal sheaves on an
internal site of Sh(C, J) is of the form Sh(C o P,K) for some Grothendieck topology K
on CoP containing the Giraud topology. Thus, when a relative site is also an internal
site, our development coincides with the internal treatment.

Example I.17 (§8.2.2 [26], The canonical relative site of a geometric morphism). We
return to the example of the canonical relative fibration E o F / f ∗ of a geometric
morphism f : F → E from Example I.14 and describe a topology J̃can on the category
E o F / f ∗ → E for which there is an equivalence

Sh(E o F / f ∗, J̃can) ' F ,

from which (E o F / f ∗, J̃can) deserves the title: the canonical relative site of a geometric
morphism.

Recall that objects of E o F / f ∗ are pairs(
E , F

g−→ f ∗E
)

where E ∈ E and F
g−→ f ∗E ∈ F , and an arrow(

E , F
g−→ f ∗E

)
(h,h′)−−−→

(
E′ , F′

g′−→ f ∗E′
)

consists of a pair of arrows E h−→ E′ ∈ E and F h′−→ F′ ∈ F such that the square

F F′

E E′

h′

g g′

F(h)

in F commutes. There are two evident projections: firstly, the ever-present fibration

πF / f ∗ : E o F / f ∗ E

that sends
(

E , F
g−→ f ∗E

)
to E (for increased symmetry of notation, we will denote this

functor by πE). Secondly, there is the projection πF : E o F / f ∗ → F ,(
E , F

g−→ f ∗E
)
7→ F,(

E , F
g−→ f ∗E

)
(h,h′)−−−→

(
E′ , F′

g−→ f ∗E′
)
7→ F h′−→ F′.
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We denote by J̃can the Grothendieck topology on E o F / f ∗ whose covering sieves
are precisely those sieves that are sent by πF to jointly epimorphic families, i.e. a
family of arrows { (

Ei , Fi
g−→ f ∗Ei

)
(hi,hi

′)−−−−→
(

E , F
g−→ f ∗E

) ∣∣∣∣∣ i ∈ I
}

in E o F / f ∗ is J̃can-covering if and only if{
Fi

hi
′
−→ F

∣∣∣∣∣ i ∈ I
}

is a jointly epimorphic family in F . As f ∗ : E → F preserves jointly epimorphic
families, the projection

πE : (E o F / f ∗, J̃can) (E, Jcan)

has the cover lifting property and so is a comorphism of sites. Hence, (E o F / f ∗, J̃can)
is a relative site over the canonical site (E, Jcan) for E.

In fact, we can say more. By applying [23, Theorem 3.16], the functor πF is both a
dense morphism of sites and a comorphism of sites

πF : (E o F / f ∗, J̃can) (F , Jcan),

from which we deduce an equivalence of topoi Sh(E oF / f ∗, J̃can) ' F , and moreover
that there is an isomorphism of geometric morphisms

F E

Sh(E o F / f ∗, J̃can) E.

∼

f

� ∼

CπE

Thus, every geometric morphism f : F → E is represented by its canonical relative
site πE : (E o F / f ∗, J̃can)→ (E, Jcan).

I.3.1 Morphisms of relative sites

We complete this section by describing morphisms of relative sites. Our theory is a
natural extension to that developed in [24] so as to include change of base.

Definition I.18. A morphism of relative sites

(F,G) :
[
(C, J) A−→ (E,L)

] [
(D,K) B−→ (F ,M)

]
consists of a pair of functors F : C → D and G : E → F such that

(i) the pair (F,G) constitutes a morphism of fibrations

C D

E F ,

F

A � B

G
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(ii) and both F : (C, J)→ (D,K) and G : (E,L)→ (F ,M) are morphisms of sites.

Later in Proposition I.28 we will observe that morphisms of relative sites admit a
simpler description in special cases. Let

(C, J) (D,K)

(E,L) (F ,M),

F

A � B

G

be a morphism of relative sites. The constituent functors A, B, F and G induce a square
of geometric morphisms

Sh(C, J) Sh(D,K)

Sh(E,L) Sh(F ,M).

CA

Sh(F)

CB

Sh(G)

(I.i)

However, a priori there is no reason for this square to commute (up to isomorphism)
and thus define a morphism of relative topoi. We will show that the specific conditions
made on a morphism of relative sites, namely that the functors A, B, F and G also
constitute a morphism of fibrations, suffice to demonstrate that the square (I.i) does
indeed commute.

Lemma I.19. Let A : (C, J)→ (E,L) and B : (D,K)→ (F ,M) both be relative sites and let

(F,G) :
[
(C, J) A−→ (E,L)

] [
(D,K) B−→ (F ,M)

]
be a morphism of relative sites. Then the induced square of geometric morphisms

Sh(C, J) Sh(D,K)

Sh(E,L) Sh(F ,M)

CA �

Sh(F)

CB

Sh(G)

commutes up to isomorphism.

Proof. The overarching method of the proof is to turn the morphisms of sites F and G
into comorphisms of sites, and then appeal to the bifunctoriality of sending a comor-
phism of sites to its induced geometric morphism. We are able to turn morphisms
of sites into comorphisms of sites by [23, Theorem 3.16]. For the morphism of sites
F : (C, J)→ (D,K), there are functors

C (1D ↓F) D
iF

πC

πD

where

(i) (1D ↓F) denotes the comma category
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a) whose objects are pairs (
c, d a−→ F(c)

)
of an object c ∈ C and an arrow d→ F(c) inD,

b) and whose arrows are pairs

(c′, d′ a′−→ F(c′)) (c, d a−→ F(c))
(g,h)

of arrows c′
g−→ c ∈ C and d′ h−→ d′ for which the square

d′ d

F(c′) F(c)

h

a′ a

F(g)

commutes;

(ii) πC : (1D ↓F)→ C and πD : (1D ↓F)→D are the respective projection functors

πC : (c, d a−→ F(c)) 7→ c,

πD : (c, d a−→ F(c)) 7→ d;

(iii) iF : C → (1D ↓F) is the functor that sends c ∈ C to(
c,F(c)

idF(c)−−−→ F(c)
)
∈ (1D ↓F).

Moreover, when the category (1D ↓F) is endowed with the Grothendieck topology K̃,
whose covering sieves are precisely those that are sent by πD to K-covering sieves, we
have that

(i) πC : ((1D ↓F), K̃)→ (C, J) is a comorphism of sites,

(ii) iF : (C, J)→ ((1D ↓F), K̃) is a morphism of sites,

(iii) πD : ((1D ↓ F), K̃) → (D,K) is both a morphism and comorphism of sites and
induces an equivalence of topoi

Sh((1D ↓F), K̃) ' Sh(D,K).

We also have that Sh(F) = CπC ◦ Sh(πD), and CπD is an inverse to Sh(πD). Similarly,
there are functors

E (1F ↓G) F
iG

πE

πF

with analogous properties, in particular Sh(G) = CπE ◦ Sh(πF ) and CπF is an inverse
for Sh(πF ).

We construct a comorphism of sites H : ((1D ↓F), K̃) → ((1F ↓G), M̃) such that the
diagram

C (1D ↓F) D

E (1F ↓G) F
A �

πC

H �

πD

B

πE πF

(I.ii)
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commutes up to isomorphism. The functor H sends an object
(
c, d a−→ F(c)

)
to(

A(c),B(d)
B(a)−−→ B(F(c)) � G(A(c))

)
,

where we have used that the square

C D

E F ,

F

A � B

G

(I.iii)

commutes up to isomorphism. Similarly, H is defined to send an arrow(
c′, d′ a′−→ F(c′)

) (
c, d a−→ F(c)

)(g,h)

to (A(h),B(g)). The functor H clearly makes the diagram (I.ii) commute up to isomor-
phism.

It remains to show that H has the cover lifting property. Let

S =
{ (

ei, fi
b−→ G(ei)

)
(gi,hi)−−−→

(
A(c),B(d)

B(a)−−→ B(F(c)) � G(A(c))
) ∣∣∣∣∣ i ∈ I

}
be a M̃-covering sieve, i.e.

πF (S) =
{

fi
hi−→ B(d)

∣∣∣∣ i ∈ I
}

is M-covering. As A is a fibration, there exists, for each i ∈ I, a cartesian lifting of

ei
gi−→ A(c) ∈ E to an arrow c′

g′−→ c ∈ C. Since the square (I.iii) is also a morphism of

fibrations, F(c′)
F(g′)−−−→ F(c) ∈ D is cartesian too. Now we apply the fact that B has the

cover lifting property to deduce the existence of a K-covering sieve R on d such that

B(R) ⊆ πF (S), i.e. for each d′ k−→ d in R, there exists an i ∈ I such that B(k) factors as

B(d′) fi B(d)

B(F(c′)) B(F(c)) � G(A(c)).

B(k)

b

hi

B(a)

B(F(g′))

As F(g′) is cartesian, there is a unique arrow d′
γ−→ F(c′) ∈ Dmaking the square

d′ d

F(c′) F(c)

k

γ a

F(g′)
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commute. Hence, as R is a K-covering sieve,{ (
c′, d

γ−→ F(c′)
) (k,g′)−−−→

(
c, d a−→ F(c)

) ∣∣∣∣∣ k ∈ R
}

is a K̃-covering lifting of S, whence H is a comorphism of sites

H : ((1D ↓F), K̃)→ ((1F ↓G), M̃)

as desired.
By the commutation of (I.ii) up to isomorphism, we deduce that the induced

diagram of geometric morphisms

Sh(C, J) Sh((1D ↓F), K̃) Sh(D,K)

Sh(E,L) Sh((1F ↓G), M̃) Sh(F ,M)

CA �

CπC

CH �

CπD

CB

CπE CπF

commutes up to isomorphism too. Thereby, we conclude that

CA ◦ Sh(F) = CA ◦ CπC ◦ Sh(πD),
' CπE ◦ CH ◦ Sh(πD),
= CπE ◦ Sh(πF ) ◦ CπF ◦ CH ◦ Sh(πD),
' Sh(G) ◦ CB ◦ CπD ◦ Sh(πD),
= Sh(G) ◦ CB

as required. □

I.4 A cylindrical Diaconescu’s equivalence
In this final section, we present a cylindrical version of the relative Diaconescu’s equiv-
alence and some corollaries of our statement. Recall that Diaconescu’s equivalence
states that, for each site (C, J) and each topos E, there is an equivalence of categories

Topos(E,Sh(C, J)) ' J-Flat(C,E). (I.iv)

Unravelling definitions, the latter category is precisely

MorphSites
(
(C, J), (E, Jcan)

)
.

One direction of the equivalence (I.iv) sends a J-flat functor F : C → E to the geometric
morphism

Sh(F) : E ' Sh(E, Jcan) Sh(C, J)

induced by F as a morphism of sites F : (C, J) → (E, Jcan). In the other direction,
a geometric morphism f : E → Sh(C, J) is sent to the J-flat functor f ∗ ◦ `C : C → E.
Diaconescu’s equivalence is essential to the textbook development of classifying topos
theory. The same is true for our relative exposition.
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A relative version of Diaconescu’s equivalence appears in [24, Theorem 3.3] and
[8, Theorem 3.6], generalising the work of Giraud [42]. We present a ‘cylindrical’
variant to the equivalence found in [8], [24] that includes a change of base suitable
for our later applications. We provide a self-contained account here, but the functors
witnessing the equivalence in Theorem I.21 could also be constructed by appealing to
[8, Theorem 3.6] (see Remark I.22).

For notational convenience in this section, when there is no confusion, we will
write a−1 for the functor P(a) : P(d) → P(c), where P : Cop → CAT is a fibred category
and c a−→ d is an arrow of C.

Lemma I.20. Let P : Cop → CAT be a fibred category. For each object (d, y) of C o P, there
exists a canonical choice of a natural transformation

ら(d,y) : よCoP(d, y) よC(d) ◦ πP.

such that

(i) for each arrow z u−→ y of P(d), the triangle

よCoP(d, z) よCoP(d, y)

よC(d) ◦ πP

(idc,u)◦−

ら(d,z) ら(d,y)

commutes,

(ii) and for each arrow c a−→ d of C, the square

よCoP(c, a−1y) よCoP(d, y)

よC(c) ◦ πP よC(d) ◦ πP

ら(c,a−1 y)

(a,ida−1 y)◦−

⌟
ら(d,y)

a◦−

is a pullback in Sets(CoP)op
.

Proof. For each object (e, x), the map

ら(e,x)
(d,y) : よCoP(d, y)(e, x)→よC(d)(e)

that sends an arrow (e, x)
( f ,v)−−−→ (d, y) to e

f−→ d is evidently the component of a natural
transformation. Immediately, we see that the triangle

よCoP(d, z) よCoP(d, y)

よC(d) ◦ πP

(idc,u)◦−

ら(d,z) ら(d,y)

commutes for each arrow z u−→ y ∈ P(d).
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Recalling that pullbacks in Sets(CoP)op
are computed pointwise, for (ii) is suffices to

show that, for each (e, x) ∈ C o P, the square

よCoP(c, a−1y)(e, x) よCoP(d, y)(e, x)

よC(c)(e) よC(d)(e)

ら(e,x)
(c,a−1 y)

(a,ida−1 y)◦−

ら(e,x)
(d,y)

a◦−

is a pullback in Sets. This is given by the evident isomorphism

よCoP(c, a−1y)(e, x) =

 (e, x)
( f ,u)−−−→ (c, a−1y)

∣∣∣∣∣∣∣ e
f−→ c ∈ C,

x u−→ a−1y ∈ P(e)

 ,
�


(
e

f−→ c, (e, x)
(g,u)−−−→ (d, y)

) ∣∣∣∣∣∣∣∣∣∣∣∣
e

f−→ c ∈ C,
x u−→ a−1y ∈ P(e),

e
g−→ d ∈ C,

g = a ◦ f

 ,
=よC(c)(e) ×よC(d)(e)よCoP(d, y)(e, x).

□

Theorem I.21 (The cylindrical Diaconescu’s equivalence). Given a relative site over
(C, J), i.e. a pseudo-functor

P : Cop → CAT
and a Grothendieck topology K on C o P that contains the Giraud topology, there is an
equivalence of categories

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP

 ' RelMorph


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE

 ,
where

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP


denotes the category

(i) whose objects are squares of geometric morphisms

F Sh(C o P,K)

E Sh(C, J)

g

f � CπP

h

that commute up to isomorphism,
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(ii) and whose arrows (g, h)→ (g′, h′) consist of a pair of 2-cells β : g⇒ g′ and γ : h⇒ h′

for which the cylindrical 2-diagram

F Sh(C o P,K)

E Sh(C, J)

f CπP

g

g′

h

h′

β

γ

commutes (where the empty 2-cells represent the distinguished isomorphisms), i.e.

CπP ∗ β ' γ ∗ f ,

and

RelMorph


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE


denotes the category

(i) whose objects are morphisms of relative sites, i.e. morphisms of fibrations

C o P E o F / f ∗

C E

G

πP � πE

H

for which G : (CoP,K)→ (EoF / f ∗, J̃can) and H : (C, J)→ (E, Jcan) are both morphisms
of sites,

(ii) and whose arrows (G,H)
(β,γ)−−−→ (G′,H′) consist of a pair of natural transformations

β : G⇒ G′ and γ : H⇒ H′ for which the cylindrical 2-diagram

(C o P,K) (E o F / f ∗, J̃can)

(C, J) (E, Jcan)

πP πE

G

G′

H

H′

β

γ

commutes (i.e. πE ∗ β ' γ ∗ πP).
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Proof. Given a morphism of fibrations

C o P E o F / f ∗

C E

G

πP � πF

H

for which G : (CoP,K)→ (EoF / f ∗, J̃can) and H : (C, J)→ (E, Jcan) are both morphisms
of sites, by Lemma I.19 and Example I.17 there is a diagram of geometric morphisms

F Sh(E o F / f ∗, J̃can) Sh(C o P,K)

E Sh(E, Jcan) Sh(C, J)

∼

f �

Sh(G)

CπF � CπP

∼ Sh(H)

that commutes up to isomorphism.
This assignment of objects can be extended to a functor

RelMorph


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE

 Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP


since, recalling from [63, Remark C2.3.5], any natural transformations β : G⇒ G′ and
γ : H ⇒ H′ between morphisms of sites induce 2-cells Sh(β) : Sh(G) ⇒ Sh(G′) and
Sh(γ) : Sh(H) ⇒ Sh(H′) on the induced geometric morphisms. It remains to show
that these 2-cells satisfy the necessary commutativity condition that, if πE ∗ β ' γ ∗πP,
then CπP ∗ Sh(β) = Sh(γ) ∗ f . We can essentially perform the same construction as
in Lemma I.19 – transforming the morphisms of sites into comorphisms of sites,
and natural transformations of morphisms of sites into natural transformations of
comorphisms of sites, and then appealing to the bifunctoriality of the comorphism of
sites to geometric morphism construction.

We now construct the converse functor

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP

 RelMorph


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE

 .

Given a square of geometric morphisms

F Sh(C o P,K)

E Sh(C, J)

g

f � CπP

h
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that commutes up to isomorphism, by precomposing the inverse image functor h∗

with the canonical functor `C : C → Sh(C, J), as in the standard Diaconescu’s equiv-
alence (I.iv), a morphism of sites H : (C, J) → (E, Jcan) is obtained. Constructing the
complementary morphism of sites

G : (C o P,K) (E o F / f ∗, J̃can)

is more involved.
We wish to construct a (pseudo-)natural transformation

Cop CAT.

P

F / f ∗H

That is, we need, for each object c ∈ C, a functor gc : P(c) → F / f ∗H(c) such that, for
each arrow c a−→ d ∈ C, the square

P(d) P(c)

F / f ∗H(d) F / f ∗H(c)

P(a)

gd � gc

F / f ∗H(a)

(I.v)

commutes up to coherent natural isomorphism.
Recall from Lemma I.20 that for each object y ∈ P(d) there is a natural transforma-

tion
ら(d,y) : よCoP(d, y) よC(d) ◦ πP,

i.e. an arrow of Sets(CoP)op
. By applying g∗aK toら(d,y), we obtain an arrow

g∗aK(ら(d,y)) = gd(y) : g∗aKよCoP(d, y) g∗aK(よC(d) ◦ πP)

of F . Recall that C∗πP
acts by sending a J-sheaf F : Cop → Sets to

aK(F ◦ πP) : C o Pop → Sets.

In particular, C∗πP
(`C(d)) = aK(よC(d) ◦ πP). Therefore,

g∗aK(よC(d) ◦ πP) = g∗C∗πP
`C(d) � f ∗h∗`C(d) = f ∗H(d).

Thus, gd(y) : g∗aKよCoP(d, y) → g∗aK(よC(d) ◦ πP) is indeed an object of F / f ∗H(d). That
this choice of object in F / f ∗H(d) extends to a functor P(d) → F / f ∗H(d) follows by
Lemma I.20(i).

To show that the square (I.v) commutes, we use Lemma I.20(ii). Since

よCoP(c, a−1y) よCoP(d, y)

よC(c) ◦ πP よC(d) ◦ πP

ら(c,a−1 y)

(a,ida−1 y)◦−

⌟
ら(d,y)

a◦−
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is a pullback, and g∗aK preserves finite limits, the square

g∗aKよCoP(c, a−1y) g∗aKよCoP(d, y)

f ∗H(c) f ∗H(d)

gc(a−1 y)
⌟

gd(y)

f ∗H(a)

is a pullback too. Thus, there is a coherent natural isomorphism

F / f ∗H(a)(gd(y)) � gd(a−1y).

We define G : C o P → E o F / f ∗ to be the functor H o g. Immediately, the pair
(G,H) yields a morphism of fibrations

C o P E o F / f ∗

C E.

G

πP � πF

H

By the way we have constructed G, the square

C o P E o F / f ∗

Sh(C o P,K) F ' Sh(E o F / f ∗, J̃can)

`CoP

G

`EoF / f ∗

g∗

commutes, from which we conclude by Proposition I.5 that the functor G is a mor-
phism of sites

G : (C o P,K) (E o F / f ∗, J̃can).

Having constructed the action on objects of the functor

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP

 RelMorph


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE

 ,
we now demonstrate that this can be made functorial. Given 2-cells β : g ⇒ g′ and
γ : h⇒ h′ between geometric morphisms for which the 2-diagram

F Sh(C o P,K)

E Sh(C, J)

f CπP

g

g′

h

h′

β

γ
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commutes, we immediately obtain a natural transformation γ′ : H ⇒ H′ between the
induced morphisms of sites H,H′ : (C, J)⇒ (E, Jcan) by taking the horizontal composite

C Sh(C, J) E.`C

h∗

h′∗

γ

The 2-cells β and γ also yield a natural transformation β′ : G ⇒ G′ between the
induced morphisms of sites G,G′ : (C o P,K)⇒ (E o F / f ∗, J̃can). The component(

H(d), g∗`′(d, y)
gd(y)−−−→ f ∗H(d)

) (
H′(d), g′∗`′(d, y)

g′d(y)
−−−→ f ∗H′(d)

)β′(d,y)

of β′ at (d, y) ∈ C o P is given by the pair of morphisms
H(d)

H′(d)

γ′d
,

g∗`CoP(d, y) f ∗H(d) � g∗C∗πP
(`C(d))

g′∗`CoP(y) f ∗H′(d) � g′∗C∗πP
(`C(d))

β`CoP(d,y)

gd(y)

βC∗πP
`C(d)

g′d(y)

 .
The naturality of β and γ ensures that β′ is a natural transformation too.

Finally, it remains to show that the two functors we have constructed define an
equivalence of categories. Given a square

F Sh(C o P,K)

E Sh(C, J),

g

f � CπP

h

(I.vi)

of geometric morphisms that commutes up to isomorphism, we wish to show that
Sh(G) ' g and Sh(H) ' h. We use the property from Proposition I.5 that, for
a morphism of sites K : (D,L) → (D′,L′), there is a unique geometric morphism
k : Sh(D′,L′)→ Sh(D,L) for which the square

D D′

Sh(D,L) Sh(D′,L′)

K

`D `D′

k∗

commutes. By this property, or equivalently the standard Diaconescu’s equivalence
(I.iv), we obtain the latter required equivalence Sh(H) ' h.

For the former, we note that the equivalence Sh(EoF / f ∗, J̃can) ' F , being induced
by the projection πF : E o F / f ∗ → F ,(

E,F k−→ f ∗E
)
7→ F
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acting as a morphism of sitesπF : (EoF / f ∗, J̃can)→ (F , Jcan), identifies a representable

`EoF / f ∗

(
E,F k−→ f ∗E

)
∈ Sh(E o F / f ∗, J̃can) with the object F ∈ F . Thus, there is a

commutative diagram

C o P E o F / f ∗

Sh(C o P,K) Sh(E o F / f ∗, J̃can) F ,

`CoP

G

`EoF / f ∗

g∗

Sh(G)∗ '

and so we obtain the second desired equivalence Sh(G) ' g. This is evidently nat-
ural, and demonstrates that one composite of our constructed functors, where we
begin with a pair of geometric morphisms (g, h) as in (I.vi) and obtain a second pair
(Sh(G),Sh(H)), is naturally isomorphic to the identity. An identical argument demon-
strates that the opposite composite is also naturally isomorphic to the identity, thus
completing the equivalence. □

Remark I.22. The functor

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP

 RelMorph


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE


witnessing the equivalence from Theorem I.21 can also be constructed by appealing
to [8, Theorem 3.6]. Given an object of

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP


there is a triangle

F Sh(C o P,K)

Sh(C, J)
CπP

h◦ f

g

�

to which we can apply [8, Theorem 3.6], yielding the triangle

(C o P,K) (F / f ∗`C, J̃can)

(C, J)
πP

Ĝ

�
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that factors as
(C o P,K) (F / f ∗, J̃can)

(C, J) (E, Jcan),

G

πP πE

H

which gives the action on objects. Given an arrow of

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP


there is a lax triangle

F Sh(C o P,K)

Sh(C, J)

g

g′

h′◦ f CπP

β

�

to which we can also apply [8, Theorem 3.6], which yields, after a similar manipulation,
the action on arrows.

The relative Diaconescu’s equivalence. The specific statements of the relative Dia-
conescu’s equivalence given in [24] and [8], without change of base category, can be
recovered by restricting the equivalence in Theorem I.21 to the relevant subcategories,
as described below.

Corollary I.23 (Theorem 3.3 [24], Theorem 3.6 [8]). For a toposE ' Sh(C, J) and a relative
site over (C, J), there is an equivalence of categories

Topos/idE


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP

 ' RelMorph/`C


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE

 ,
where

Topos/idE


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP

 ⊆ Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP


is the subcategory
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(i) whose objects are squares of geometric morphisms

F Sh(C o P,K)

E Sh(C, J)

g

f � CπP

that commute up to isomorphism,

(ii) and whose arrows g→ g′ are 2-cells β : g⇒ g′ for which the 2-diagram

F Sh(C o P,K)

E Sh(C, J)

f CπP

g

g′

β

commutes,

and

RelMorph/`C


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE


denotes the subcategory of

RelMorph


(C o P,K)

(C, J)

πP ,

(E o F / f ∗, J̃can)

(E, Jcan)

πE


(i) whose objects are morphisms of fibrations

C o P E o F / f ∗

C Sh(C, J) ' E

G

πP � πE

`C

for which G : (C o P,K)→ (E o F / f ∗, J̃can) is a morphisms of sites,
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(ii) and whose arrows G
β−→ G′ are natural transformations β : G ⇒ G′ for which the

2-diagram

(C o P,K) (E o F / f ∗, J̃can)

(C, J) (E, Jcan)

πP πE

G

G′

`C

β

commutes.

When (C o P,K) is an internal site of Sh(C, J), Corollary I.23 coincides with the
internal version of Diaconescu’s equivalence.

I.4.1 Fibred preorders

Suppose that, in the statement of Diaconescu’s equivalence (I.iv), we assumed C to
be a preorder (and therefore Sh(C, J) is a localic topos – see [57, Theorem 5.37]). Then
every flat functor F : C → E factors through the subcategory of subterminals SubE(1),
and so Diaconescu’s equivalence (I.iv) becomes

Topos(E,Sh(C, J)) 'MorphSites
(
(C, J), (SubE(1), Jcan)

)
.

The relativised version also holds whenever our relative site takes values in PreOrd.

Notation I.24. Below, SubF ( f ∗−) denotes the composite of the opposite of the inverse
image functor f ∗op : Eop → F op of a geometric morphism with the subobject doctrine
SubF : F op → PreOrd of the topos F .

Corollary I.25. Given a site (C, J), a pseudo-functor P : Cop → PreOrd and a Grothendieck
topology K on C o P that contains the Giraud topology, there is an equivalence of categories

Topos


F

E
f ,

Sh(C o P,K)

Sh(C, J)

CπP

 ' RelMorph


(C o P,K)

(C, J)

πP ,

(E o SubF ( f ∗−), J̃can)

(E, Jcan)

πF

 .
Proof. It suffices to show that, for every square

F Sh(C o P,K)

E Sh(C, J)

f

g

� CπP

h

of geometric morphisms that commutes up to isomorphism, and every (d, y) ∈ C o P,
the arrow

g∗aKよCoP(d, y) g∗aK(よC(d) ◦ πP) � f ∗H(d) ∈ E o F / f ∗H(d)
gd(y)
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defined in Theorem I.21 is a monomorphism since then the induced morphism of sites
G : (C o P,K)→ (E o F / f ∗, J̃can) factors through the subcategory

E o SubF ( f ∗−) ⊆ E o F / f ∗.

As P takes values in PreOrd, the natural transformation

ら(d,y) : よCoP(d, y) よC(d) ◦ πP

constructed in Lemma I.20 is pointwise injective and thus a monomorphism in
Sets(CoP)op

. Hence, as g∗ and aK preserve finite limits, gd(y) is a monomorphism as
desired. □

I.4.2 Relatively subcanonical sites

Finally, we generalise two results about subcanonical topologies to the canonical
setting.

Recall that every natural transformation between morphisms of sites

(C, J) (D,K)

F

G

β

induces a 2-cell of geometric morphisms

Sh(D,K) Sh(C, J).

Sh(G)

Sh(F)

Sh(β)

As observed in [63, Remark C2.3.5], the converse is also true if K is a subcanonical
topology, i.e. the canonical functor `D : D→ Sh(D, J) is fully faithful.

We will often encounter relative sites πQ : (D o Q,K′) → (D, J′) where we would
desire an analogous reasoning to apply, except that the topology K′ is not truly sub-
canonical. For example, the topology J̃can on the canonical fibration E o F / f ∗ is not a
subcanonical topology. See Remark II.15 for another related example.

We therefore desire an extension of the notion of subcanonical topology to the
relative setting.

Definition I.26. Let (Co P,K)→ (C, J) be a relative site. We will say that the topology
K is relatively subcanonical if, for each object d ∈ C, the canonical natural transformation

jd : P(d) Sh(C o P,K)/C∗πP
`C(d),

is full and faithful, where jd is induced as in Theorem I.21 by the commutative square

Sh(C o P,K) Sh(C o P,K)

Sh(C, J) Sh(C, J),

CπP CπP
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i.e. jd is the functor that sends an object y ∈ P(d) to the arrow

`CoP(d, y) C∗πP
`C(d).

aK(ら(d,y))

Corollary I.27. Let (C o P,K) and (D oQ,K′) be relative sites over, respectively, (C, J) and
(D, J′). Let

(C o P,K) (D oQ,K′)

(C, J) (D, J′)

πP

G

� πQ

H

,

(C o P,K) (D oQ,K′)

(C, J) (D, J′)

πP

G′

� πQ

H′

be two morphisms of relative sites and let γ : H ⇒ H′ be a natural transformation. If K′ is a
relatively subcanonical topology, then there is a bijection between the natural transformations
β : G⇒ G′ for which the 2-diagram

(C o P,K) (D oQ,K′)

(C, J) (D, J′)

πP πQ

G

G′

H

H′

β

γ

commutes, and the 2-cells of geometric morphisms β′ : Sh(G) ⇒ Sh(G′) for which the 2-
diagram

Sh(D oQ,K′) Sh(C o P,K)

Sh(D, J′) Sh(C, J)

CπQ CπP

Sh(G)

Sh(G′)

Sh(H)

Sh(H′)

β′

Sh(γ)

commutes.

Proof. For notational convenience, let α : P⇒ Q ◦Hop and α′ : P⇒ Q ◦H′op be a pair
of pseudo-natural transformations such that G = H o α and G′ = H′ o α′.

One of the maps establishing the bijection comes from the functoriality of tak-
ing the induced geometric morphisms of a morphism of relative sites as demon-
strated in Theorem I.21. It remains to show that every 2-cell of geometric morphisms
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β′ : Sh(G)⇒ Sh(G′), for which CπP ∗β′ ' Sh(γ) ∗CπQ , induces a natural transformation
β : G⇒ G′, for which πP ∗ β ' γ ∗ πQ.

The pair of 2-cells β′ : Sh(G) ⇒ Sh(G′) and Sh(γ) : Sh(H) ⇒ Sh(H′) induce, by
Theorem I.21, a natural transformation

C o P Sh(D oQ,K′)/C∗πQ

G

G′

β′′

whose component at (c, x) ∈ C o P is the pair
Sh(H)∗`C(c)

Sh(H′)∗`C(c)

Sh(γ)`C(c) ,

Sh(G)∗`CoP(c, x) C∗πQ
`DH(c)

Sh(G′)∗`CoP(x) C∗πQ
`DH′(c)

β′
`CoP(c,x)

gc(x)

β′
C∗πP

`C(c)

g′c(x)

 .
We first note that the arrow Sh(γ)`C(c) is induced by the arrow H(c)

γc−→ H′(c) in that
there is a commuting square

`DH(c) = Sh(H)∗`C(c)

`DH′(c) = Sh(H′)∗`C(c).

`D(γc) Sh(γ)`C(c)

Next observe that there is an equality

Sh(G)∗`CoP(c, x) = `DoQG(c, x) = `DoQH o α(c, x) = `DoQ(H(c), αc(x)).

Similarly, we have that Sh(G′)∗`CoP(c, x) = `DoQ(H′(c), α′c(x)). By the definition of j, for
each (c, x) ∈ C o P there is a commutative diagram

`DoQ(H(c), αc(x)) = Sh(G)∗`CoP(c, x) C∗πQ
`DH(c)

`DoQ(H′(c), α′c(x)) =Sh(G′)∗`CoP(c, x) C∗πQ
`DH′(c).

jH(c)(αc(x))

β′
`CoP(c,x)

gc(x)

β′
C∗πP

`C(c)
'C∗πQ

`D(γc)

jH′(c)(α′c(x))

g′c(x)

(I.vii)

Since the functor jH(c) : QH(c)→ Sh(DoQ,K′)/C∗πQ
`DH(c) is fully faithful for all c ∈ C,

the pair
(
β′`CoP(c,x), β

′
C∗πP

`C(c)

)
yields an arrow

(H(c), αc(x)) (H′(c), α′c(x)).
β(c,x)
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The naturality of β′ ensures that this the component at (c, x) of a natural transformation
β : H o α = G ⇒ G′ = H′ o α′. By the equivalence β′C∗πP

`C(c) ' C∗πQ
`D(γc) and the

commutativity of the diagram (I.vii), the constructed natural transformation β makes
the 2-diagram

(C o P,K) (D oQ,K′)

(C, J) (D, J′)

πP πQ

G=Hoα

G′=H′oα′

H

H′

β

γ

commute up to isomorphism as required. □

Relative morphisms for cartesian valued relative sites. Given two cartesian cate-
gories C and D respectively endowed with Grothendieck topologies J and K, a left
exact functor F : C → Ddefines morphism of sites F : (C, J)→ (D,K) if it sends J-covers
to K-covers. In other words, by virtue of being left exact, F satisfies conditions (ii) to
(iv) of Definition I.3 automatically. Recall from [107, Corollary 4.14] or Remark I.4 that
the converse is true if K is a subcanonical topology. We will observe that this result
generalises to the relative setting, thus yielding a more manageable description of the
relative morphisms of sites in special cases.

We first recall the definition of a modification. Just as 1-categories C,D yield 2-
categorical functor categories [C,D], given a pair of 2-categories A,B the 2-functor
category [A,B] is naturally 3-categorical. These 3-cells

A B

F

G

α β⇛
σ

are modifications. A modification consists of the data, for each object A ∈ A, a 2-cell

FA GA,

αA

βA

σA

where the choice of 2-cell σA : αA ⇒ βA satisfies the coherence condition that, for every
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morphism A
f−→ B of A, the cylinder diagram

FA FB

GA GB

F f

G f

αA αBβA βBα f β f
σBσA

commutes.

Proposition I.28. Let (C o P,K) and (D o Q,K′) be relative sites over, respectively, (C, J)
and (D, J′), for which the associated pseudo-functors

P : Cop CAT and Q : Dop CAT

both factor through the category CART of (large) cartesian categories and cartesian functors.
Suppose further that K′ is a relatively subcanonical topology. Then there is an equivalence of
categories

RelMorph


(C o P,K)

(C, J)

πP ,

(D oQ,K′)

(D, J′)

πQ

 ' RelMorphcart

(
(C, J,P,K), (D, J′,Q,K′)

)
,

where RelMorphcart

(
(C, J,P,K), (D, J′,Q,K′)

)
is the category

(i) whose objects are pairs (F, a) consisting of a functor F : C → D and a pseudo-natural
transformation a : P⇒ Q ◦ Fop, as in the diagram

Cop

CART,

Dop

P

Q

Fop a

such that
a) the functor F defines a morphism of sites F : (C, J)→ (D, J′),
b) for each object c ∈ C, the component ac : P(c)→ Q(F(c)) preserves finite limits,
c) and the induced functor F o a : C o P→D oQ sends K-covers to K′-covers.

(ii) and whose arrows (F, a)
(α,σ)−−−→ (F′, a′) are pairs consisting of a pseudo-natural transfor-

mation α : F⇒ F′ and a modification σ : a⇛ a′, as in the diagram

Cop

CART.

Dop

P

Q

Fop F′opα
a a′⇛

σ
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Proof. By [26, Corollary 2.2.6] (generalised to the setting with a change of base), the
datum of a morphism of fibrations

C o P D oQ

C D

πP � πQ

F

is equivalent in datum to a functor F : C → D and a pseudo-natural transformation
a : P⇒ Q ◦ Fop, and furthermore a 2-cell between morphisms of fibrations

C o P D oQ

P Q

πP πQ

F

F′

Foa

F′oa′

α

is equivalent in datum to a pair of a natural transformation α : F ⇒ F′ and a modifi-
cation σ : a⇛ a′.

Thus, to exhibit the desired equivalence it suffices to demonstrate an equivalence
on objects, i.e. we wish to show that the pair

(F,F o a) :
[
(C o P,K)

πP−→ (C, J)
] [

(D oQ,K′)
πQ−−→ (D, J′)

]
defines a morphism of relative sites if and only if

(F, a) ∈ RelMorphcart

(
(C, J,P,K), (D, J′,Q,K′)

)
.

We deduce that it is enough to show that F o a : (C o P,K) → (D o Q,K′) satisfies
conditions (ii) to (iv) from Definition I.3 if and only if, for each c ∈ C, the component
ac : P(c)→ Q(F(c)) preserves finite limits.

We begin with the ‘left to right’ proof. Suppose that (F,F o a) is a morphism of
relative sites. By Lemma I.19, there is a morphism of relative topoi

Sh(C o P,K) Sh(D oQ,K′)

Sh(C, J) Sh(D, J′).

CπP �

Sh(Foa)

CπQ

Sh(F)

Let 1c denote the terminal object of P(c) for an object c ∈ C. For any other object

(e, x) ∈ CoP, there is an arrow (c′, x)
( f ,g)−−−→ (c, 1c) ∈ CoP, which must necessarily factor

as

(e, x) (e, 1e) � (e,P( f )(1c)) (c, 1c),
(ide,g) ( f ,idP( f )(1c))
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if and only if there is an arrow e
f−→ c ∈ C, and so we deduce that there is an isomorphism

よCoP(c, 1c) �よC(c). Thus, we deduce further that

C∗πP
`C(c) = aK(aJよC(c) ◦ πP),

� aK(よC(c) ◦ πP),
� aK(よCoP(c, 1c)) = `CoP(c, 1c),

and similarly that C∗πQ
`D(d) � `DoQ(d, 1d). Therefore, by chasing the object c ∈ C

around the commuting diagram

C D

Sh(C, J) Sh(D, J′)

Sh(C o P,K) Sh(D oQ,K′),

F

`C `D

Sh(F)∗

C∗πP � C∗πQ

Sh(Foa)∗

we conclude that Sh(F o a)∗`CoP(c, 1c) � `DoQ(F(c), 1F(c)).
The inclusion P(c) ↪→ C o P/(c, 1c),

x 7→ (c, x)
(idc,!)−−−→ (c, 1c),

can easily be shown to preserve finite limits. Therefore, in the commutative diagram

P(c) C o P/(c, 1c) Sh(C o P,K)/`CoP(c, 1c)

Sh(D oQ,K′)/Sh(F o a)∗`CoP(c, 1c)

Q(F(c)) D oQ/(F(c), 1F(c)) Sh(D oQ,K′)/`DoQ(F(c), 1F(c))

Sh(D oQ,K′)/C∗πQ
`D(F(c)),

jF(c)

ac

Sh(Foa)∗/`CoP(c,1c)

'
`CoP/(c,1c)

`DoQ/(F(c),1F(c)) '

�

the composite jF(c) ◦ ac : P(c) → Sh(D o Q,K′)/C∗πQ
`D(F(c)) preserves finite limits too.

By hypothesis, K′ is a relatively subcanonical topology, meaning that the composite

jF(c) : Q(F(c)) Sh(D oQ,K′)/C∗πQ
`D(F(c))

is fully faithful. In particular, jF(c) reflects finite limits. Hence, if (F,Foa) is a morphism
of relative sites, then ac must preserve finite limits as required.

For the converse direction, it is easily shown directly that if each component
ac : P(c)→ Q(F(c)) preserves finite limits, then F o a : (C o P,K)→ (D oQ,K′) satisfies
conditions (ii) to (iv) from Definition I.3. We complete the proof that condition (ii) of
Definition I.3 is satisfied. The others follow a similar pattern.

Let (d, x) be an object ofDoQ. Since F : (C, J)→ (D, J′) is also a morphism of sites,
there is a J′-covering family of arrows

S =
{

di
fi−→ d

∣∣∣∣∣ i ∈ I
}
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for which each di has an arrow di
gi−→ F(ci). As πQ : (D oQ,K′)→ (D, J′) has the cover

lifting property, the family S is lifted to a K′-covering family of arrows{
(di, xi)

( fi,hi)−−−→ (d, x)
∣∣∣∣∣ i ∈ I

}
.

We need only conclude that, for each i ∈ I, there is a morphism

(di, xi) (F(ci), 1F(ci)) � (F(ci), aci(1ci))
(gi,!)

to realise that Definition I.3(ii) is satisfied. □





Chapter II

Internal locale theory

Pointless topology. By and large, the topologically interesting data of a space or a
continuous map is contained in the algebra of open sets and the inverse image map.
This prompted the shift to ‘pointfree’ topology, as exposited in [61], [62], where locales
replace spaces and locale morphisms replace continuous maps.

Internal locales. Abstracting further, each topos E has a rich internal language in
which locale theory can be internalised. The internal locales of a topos can be studied
by re-externalising the internal constructions, treating them as relative sites as studied
in Chapter I. As suggested by Examples 0.5, the internal locales of many topoi can be
of interest outside of topos theory.

Therefore, for applications it is beneficial to have a well-developed dictionary
externalising notions for internal locales. Examples of external accounts of internal
locale theory can be found in [68], [63, §C1.6] and [24].

Contributions of this chapter. Akin to [24], we study internal locales in the language
of relative sites, as reviewed in Chapter I. We aim to recreate an internal version of
the treatment of localic topoi and their morphisms found in [79, §IX]. We will observe
that the most commonly considered properties of internal locale morphisms admit
satisfying externalisations, namely that:

(i) surjections of internal locales,

(ii) embeddings of internal sublocales,

(iii) and the co-frame operations on the co-frame of internal sublocales

can all be computed ‘pointwise’.

Overview. The chapter is divided as follows.

(A) A brief recount of the basic theory of (set-based) locales is given in Section II.1.
Further results from locale theory are introduced when needed.

(B) In Section II.2, a review is given of the classification of internal locales for the
topos Sh(C, J) as established in [68, Proposition VI.2.2] and [24, Proposition 5.10].
We also recall the construction of the relative topos of internal sheaves Sh(L)→ E
on an internal locale L of E as described in [63, Examples C2.5.8(c)] and [24,
Definition 5.2].

41
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(C) Some examples of internal locales whose base categories are not cartesian are
presented in Section II.3, including internal locales of topoi of monoid actions.

(D) Our study of internal locale morphisms begins in Section II.4. It is well-known
(see [68, §VI.5], [59, §2], or [24, Corollary 3.5]) that, given internal locales L
and L′ of a topos E ' Sh(C, J), there is an equivalence between internal locale
morphisms f : L→ L′ and geometric morphisms g for which the diagram

Sh(L) Sh(L′)

E

g

commutes. We give a direct using Corollary I.23.
It is further shown in Proposition II.28, that the geometric morphism Sh(f)

induced by an internal locale morphism f : L → L′ is surjective if and only if
each component fc : L(c) → L′(c), for c ∈ C, is a surjective locale morphism, i.e.
surjections of internal locales are computed ‘pointwise’.

(E) The internal locale morphisms that induce embeddings of subtopoi are the sub-
ject of Section II.5. We show that internal locale embeddings coincide with ‘point-
wise’ locale embeddings. We also introduce the notion of an internal nucleus on
an internal locale, a mild generalisation of a Lawvere-Tierney topology, and show
that these too correspond bijectively with internal sublocale embeddings.

(F) Finally in Section II.6, we study the co-frame SubTopos(Sh(L)) of subtopoi of
Sh(L) (see [63, §A4.5] or [22, §4]). We show that the co-frame operations of
SubTopos(Sh(L)) can be computed ‘pointwise’ via the co-frame operations on
SubLoc(L(c)), the co-frame of sublocales of L(c), for each c ∈ C.

II.1 Background on locales
If we forget about points, topology is the study of algebras of open sets O(X) and the
action of continuous maps f −1 : O(X)→ O(Y) on these open sets. The notions of frame
and frame homomorphism capture these purely algebraic aspects of topology.

Definition II.1. A frame L is a complete lattice satisfying, for each subset {Ui | i ∈ I } ⊆ L
and V ∈ L, the infinite distributivity law

V ∧
∨
i∈I

Ui =
∨
i∈I

V ∧Ui.

A frame homomorphism is any map between frames that preserves arbitrary joins and
finite meets. We denote the resultant category by Frm.

Our motivating examples, the algebra of opens O(X) of a topological space X
and the inverse image map f −1 : O(Y) → O(X) of a continuous map f : X → Y, are
both examples of, respectively, a frame and a frame homomorphism. To strengthen
the analogy with topological spaces, one often works with the category of locales
Loc ' Frmop instead.
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Notation II.2. For a locale morphism f : L → K, we will use f −1 : K → L to denote
the corresponding frame homomorphism. Additionally, each frame homomorphism
f −1 : K→ L has a right adjoint f∗ : L→ K, since K is complete.

Frames are equivalently complete Heyting algebras (see [97, Proposition 7.3.2, Ap-
pendix 1]). The Heyting implication in a frame L is given by

U→ V =
∨
{W ∈ L |W ∧U ⩽ V } .

However, frame homomorphisms need not preserve the Heyting implication.

Definition II.3 (§V.1 [68]). A frame homomorphism f : L → K is said to be open if
either of the following equivalent conditions are satisfied:

(i) f : L→ K is a complete Heyting algebra homomorphism,

(ii) f −1 : K→ L has a left adjoint ∃ f which satisfies the Frobenius condition:

∃ f (U ∧ f −1(V)) = ∃ f (U) ∧ V,

for all U ∈ L and V ∈ K.

Open frame homomorphisms generalise open continuous maps (as can be seen
by [79, Proposition IX.7.5]). We will use Frmopen to denote the category of frames and
open frame homomorphisms, and Locopen to denote the opposite category Frmop

open.
In [54], Isbell promulgates the use of Loc as a constructive alternative to topolog-

ical spaces, since many desirable properties hold (constructively) for locales whose
topological analogies do not (see, for instance, [56]).

II.2 Internal locales
An internal locale of a topos E is an object that, according to the internal language of
E, carries the structure of a locale (equivalently, a complete Heyting algebra).

Examples II.4. (i) Unsurprisingly, the internal locales of Sets, the topos of sets, are
just locales.

(ii) (Theorem C1.6.3 [63]) An internal locale of a localic topos Sh(X) is a locale
morphism Y→ X.

(iii) For any topos E, the subobject classifierΩE is an internal locale of E. In fact, we
will see in Corollary II.26 that ΩE is the terminal internal locale in E.

More examples will be presented in Section II.3.

We devote this section to a review of the external treatment of internal locales:
that is, given a Grothendieck topos E with a site of definition (C, J), a classification
for which J-sheaves L : Cop → Sets correspond to internal locales of E ' Sh(C, J). An
externalised treatment of internal locales can be found in [68, §VI] and [63, §C1.6]
for the special case when C is cartesian (i.e. C has all finite limits). When C is non-
cartesian, [24, §5] establishes a classification of internal locales of Sh(C, J), which will
form the basis of our treatment.

Notation II.5. Given a functor L : Cop → Frmopen, an object c and an arrow g of C,
when there is no confusion we will use the shorthand Lc for L(c), g−1 for L(g) and ∃g

for the left adjoint to L(g).
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II.2.1 Internal locales of a presheaf topos

We begin with an overview of the classification of internal locales of a presheaf topos
SetsC

op
, where C is an arbitrary category, as calculated in [24, §5]. We will also observe

that this characterisation subsumes the previous characterisation of Joyal and Tierney
[68, §VI] for internal locales over a cartesian base category.

Localic geometric morphisms. The ‘keystone’ property used in [24] for the clas-
sification of internal locales is the connection between internal locales and localic
geometric morphisms.

Definition II.6. A geometric morphism f : F → E is localic if every object F of F is a
subquotient of f ∗(E) for some E ∈ E, i.e. there exists F′ ∈ F and a diagram

F F′ f ∗(E).

Localic geometric morphisms f : F → E correspond bijectively (up to isomor-
phism) to internal locales of E via the following result.

Theorem II.7 (Theorem 5.37 [57] or Lemma 1.2 [59], cf. also Proposition 4.2 [24]). For
a geometric morphism f : F → E, the following are equivalent:

(i) f is a localic geometric morphism,

(ii) F is the topos of internal sheaves on an internal locale of E, and moreover this internal
locale can be taken as f∗(ΩF ).

This bijection can be visualised with the ‘bridge’ diagram

F

E ' Sh(C, J)
localic morphism

f∗(ΩF )
direct image of

subobject classifier

L ∈ E
internal locale.

f

Let L be an internal locale of E ' Sh(C, J). It appears as the direct image of
the subobject classifier f∗(ΩF ) � L for some localic geometric morphism f : F → E.
Considered as a sheaf f∗(ΩE) : Eop → Sets on the canonical site (E, Jcan) for E, there is
the chain of isomorphisms

f∗(ΩF ) � E(−, f∗(ΩF )),
� F ( f ∗−,ΩF ),
� SubF ( f ∗−)
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(here, the first isomorphism is by the Yoneda lemma). Hence, by composing with the
canonical morphism `C : C → Sh(C, J), we obtain the isomorphism of J-sheaves:

L � SubF ( f ∗ ◦ `C−) : Cop → Sets. (II.i)

Thus, we can observe some basic facts about the internal locale L:

(i) for each object c of C, L(c) is a complete Heyting algebra, or frame, by [79,
Proposition III.8.1];

(ii) for each arrow f : c→ d ofC,L( f ) : L(d)→ L(c) is an open frame homomorphism
by [79, Proposition III.8.2].

Although not every such functor L′ : Cop → Frmopen will yield an internal locale, it is
possible to characterise when they do.

The relative Beck-Chevalley condition. Given any functor

L : Cop Frmopen,

we define KL as the function that assigns to each object (d,V) of C o L the collection
KL(c) of sieves in C o L that contain small families{

(ci,Ui)
fi−→ (d,V)

∣∣∣∣∣ i ∈ I
}

such that V =
∨

i∈I ∃ fiUi.
Thus defined, KL is not necessarily a Grothendieck topology on C o L. The

assignment of sieves KL clearly satisfies the maximality and transitivity conditions,
but KL does not always satisfy the stability condition (see [79, Definition III.2.1]).

When KL does define a Grothendieck topology, the topos Sh(C o L,KL) is also
definable and moreover the geometric morphism

CπL : Sh(C o L,KL) SetsC
op
,

induced by the projection πL : C o L→ C, considered as a comorphism of sites

πL : (C o L,KL) (C, Jtriv),

is localic by [23, Proposition 7.11]. Since each fibre has a top element, the functor πL
has a left adjoint tL : C → CoL that sends c ∈ C to the object (c,>c) ∈ CoL. Therefore,
the direct image functor CπL ∗ of the induced geometric morphism acts as −◦ tL by [79,
Theorem VII.10.4]. It is not now difficult to calculate, as is done in [24, §5], that

L � CπL ∗(ΩSh(CoL,KL)) � ΩSh(CoL,KL) ◦ tL.

Remark II.8. In the language of [24, Definition 5.1], if KL does define a Grothendieck
topology on C o L, then the site (C o L,KL) is an example of an existential site, KL is
an existential topology and Sh(C oL,KL) is an existential topos. Existential topoi will be
discussed in more detail in Section III.3.1.



46 CHAPTER II. INTERNAL LOCALE THEORY

Thus, we arrive at the classification of internal locales in the topos SetsC
op

estab-
lished in [24, §5].

Definition II.9 (Definition 5.1(e)(i) [24]). A functorL : Cop → Frmopen is said to satisfy

the relative Beck-Chevalley condition if, given an arrow e h−→ d of C, and a sieve S of CoL
on the object (d,V) for which V =

∨
f∈S ∃ f U, then

h−1(V) =
∨

g∈h∗(S)

∃gW,

where h∗(S) denotes the sieve on (e, h−1(V)) containing those arrows (c,W)
g−→ (e, h−1(V))

for which the composite

(c,W) (e, h−1(V)) (d,V)
g h

is in S.

Theorem II.10 (Proposition 5.10 [24]). Let L : Cop → Frmopen be a functor. The following
are equivalent:

(i) L is an internal locale of SetsC
op

,

(ii) L satisfies the relative Beck-Chevalley condition,

(iii) KL is a Grothendieck topology on C o L.

Definition II.11 (Theorem 5.1 [24]). Let L be an internal locale of SetsC
op

. The topos
Sh(C o L,KL) is called the topos of internal sheaves (or just topos of sheaves) on L.

Remark II.12. LetL be an internal locale of SetsC
op

. It is not hard to recognise that the
isomorphism of frames

{V ∈ Lc | V ⩽ >c } � Lc � CπL ∗

(
ΩSh(L)

)
(c) � ΩSh(L) ◦ tL(c) � ΩSh(L)(c,>c).

can be extended so that, for each object (c,U) of C o L, there is an isomorphism

{V ∈ Lc | V ⩽ U } � ΩSh(L)(c,U),

and that, for each morphism (c,U)
f−→ (d,W) of C o L, the transition map

ΩSh(L)( f ) : ΩSh(L)(d,W)→ ΩSh(L)(c,U)

sends V ∈ ΩSh(L)(d,W) to f −1(V) ∧U ∈ ΩSh(L)(c,U).

The classification of internal locales of SetsC
op

originally given in [68, Proposition
VI.2.2] for the case where C is a cartesian category can be recovered via the above
classification by noting, as is done in [24, Proposition 5.3], that the Beck-Chevalley
and relative Beck-Chevalley conditions coincide when C has all finite limits (in fact, a
study of the proof of [24, Proposition 5.3] reveals that only pullbacks are necessary).
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Corollary II.13 (Proposition 5.3 & Corollary 5.4 [24]). Let C be a category with all
pullbacks. A functor L : Cop → Frmopen satisfies the relative Beck-Chevalley condition, and
thus defines an internal locale of SetsC

op
, if and only ifL satisfies the Beck-Chevalley condition:

for each pullback square

c ×e d d

c e
k

g

h
f

of C, the square

Lc×ed Ld

Lc Le

∃g

∃ f

k−1 h−1

commutes.

The topology KL. We complete this discussion with some observations concerning
the Grothendieck topology KL.

Proposition II.14 (Remark 5.1 [24]). LetL be an internal locale of SetsC
op

. The Grothendieck
topology KL on C o L is generated by the following two species of covering families:

(A)
{

(c,U)
f−→ (d,∃ f U)

}
for each arrow c

f−→ d of C and U ∈ Lc,

(B)
{

(c,Ui)
idc−−→ (c,

∨
i∈I Ui)

∣∣∣∣ i ∈ I
}

for each object c of C and each {Ui | i ∈ I } ⊆ Lc.

Proof. We immediately have that both species are KL-covering. For the converse, note

that, given a KL-covering sieve S on (d,V), each morphism (c,U)
f−→ (d,V) of S can be

written as the composite

(c,U) (d,∃ f U)

d,
∨
f∈S
∃ f U

 = (d,V).
f idd

Hence, any Grothendieck topology J for which both species (A) and (B) are J-covering
contains the Grothendieck topology KL. □

Remark II.15. Let L be an internal locale of SetsC
op

.

(i) We have refrained from naming the Grothendieck topology KL the ‘canonical
topology’ to avoid confusion, despite it being a generalisation of the canonical
topology on a locale. Unlike a locale L of Sets, the Grothendieck topology KL
is not necessarily a subcanonical topology. Recall from [63, p. 542-3, §C1.2]
that a Grothendieck topology J on a category D is subcanonical only if every
J-covering sieve S on an object D is effective-epimorphic, in the sense that D is the
colimit of the (potentially large) diagram

S D/D D,U
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where U : D/D → D is the forgetful functor. Observe, however, that the sieve
generated by a KL-covering family{

(c,U)
f−→ (d,∃ f U)

}
of species (A) is not effective-epimorphic for any non-invertible arrow f of C
since the colimit in C o L is given by (c,U).

(ii) In contrast, the topology KL is a relatively subcanonical topology in the sense of
Definition I.26 since, for each c ∈ C, there is an isomorphism

L(c) � SubSh(CoL,KL)(C∗πLよC(c)) ⊆ Sh(C o L,KL)/C∗πLよC(c),

i.e. the functor jc : L(c)→ Sh(C o L,KL)/C∗πLよC(c) is full and faithful.

II.2.2 Internal locales of sheaf topoi

In this final subsection, it is demonstrated how a classification of the internal locales
of the presheaf topos SetsC

op
yields a classification of the internal locales of the sheaf

topos Sh(C, J).
Let (C, J) be a Grothendieck site. The embedding Sh(C, J) ↣ SetsC

op
is a localic

geometric morphism (see [63, Example A4.6.2(a)]), and thus, for any localic geometric
morphism F → Sh(C, J), the composite

F → Sh(C, J)↣ SetsC
op

is still localic since localic geometric morphisms are closed under composition (see
[59, Lemma 1.1]). Therefore, our understanding of the internal locales of the presheaf
topos SetsC

op
can be leveraged to describe the internal locales of Sh(C, J).

Lemma II.16 (Proposition 5.10 [24], Corollary C1.6.10[63]). Let L : Cop → Frmopen be
a functor indexed over a category C with a Grothendieck topology J. The following are
equivalent:

(i) L is an internal locale of Sh(C, J),
(ii) L is an internal locale of SetsC

op
and a J-sheaf,

(iii) KL is stable and contains the Giraud topology JπL ,

(iv) KL is stable and there exists a factorisation

Sh(C o L,KL)

Sh(C, J) SetsC
op
.

CπL

Proof. The equivalence of statements (i) and (ii) is a consequence of the fact that the
direct image of a geometric morphism (in this case the inclusion Sh(C, J) ↪→ SetsC

op
)

preserves internal locales (see p. 528 [63, §C1.6], c.f. [63, Corollary C1.6.10] as well).
The equivalence of (ii) and (iii) is proved in [24, Proposition 5.10] (cf. Remark 5.3(b)
[24] too). The final equivalence of (iii) and (iv) follows by definition of the Giraud
topology. □
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II.3 Examples of internal locales
We now consider some examples of internal locales over non-cartesian base categories.

II.3.1 Gluing internal locales

What can prevent a functorL : Cop → Frmopen from being an internal locale of SetsC
op

?
What goes wrong when KL is not stable? We give an example of such a functor, over a
category C without all pullbacks, which is not an internal locale, despite L satisfying
the Beck-Chevalley condition for those pullbacks in C that do exist. Inspired by this
counterexample, we develop in Corollary II.18 a method for identifying the internal
locales of the presheaf topos SetsD

op
whenD is obtained by ‘gluing’ certain constituent

subcategories together.

Example II.17. Let L be any locale in Sets. For any category C with pullbacks, the
constant functor L : Cop → Frmopen for L, i.e. L(c) = L and L( f ) = idL for all objects c
and arrows f of C, satisfies the Beck-Chevalley condition and so defines an internal
locale of SetsC

op
.

Now consider the category

•1 •2 •3

id1

f

id2

g

id3

with all arrows displayed (we will refer to it as • → • ← •), which clearly lacks a
pullback for the diagram

•3

•1 •2.

g
f

The constant functor L : (• → • ← •)op → Frmopen for a non-trivial locale L is not
an internal locale of Sets(•→•←•)op

. We can observe that the relative Beck-Chevalley
condition fails. For instance, the set

S =
{

(•1,U)
f−→ (•2,>•2)

∣∣∣∣∣ U ∈ L
}

is a sieve of the category (• → • ← •) o L on the object (•2,>•2) for which have that
>•2 =

∨
S ∃ f U but also that >•3 ,

∨
g∗(S), as g∗(S) is empty (here >•i denotes the top

element in L•i). Thus, L does not satisfy the relative Beck-Chevalley condition and
therefore does not define an internal locale of Sets(•→•←•)op

.

The subobject classifier ΩSets(•→•←•)op is, of course, an internal locale of the presheaf
topos Sets(•→•←•)op

. Recall (from [79, §I.4], say) that the subobject classifierΩSets(•→•←•)op ,
considered as a diagram in Locopen, is given by

2 2 + 2 2,
i1 i2

where 2 denotes the 2 element locale (i.e. the terminal locale) and 2+2 is the coproduct
in Loc. This is because there are two sieves, ∅ and { id1 }, on •1, etc. Observe that the
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arrows i1 and i2 are disjoint open embeddings of locales, by which we mean that the
following equations are satisfied, for all V ∈ 2,

i−1
1 ∃i1V = V, i−1

2 ∃i2V = ⊥, i−1
2 ∃i2V = V, i−1

1 ∃i2V = ⊥,

where⊥ represents the bottom element of 2. We show that this property characterises
the internal locales of Sets(•→•←•)op

. We present this as a consequence of a wider theory
regarding ‘gluing’ internal locales together.

Corollary II.18. Let { Ci | i ∈ I } be a set of categories where, for each i ∈ I, Ci has a terminal
object 1i. LetD be the category obtained from the disjoint union

∐
i∈I Ci by freely adding a new

terminal object 1. For each i ∈ I, we denote by 1i
f j−→ 1 the newly added morphism connecting

the respective terminal objects. A functor L : Dop → Frmopen defines an internal locale of
SetsD

op
if and only if

(i) for all i ∈ I,
L|Ci : Ci

op ↪→Dop L−→ Frmopen

is an internal locale of SetsC
op
i ,

(ii) and, for each pair i, j ∈ I with i , j, the locale morphisms

L1i L1 L1 j

L( fi) L( f j)

are disjoint open embeddings of locales, by which we mean that, for all V ∈ L1i , V′ ∈ L1 j ,

f −1
i ∃ fiV = V, f −1

j ∃ fiV = ⊥i, f −1
j ∃ f jV

′ = V′, f −1
i ∃ f jV

′ = ⊥i,

where ⊥i (respectively ⊥ j) represents the bottom element of L1i (resp. L1 j).

Proof. For each object (d,V) of D o L, with d being an object of C j say, a sieve S on
(d,V) consists only of morphisms contained in C j o L|C j ⊆ D o L, and any arrow

e h−→ d of D is also contained in the subcategory C j ⊆ D. Therefore, we have that
h−1(V) =

∨
g∈h∗(S) ∃gU for each such V, S and h if and only if L|C j satisfies the relative

Beck-Chevalley condition. We can thus limit our attention to the second criterion of
the corollary and sieves on objects of the form (1,V) ∈ D o L.

Suppose that L satisfies the relative Beck-Chevalley condition. For each i ∈ I and

U ∈ L1i , the principle sieve S generated by the arrow (1i,U)
fi−→ (1,∃ fiU) is KL-covering.

Therefore
f −1
i ∃ fiU =

∨
g∈ f ∗i (S)

∃gW = U,

and so fi is an open embedding. For each j ∈ I with i , j, we have that

f −1
j ∃ fiU =

∨
g∈ f ∗j (S)

∃gW,

which, as f ∗j (S) is empty, is equal to ⊥i as required.

Conversely, suppose that L|Ci is an internal locale of SetsCi
op

, for each i ∈ I, and
that L( fi) and L( f j) are disjoint open embeddings for each pair i, j ∈ I with i , j. It
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remains to show that, if S is a sieve on (1,V) for which V =
∨

g∈S ∃gU, then we have
that

h−1(V) =
∨

g∈h∗(S)

∃g′U′

for any arrow e h−→ 1 ofD. It suffices to consider the case when h is the arrow 1 j
f j−→ 1, for

some j ∈ I, and S is generated by arrows of the form (1i,U)
fi−→ (1,V). This is because

any arrow h′ can be factored as e→ 1 j
f j−→ 1 and any such sieve S can be rewritten as{

(c,U)
g−→ (1i,∃gU)

fi−→ (1,V)
∣∣∣∣∣ fi ∈ T

}
where T generates a KL-covering sieve of the desired form. But now the thesis follows
since L( fi) and L( f j) are disjoint open embeddings for each pair i, j ∈ I with i , j. □

Example II.19. Using Corollary II.18, we are instantly able to recognise that a functor

L : (• → • ← •)op Frmopen

defines an internal locale of the topos Sets(•→•←•)op
if and only if the diagram in Loc

L•1 L•2 L•3

f g

is a pair of disjoint open embeddings, and thus confirm using Corollary II.18 that the
constant functor L : (• → • ← •)op → Frmopen considered in Example II.17 does not
define an internal locale of Sets(•→•←•)op

.
More generally, if Γ is a tree (see [31, p. 26]), then the internal locales SetsΓ are

equivalently functors L : Γop → Loc where, for each x ∈ Γ, the locale morphisms
Ly → Lx corresponding to the covers of x (in the sense of [31, §1.14]) are disjoint open
embeddings.

II.3.2 Internal locales for monoid actions

Although every topos has a site whose underlying category has pullbacks (e.g. the
canonical site), there are many topoi which have a natural choice of site that lacks
pullbacks. The classification of internal locales given in Section II.2 is most aptly
applied when studying these topoi. An important example of such a topos is BG,
the topos of representations of a discrete group G on sets. This is the presheaf topos
SetsGop

, where the group G is viewed as a one-object category.
Therefore, applying Theorem II.2.1, we know that an internal locale of SetsGop

is a
functor L : Gop → Frmopen satisfying the relative Beck-Chevalley condition. But it is
easily calculated that any action by G on a locale L by homeomorphisms, i.e. a group
homomorphism G→ AutLoc(L), also yields a functor

L : Gop Frmopen

that satisfies the relative Beck-Chevalley condition (this can be deduced as a corollary
of the result for monoids below). Thus, by purely computational means we have
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recovered the correspondence between internal locales of SetsGop
and G-actions on

locales that was also observed in [63, Example C2.5.8(d)].
However, for a monoid M, it is not true that any action by M on a locale L, i.e.

a monoid homomorphism M → EndLoc(L), yields an internal locale of the topos of
M-sets SetsMop

. Nor will it suffice to restrict to open actions, those homomorphism
that factor as M → EndLocopen(L) ⊆ EndLoc(L). Instead, an internal locale of SetsMop

must interact stably with respect to the set of divisors { k ∈M |nk = m }, for n,m ∈ M,
as described below.

Proposition II.20. Let M be a monoid. An open action of M on a locale L constitutes an
internal locale of SetsMop

if and only if, for each U ∈ L and each pair n,m ∈M,

n−1(∃mU) =
∨
k∈M
nk=m

∃kU.

Proof. We must show that the functor L : Mop → Frmopen induced by the open action
of M on L satisfies the relative Beck-Chevalley condition if and only if, for each U ∈ L
and each pair n,m ∈M,

n−1(∃mU) =
∨
k∈M
nk=m

∃kU.

Assuming the relative Beck-Chevalley condition, the KL-covering sieve R gener-
ated by the single arrow (∗,U) m−→ (∗,∃mU) must be stable under the map

(∗,n−1∃mU) (∗,U)n

We readily calculate that

n∗(R) =
{

(∗,V) k−→ (∗,n−1∃mU)
∣∣∣∣ nk = m and V ⩽ k−1n−1∃mU

}
.

Hence, we have that
n−1(∃mU) =

∨
k∈n∗(R)

∃kV.

By the inequality
V ⩽ k−1n−1∃mU = k−1n−1∃n∃kU ⩽ U,

we deduce that ∃kV ⩽ ∃kU. Simultaneously, the equality ∃n∃kU = ∃mU implies that
∃kU ⩽ n−1(∃mU). Combining the two inequalities, we conclude that

n−1(∃mU) =
∨

k∈n∗(R)

∃kV =
∨
k∈M
nk=m

∃kU

as required.
For the converse, let S be a sieve in MoLon the object (∗,V) for which V =

∨
m∈S ∃ f U.

Then we calculate that

n−1(V) =
∨
m∈S

n−1∃mU,

=
∨
m∈S

∨
k∈M
nk=m

∃kU.
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We need only finally note that

n∗(S) =
{

(∗,U) k−→ (∗,V)
∣∣∣∣∃m ∈ S,nk = m

}
to deduce the result. □

Example II.21. For the monoid (N,+, 0), Proposition II.20 recovers the characterisation
of difference locales given in [116, Propositoin 13.10].

II.4 Internal locale morphisms

In this section we begin our study the morphisms of internal locales and their prop-
erties. We aim to provide a parallel to the treatment of locale morphisms and the
geometric morphisms between localic topoi that is found in [79, §IX]. Therein it is
shown that, given two locales X, Y (of Sets), there is an equivalence

Loc(X,Y) ' Geom(Sh(X),Sh(Y)) (II.ii)

between the category of locale morphisms X→ Y and the category of geometric mor-
phisms Sh(X)→ Sh(Y). The morphisms of internal locales were first characterised in
[68, §VI.2].

Definition II.22 (Proposition VI.2.1 [68]). Given a pair L1,L2 : Cop ⇒ Frmopen of in-
ternal locales of the topos Sh(C, J), an internal locale morphism f : L1 → L2 consists of
a frame homomorphism f−1

c : L2(c)→ L1(c), such that, for each morphism c
g−→ d of C,

the diagram

L2(d) L2(c)

L1(d) L1(c)

f−1
d

L2(g)

∃L2(g)

f−1
c

L1(g)

∃L1(g)

is a morphism of adjunctions: i.e., the equations

L1(g) ◦ f−1
d = f

−1
c ◦ L2(g) and ∃L1(g) ◦ f−1

c = f
−1
d ◦ ∃L2(g)

are both satisfied.

Our first task is to extend the equivalence (II.ii) between internal locale morphisms
and geometric morphisms for set-based locales to the internal setting, as demonstrated
concretely in [24, §4]. We construct a bijective correspondence between

(i) the internal locale morphisms f : L1 → L2;

(ii) the morphisms of relative sites[
(C o L2,KL2)

πL2−−→ (C, J)
] [

(C o L1,KL1)
πL1−−→ (C, J)

]
,
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i.e. the morphisms of fibrations

C o L2 C o L1

C,
πL2

idcof−1

πL1

where f−1 : L2 ⇒ L1 denotes a natural transformation, for which the induced
functor idCof−1 yields a morphisms of sites idCof−1 : (CoL1,KL1)→ (CoL2,KL2)
– for notational convenience, we denote the functor idC o f−1 by f̆;

(iii) finally, the geometric morphisms f : Sh(L1)→ Sh(L2) for which the triangle

Sh(L1) Sh(L2)

Sh(C, J)

f

CπL1
CπL2

(II.iii)

commutes.

Thereby, we will recover the biequivalence

Loc (Sh(C, J)) ' Loc/Sh(C, J) (II.iv)

(as seen in [24, Corollary 3.5]).

(i) Here, Loc (Sh(C, J)) denotes the bicategory of internal locales of Sh(C, J), their
internal locale morphisms and natural transformations between these.

(ii) By Loc/Sh(C, J) we denote the bicategory whose objects are localic geometric
morphisms f : E → Sh(C, J), whose 1-cells are commuting geometric morphisms

E E′

Sh(C, J),

g

f f ′

(the geometric morphism g is also localic by [59, Lemma 1.1(ii)]) and whose
2-cells are the commuting 2-cells of geometric morphisms

E E′

Sh(C, J).

g

g′

f f ′

α

Having related internal locale morphisms and geometric morphisms, we turn to
a study of their properties. In Proposition II.28, we will extend, to the to internal
setting, the result [79, Proposition IX.5.5(i)], which states that a locale morphism
f : L → K is an surjective locale morphism if and only if the induced geometric mor-
phism Sh( f ) : Sh(L) → Sh(K) between localic topoi is surjective. Further properties
of internal locale morphisms shall be studied in Section II.5 and Section II.6.
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Internal locale morphisms and geometric morphisms.

Proposition II.23. Let L1,L2 : Cop ⇒ Frmopen be internal locales of Sh(C, J). There is an
equivalence of categories

Loc(Sh(C, J))(L1,L2) ' Loc/Sh(C, J)(Sh(L1),Sh(L2)).

Proof. By Corollary I.23, Corollary I.25 and the isomorphism L1 � SubSh(L1)(C∗πL1
`C−),

there is an equivalence of categories

Loc/Sh(C, J)(Sh(L1),Sh(L2))

'Topos/idE


Sh(L1)

E

CπL1
,

Sh(L2)

E

CπL2

 ,

'RelMorph/`C


(C o L2,KL2)

(C, J)

πL2
,

(E o SubSh(L1)(C∗πL1
−), J̃can)

(E, Jcan)

πE

 ,

'RelMorph/idC


(C o L2,KL2)

(C, J)

πL2
,

(C o SubSh(L1)(C∗πL1
`C−), J̃can)

(C, J)

πSubSh(L1)(C∗πL1
`C−)


'RelMorph/idC


(C o L2,KL2)

(C, J)

πL2
,

(C o L1,KL1)

(C, J)

πL1


By a restriction of the equivalence in Proposition I.28, the latter is also equivalent to
the category

RelMorphcart/idC
(
(C, J,L2,KL2), (C, J,L1,KL1)

)
,

the category whose objects are morphisms of relative sites of the form(
f̆ , idC

)
:
[
(C o L2,KL2)

πL2−−→ (C, J)
] [

(C o L1,KL1)
πL1−−→ (C, J)

]
,

and whose arrows are natural transformations between these, or equivalently the
category:

(i) whose objects are natural transformations f−1 : L2 ⇒ L1, where each component
f−1
c : L2(c) → L1(c) preserves finite limits (ie. meets) and for which the induced

natural transformation

f̆ : C o L2 C o L1

sends KL2-covers to KL1-covers,
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(ii) and whose arrows are modifications between these.

Hence, to establish the equivalence

Loc(Sh(C, J))(L1,L2) ' Loc/Sh(C, J)(Sh(L1),Sh(L2)),

it remains only to show that the induced functor f̆ of a pointwise cartesian natural
transformation f−1 : L2 ⇒ L1 is cover preserving if and only if f−1 defines an internal
locale morphism.

To that end, it suffices to consider the two generating species of KL2-covering
families identified in Proposition II.14. Let{

(c,U)
g−→ (c,∃L2(g)U)

}
be a KL2-covering family of species (A). The family

f̆

({
(c,U)

g−→ (c,∃L2(g)U)
})
=

{
(c, f−1

c (U))
g−→ (c, f−1

d (∃L2(g)U))
}

is KL1-covering if and only if f−1
d (∃L2(g)U) = ∃L1(g)f

−1
c (U). Let (c,Ui)

idc−−→ (c,
∨
i∈I

Ui)

∣∣∣∣∣∣∣ i ∈ I


be a KL2-covering family of species (B). The family

f̆


 (c,Ui)

idc−−→
c,

∨
i∈I

Ui


∣∣∣∣∣∣∣ i ∈ I


 =

 (c, f−1
c (Ui))

idc−−→
c, f−1

c

∨
i∈I

Ui


∣∣∣∣∣∣∣ i ∈ I


is KL1-covering if and only if f−1

c preserves joins, and hence is a frame homomorphism,
thus completing the proof. □

Theorem II.24 (Corollary 3.5 [24]). There is a biequivalence

Loc(Sh(C, J)) ' Loc/Sh(C, J).
Proof. By Proposition II.23, the action on objects that sends a localic geometric mor-
phism f : E → Sh(C, J) to the internal locale f∗(ΩE) can be extended to a bifunctor
L : Loc/Sh(C, J) → Loc (Sh(C, J)). Similarly, the action on objects that sends an inter-
nal locale L to the localic geometric morphism

CπL : Sh(C o L,KL) Sh(C, J)

also extends to a bifunctor T : Loc (Sh(C, J))→ Loc/Sh(C, J).
By Proposition II.23, the isomorphism L � CπL ∗

(
ΩSh(L)

)
and the isomorphism

f ' Cπ f∗(ΩF ) , the bifunctors L and T are mutually inverse. □

Notation II.25. Given an internal locale morphism f : L1 → L2, we use

Sh(f) : Sh(L1) Sh(L2)

to denote the corresponding localic geometric morphism.

Corollary II.26. The subobject classifier ΩE of a topos is the terminal object of Loc(E).

Proof. The identity idE : E → E is the terminal object of Loc/E . □
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II.4.1 Surjective internal locale morphisms

We now turn to characterising some properties of the geometric morphisms induced
by internal locale morphisms. Recall that a locale morphism f : L → K is a surjection
if the corresponding frame homomorphism f −1 : K→ L is injective. Recall also that a
geometric morphism f : F → E is a surjection if the inverse image functor f ∗ : E → F
is faithful. In [79, Proposition X.5.5(i)], it is shown that a locale morphism f : L→ K is
surjective if and only if the corresponding geometric morphism Sh( f ) : Sh(L)→ Sh(K)
is surjective. We extend this to the internal setting, and show that surjections of internal
locales can be characterised ‘pointwise’.

Definition II.27. Let f : L1 → L2 be an internal locale morphism of Sh(C, J). We say
that f is a surjective internal locale morphism if f−1

c : L2(c) → L1(c) is injective, for each
object c ∈ C.

Proposition II.28. Let f : L1 → L2 be an internal locale morphism of Sh(C, J). The following
are equivalent:

(i) the geometric morphism Sh(f) is a surjective,

(ii) f is a surjective internal locale morphism.

Proof. By [23, Theorem 6.3], the geometric morphism Sh(f) is surjective if and only if
the corresponding morphism of sites

f̆ : (C o L2,KL2) (C o L1,KL1)

is cover reflecting. Suppose that each f−1
d is injective. Let S be sieve of C oL2 on (d,V)

such that f̆(S) is KL1-covering, i.e. f−1
d (V) =

∨
g∈S ∃L1(g)f

−1
c (U). We have that

f−1
d (V) =

∨
g∈S
∃L1(g)f

−1
c (U),

=
∨
g∈S
f−1
d ∃L2(g)U,

= f−1
d

∨
g∈S
∃L2(g)U

 .
Thus, since f−1

d is injective V =
∨

g∈S ∃L2(g)U and so S is KL2-covering.
Conversely, if f̆ is cover reflecting and f−1

c (U) = f−1
c (V) for a pair of elements

U,V ∈ L2(c), then f̆ reflects the maximal cover. Hence, we conclude that U = V. □

II.5 Internal embeddings and nuclei
This section is dedicated to the study of internal locale embeddings. Their study is
continued in Section II.6. Recall that a locale morphism f : K → L is said to be an
embedding if the corresponding frame homomorphism f −1 : L → K is surjective – or
equivalently if the right adjoint f∗ : K → L is injective (see [79, Lemma IX.4.2]). Just
as with surjective internal locale morphisms, we define internal locale embeddings as
the ‘pointwise’ generalisation.
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Definition II.29. Let f : L1 → L2 be an internal locale morphism of the topos Sh(C, J).
We say that f is an internal locale embedding if f−1

c : L2(c) → L1(c) is surjective, for each
object c ∈ C. We will also refer to L1 as an internal sublocale of L2 and f as the inclusion
of this internal sublocale.

Recall also that a geometric morphism f : F → E is said to be a geometric embedding
(and F a subtopos of E) if the direct image functor f∗ is full and faithful. By [79,
Proposition IX.5.4], geometric embeddings generalise embeddings of sublocales in
the sense that, given a locale morphism f : K→ L, the induced geometric morphism

Sh( f ) : Sh(K) Sh(L)

between the topoi of sheaves is a geometric embedding if and only if f is an embedding
of locales.

The aim of this section is to prove an analogous result for embeddings of internal
locales: that, given a morphism of internal locales f : L′ → L of Sh(C, J), the geometric
morphism Sh(f) : Sh(L′)→ Sh(L) is an embedding if and only if f is an internal locale
embedding. To this end, we develop a study of internal nuclei. These are the internal
generalisations of the nuclei on a locale, and will appear reminiscent of Lawvere-Tierney
topologies (a similarity that will be made concrete in Theorem II.34). Nuclei are a useful
tool when studying sublocales since many properties of sublocales are more readily
proven using nuclei than directly. In particular, that the sublocales of a locale L form
a co-frame is often proved via nuclei, as discussed in Section II.6 below.

Overview. We proceed as follows.

− In Section II.5.1, the notion of an internal nucleus on an internal localeL is intro-
duced and it is shown that internal nuclei correspond bijectively with internal
sublocales of L.

− We show in Section II.5.2 that internal nuclei onL, and thus by extension internal
sublocales of L, correspond bijectively with Lawvere-Tierney topologies on
ΩSh(L), and hence subtopoi of Sh(L).

− Finally, in Section II.5.3, we conclude that the surjection-inclusion factorisation
of a localic geometric morphism is calculated ‘pointwise’.

II.5.1 Internal nuclei

Recall from [60, §II.2] that a nucleus on a locale L is a function j : L→ L satisfying, for
all x, y ∈ L,

x ⩽ j(x), j( j(x)) ⩽ j(x), j(x ∧ y) = j(x) ∧ j(y).

These properties are referred to as j being, respectively, inflationary, idempotent, and
meet-preserving. Any function satisfying these properties must also be monotone.

It is well-known (see [60, Theorem II.2.3]) that there is a bijective correspondence
between nuclei on L and sublocales of L. In one direction, the nucleus associated to
a sublocale f : K ↣ L is given by the function f∗ f −1 : L → L (here f∗ denotes the right
adjoint to f −1, see Notation II.2). Conversely, given a nucleus j : L → L, the image
of j as a subset of L, which we denote by L j, can be given the structure of a frame.
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The meets are computed as they are in L while the join of a subset {Ui | i ∈ I } ⊆ L j

is computed as j (
∨

i∈I Ui), where
∨

i∈I Ui is the join in L. It is then clear that j : L→ L j

constitutes a surjective frame homomorphism, and hence the inclusion of a sublocale
(see [60, Lemma II.2.2] or [79, Proposition IX.4.3]).

Definition II.30. Let L : Cop → Frmopen be an internal locale of Sh(C, J). An internal
nucleus is a natural transformation j : L → L (as a functor into Sets) such that each
component jc : Lc → Lc, for c ∈ C, is a nucleus on the locale Lc.

When the subobject classifierΩSh(C,J) of Sh(C, J) is considered as an internal locale,
the definition of an internal nucleus j : ΩSh(C,J) → ΩSh(C,J) coincides with that of a
Lawvere-Tierney topology (see [63, Definition A4.4.1]). For a localic geometric morphism
f : F → E, we observe below that internal nuclei on f∗(ΩF ) correspond bijectively with
Lawvere-Tierney topologies on ΩF .

First, we establish a bijective correspondence between internal nuclei and internal
sublocales that generalises the bijective correspondence for locales (see [60, Theorem
II.2.3]).

Lemma II.31. Let j : L→ L be a nucleus. For each subset {Ui | i ∈ I } ⊆ L, we have that

j

∨
i∈I

Ui

 = j

∨
i∈I

jUi

 .
Proof. The first inequality j (

∨
i∈I Ui) ⩽ j

(∨
i∈I jUi

)
is a consequence of j being infla-

tionary as Ui ⩽ jUi for each i ∈ I. The converse inequality is achieved by applying j
to both sides of the canonical inequality∨

i∈I
jUi ⩽ j

∨
i∈I

Ui

 .
□

Proposition II.32. Each internal nucleus j on an internal locale L of Sh(C, J) defines an
embedding of internal locales L j ↪→ L.

Proof. By the above discussion, for each object c of C, the nucleus

jc : Lc Lc

induces a sublocale L j
c of Lc. As j is a natural transformation, for each arrow c

g−→ d of
C, g−1 : Ld → Lc restricts to a function g−1 : L j

d → L
j
c which, by the definition of meets

and joins in L j
d and L j

c, can easily be shown to be a frame homomorphism. We must
therefore show that each g−1 : L j

d → L
j
c is also open.

A left adjoint is given by jd∃L(g) since, for each U ∈ L j
c and V ∈ L j

d,

jd∃L(g)U ⩽ V = jd(V) ⇐⇒ ∃L(g)U ⩽ V ⇐⇒ U ⩽ g−1(V),

and furthermore the Frobenius condition is satisfied:

jd∃L(g)U ∧ V = jd∃L(g)U ∧ jdV = jd((∃L(g)U) ∧ V) = jd∃L(g)(U ∧ g−1(V)).
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We thus conclude that each internal nucleus j induces a functor

L j : Cop → Frmopen.

Moreover, we observe that the square

Lc Ld

L
jc
c L

jd
d

jc

∃g

jd

jd∃g

commutes for each c
g−→ d ∈ C. For each U ∈ Lc, we have that U ⩽ jc(U) and so

jd∃gU ⩽ jd∃g jc(U).

For the converse inequality, as U ⩽ g−1∃gU, it follows that

U ⩽ g−1∃gU =⇒ jd(U) ⩽ jdg−1∃g(U),

=⇒ jd(U) ⩽ g−1 jc∃g(U),
=⇒ ∃g jd(U) ⩽ jc∃g(U),
=⇒ jc∃g jd(U) ⩽ jc∃g(U).

Therefore, we have a natural transformation j : L → L j, where each component is
a surjective frame homomorphism and, moreover, j commutes with the respective
left adjoints, i.e. jd∃g jc = jd∃g for each arrow d

g−→ c of C. Hence, j would define an
embedding of internal locales if L j were also an internal locale of SetsC

op
.

To show that L j is an internal locale, it remains only to show that the functor L j

satisfies the relative Beck-Chevalley condition. Let S be a sieve on (d,V) ∈ CoL j such
that

V = jd

∨
g∈S

jd∃L(g)U

 ,
which, by Lemma II.31, is equal to jd

(∨
g∈S ∃L(g)U

)
, and let e h−→ d be an arrow of C.

For notational convenience, let W denote
∨

g∈S ∃L(g)U. Since L is an internal locale of
Sh(C, J),

h−1(W) =
∨

g∈h∗(S)

∃L(g)U.

Thus, by Lemma II.31, we have the desired equality

h−1(V) = h−1( jd(W)) = je(h−1(W)) = je

 ∨
g∈h∗(S)

∃L(g)U

 = je

 ∨
g∈h∗(S)

je∃L(g)U

 ,
and therefore L j is an internal locale of SetsC

op
. Since Sh(L j)→ SetsC

op
factors as

Sh(L j) Sh(L) Sh(C, J) SetsC
op
,

we conclude that L j is an internal locale of Sh(C, J) as well by Lemma II.16. □



II.5. INTERNAL EMBEDDINGS AND NUCLEI 61

Corollary II.33. Let L : Cop → Frmopen be an internal locale of Sh(C, J). There is a bijective
correspondence between internal sublocales of L and internal nuclei on L.

Proof. By the theory of standard locales, there is a bijective correspondence between
collections of nuclei

{ jc : Lc → Lc | c ∈ C }
and collections of sublocales

{ fc : L′c ↣ Lc | c ∈ C },

where both are indexed by the objects of C. Our bijection will be a restriction of this
correspondence.

We have already seen in Proposition II.32 that if the collection

{ jc : Lc → Lc | c ∈ C }

of nuclei is natural in c, i.e. it defines an internal nucleus, then the corresponding
collection of sublocales yields an internal sublocale embedding. It remains to show
the other direction: that if

{ fc : L′c ↣ Lc | c ∈ C }
are the components of an internal sublocale embedding, then the corresponding
collection of nuclei is natural.

Let f : L′ → L be an embedding of an internal sublocale. Since each component
f−1
c : L′c → Lc is surjective, it induces a nucleus f∗cf−1

c : Lc → LC, for each object c of C.
We wish to show that, for each arrow c

g−→ d of C, the square

Ld Lc

Ld Lc

f∗df−1
d

g−1

f∗cf−1
c

g−1

commutes. Since the square

Ld Lc

Ld Lc,

f−1
d

g−1

∃g

f−1
c

g−1

∃g

is a morphism of adjunctions, taking the respective right adjoints also yields a mor-
phism of adjunctions

Ld Lc

Ld Lc.

g−1

g∗
f∗d

g−1
f∗c

g∗

Hence we have the desired equality

f∗cf
−1
c g−1 = f∗cg−1f−1

d = g−1f∗df
−1
d .

□
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II.5.2 Geometric embeddings

We now establish a bijective correspondence between internal nuclei and Lawvere-
Tierney topologies, and hence between internal sublocales and subtopoi. Let F be a
topos. Recall, from [63, §A4.4] say, that a Lawvere-Tierney topology is a endomorphism
j : ΩF → ΩF on the subobject classifier of the topos F such that the diagrams

1 ΩF ΩF ΩF ΩF ×ΩF ΩF

ΩF , ΩF , ΩF ×ΩF ΩF

>

> j

j

j
j j× j

∧

j

∧

commute. Recall also that there is a bijection between Lawvere-Tierney topologies
and subtopoi of F . As observed in [79, Corollary IX.6.6], given a locale L, there is a
bijection between Lawvere-Tierney topologies onΩSh(L) (and hence subtopoi of Sh(L))
and nuclei on L (and hence sublocales of L). The following result extends this bijection
to the internal setting.

Theorem II.34. Let L : Cop → Frmopen be an internal locale of E ' Sh(C, J). There is a
bijective correspondence between the following

(i) the subtopoi of F ' Sh(L);

(ii) the internal nuclei on L;

(iii) the internal sublocales of L.

In particular, if f : L′ → L is an internal locale morphism, Sh(f) is a geometric embedding if
and only if f is an internal locale embedding.

Proof. The bijective correspondence between internal nuclei and internal sublocales
was shown in Corollary II.33. We now demonstrate a bijective correspondence be-
tween the internal nuclei on L and the Lawvere-Tierney topologies on ΩSh(L).

Let j : ΩSh(L) → ΩSh(L) be a Lawvere-Tierney topology and let f : Sh(L) → SetsC
op

be the localic geometric morphism such that f∗(ΩSh(L)) � L, i.e. f � CπL . By now
applying the direct image functor f∗ : Sh(L)→ SetsC

op
, we obtain an endomorphism

f∗ j : f∗(ΩSh(L)) � L f∗(ΩSh(L)) � L.

By the description of CπL ∗ afforded by [79, Theorem VII.10.2], we have that

( f∗ j)c = (CπL ∗ j)c = ( j ◦ tL)c = j(c,>).

We claim that f∗ j is an internal nucleus.
Since j is a Lawvere-Tierney topology, f∗ j makes the following diagrams

L L L × L L

L, L × L L

f∗ j

f∗ j
f∗ j f∗ j× f∗ j

∧

f∗ j

∧
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commute. Thus, f∗ j : L→ L is a natural transformation such that, for each c ∈ C, the
component ( f∗ j)c : Lc → Lc is idempotent and preserves binary meets. It remains to
show that ( f∗ j)c is inflationary.

Let U ∈ Lc. As j is a Lawvere-Tierney topology and natural, there is a commutative
diagram of sets

1(c,U) ΩSh(L)(c,U) ΩSh(L)(c,>)

ΩSh(L)(c,U) ΩSh(L)(c,>).

>(c,U)

>(c,U)
j(c,U)

−∧U

( f∗ j)c= j(c,>)

−∧U

The displayed morphisms act as follows:

(i) the map >(c,U) : 1(c,U)→ ΩSh(L)(c,U) picks out the top element

U ∈ ΩSh(L)(c,U) � SubSh(L)(`CoL(c,U)),

(ii) while the map ΩSh(L)(c,>)→ ΩSh(L)(c,U) is induced by pulling back subobjects
along the monomorphism `CoL(c,U)↣ `CoL(c,>). In other words, it acts by

V 7→ V ∧U.

Thus, by chasing the element U ∈ ΩSh(L)(c,>) through the diagram, we deduce that
U ∧ ( f∗ j)c(U) = jU(U) = U. Thus, U ⩽ ( f∗ j)c(U) as desired. Hence, f∗ j : L → L is a
natural transformation in which each component is a nucleus, i.e. f∗ j is an internal
locale.

Conversely, given an internal nucleus

k : L � f∗(ΩSh(L)) L � f∗(ΩSh(L)),

we define a natural endomorphism k f on the subobject classifier ΩSh(L), viewed as a
sheaf on the site (C o L,KL), by

k f
(c,U)(V) = kc(V) ∧U,

for each (c,U) ∈ C o L and each V ∈ ΩSh(L)(c,U) = {V ∈ Lc | V ⩽ U }. We now
demonstrate that k f defines an Lawvere-Tierney topology.

As k is an internal nucleus, by a simple diagram chase it is clear that, for each
object (c,U) ∈ C o L, the diagrams

1(c,U) ΩSh(L)(c,U) ΩSh(L)(c,U) ΩSh(L)(c,U)

ΩSh(L)(c,U), ΩSh(L)(c,U),

>(c,U)

>(c,U)
k f

(c,U)

k f
(c,U)

k f
(c,U)

k f
(c,U)

ΩSh(L) ×ΩSh(L)(c,U) ΩSh(L)(c,U)

ΩSh(L) ×ΩSh(L)(c,U) ΩSh(L)(c,U)

∧

k f
(c,U)×k f

(c,U) k f
(c,U)

∧
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all commute. It remains to observe that k f is natural. Since each arrow (c,U)
g−→ (d,V)

of C o L can be factored as

(c,U)
idc−−→ (c, g−1(V))

g−→ (d,V),

it suffices to show that both squares in the diagram

ΩSh(L)(d,V) ΩSh(L)(c, g−1(V)) ΩSh(L)(c,U)

ΩSh(L)(d,V) ΩSh(L)(d, g−1(V)) ΩSh(L)(c,U)

k f
(d,V)

k f

(c,g−1(V)) k f
(c,U)

commute.

(i) The left-hand square commutes since, for each W ∈ Ld,

kc(g−1(W)) ∧ g−1(V) = g−1(kd(W)) ∧ g−1(V) = g−1(kd(W) ∧ V).

(ii) Meanwhile, the right-hand square commutes since, for each W ∈ Lc,

kc(W ∧U) ∧U = kc(W) ∧U = kc(W ∧ g−1(V)) ∧U.

Finally, the bijection is completed by noting that the two constructions are mutually
inverse. That is, for each c ∈ C and U,V ∈ Lc,

( f∗k f )c(V) = k f
(c,>)(V) = kc(V) ∧ > = kc(V)

and
( f∗ j)

f
(c,U)(V) = j(c,>)(V) ∧U = j(c,U)(V),

for each internal nucleus k on L and each Lawvere-Tierney topology j on ΩSh(L). □

II.5.3 The surjection-inclusion factorisation

Recall that every locale morphism f : L→ K can be factored uniquely (up to isomor-
phism) as a surjection of locales followed by an inclusion of locales (see [79, §IX.4]).
The same is true for geometric morphisms: every geometric morphism f : F → E
can be factored as a geometric surjection composed with an inclusion of a subtopos
(see [63, Theorem A4.2.10]). If f is induced by an internal locale morphism, a simple
application of Proposition II.28 and Theorem II.34 yields the following.

Corollary II.35. Let f : L′ → L be an internal locale morphism of Sh(C, J). The surjection-
inclusion factorisation of the geometric morphism

Sh(f) : Sh(L′)→ Sh(L)

is induced by the ‘pointwise’ surjection-inclusion factorisation of f.

Proof. Let

Sh(L′) Sh(Lf∗f−1) Sh(L)

denote the surjection inclusion factorisation of Sh(f). By Proposition II.28 and Theorem
II.34, the factor Sh(L′)↠ Sh(Lf∗f−1) is induced by a surjective internal locale morphism
L′ ↠ Lf∗f

−1 , while Sh(Lf∗f−1)↣ Sh(L) is induced by an internal embedding of locales
Lf∗f

−1
↣ L. Since internal surjections and embeddings are computed ‘pointwise’, the

component at c ∈ C of these internal locale morphisms must agree with the ‘pointwise’
surjection-inclusion factorisation of the locale morphism fc : L′c → Lc. □
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II.6 The frame of internal nuclei

In this final section, we consider the poset of internal nuclei on an internal locale.
It is well-known that this forms a frame, but we show additionally that the frame
operations can be computed ‘pointwise’.

Let L be a locale and let N(L) denote the set of nuclei on L. We can order N(L) by
setting j ⩽ k if j(U) ⩽ k(U) for all U ∈ L. Recall, from [60, Proposition II.2.5] say, that
so ordered N(L) is a frame. The set of sublocales of L, written as SubLoc(L), can also be
ordered with [K↣ L] ⩽ [K′↣ L] if and only if there is a factorisation

K K′

L.

Under the bijection between nuclei and sublocales, this is precisely the order dual
N(L) � SubLoc(L)op, and hence SubLoc(L) is a co-frame.

Definitions II.36. Let L : Cop → Frmopen be an internal locale of Sh(C, J), and let E be
a topos.

(i) By N(L) we denote the poset of internal nuclei on L ordered by j ⩽ k if and only
if, for each c ∈ C and U ∈ Lc, jc(U) ⩽ kc(U).

(ii) By LT(E) we denote the poset of Lawvere-Tierney topologies for E, ordered by
j ⩽ k if and only if j = j ∧ k (this poset is denoted as Lop(E) in [63, §A4.5]).

(iii) By SubTopos(E) we denote the poset of subtopoi of E which have been ordered
by [F ′ ↣ E] ⩽ [F ↣ E] if and only if there is a factorisation of geometric
morphisms

F ′ F

E.

(iv) By SubLoc(Sh(C,J))(L) we denote the poset of internal sublocales of L ordered by
[L′ ↣ L] ⩽ [L′′ ↣ L] if and only if there is a factorisation of internal locale
morphisms

L′ L′′

L.

Under the bijections established in Theorem II.34, there is an isomorphism of
posets

N(L) � LT(Sh(L)) � SubTopos(Sh(L))op � SubLoc(Sh(C,J))(L)op

We know already that SubTopos(Sh(L)) is a complete co-Heyting algebra, i.e. a co-frame
(see [63, §A4.5]). We will give an alternative proof using internal nuclei that N(L)
is a frame. Our construction demonstrates that the frame operations of N(L) can be
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computed ‘pointwise’. That is, for each subset { ji | i ∈ I } ⊆ N(L) and each object c of
C, there are equalities ∧

i∈I
ji


c

=
∧
i∈I

ji
c,

∨
i∈I

ji


c

=
∨
i∈I

ji
c,

where
∧

i∈I ji
c and

∨
i∈I ji

c are the meets and joins as computed in N(Lc). The first of
these equalities is easily shown.

Lemma II.37. The meet of a subset { ji | i ∈ I } ⊆ N(L) is given by∧
i∈I

ji


c

(U) =
∧
i∈I

ji
c(U), (II.v)

for each c ∈ C and U ∈ Lc.

Proof. If (II.v) defines a valid internal nucleus on L, it must clearly be the meet of
the subset { ji | i ∈ I } ⊆ N(L). Recall from [60, Proposition II.2.5] that

∧
i∈I ji

c yields a
nucleus on Lc, for each object c ∈ C. We must show naturality. As g−1 : Ld → Lc is
open, for an arrow c

g−→ d of C, it preserves all meets and so

g−1

∧
i∈I

ji
d(U)

 =∧
i∈I

g−1 ji
d(U) =

∧
i∈I

ji
cg−1(U).

Thus,
∧

i∈I ji defines an internal nucleus on L. □

We will demonstrate that N(L) is a frame by generalising the notion of a pre-
nucleus on a locale, recalled below, to the internal setting.

Remark II.38. We give some justification as to why the frame operations can be
computed ‘pointwise’ as described in Theorem II.42 below. Recall that the subtopoi
of Sh(D, J) correspond to Grothendieck topologies J′ onD that contain J. In the case
of a Grothendieck topology J′ on C o L that contains KL, we observe that the added
data is generated by new covering families on the fibresLc. Specifically, adding a new
covering family {

(ci,Ui)
fi−→ (c,U)

∣∣∣∣∣ i ∈ I
}

to KL is equivalent to requiring that the family{
(c,∃ fiUi)

idc−−→ (c,U)
∣∣∣∣ i ∈ I

}
is covering.

II.6.1 Pre-nuclei of locales

There are many proofs of the fact that N(L) is a frame for each locale L. For example,
the proof found in [60, Proposition II.2.5] shows that N(L) is a complete Heyting
algebra by defining the Heyting operation. Alternative approaches using pre-nuclei
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are considered in [108] and [35]. We will follow the argument of [108] when developing
our internal generalisation. We briefly repeat the argument for locales below.

Recall from [108, §2] that a pre-nucleus on a locale L is a (necessarily monotone)
map p : L→ L that is inflationary and finite-meet-preserving, i.e. for all U,V ∈ L,

U ⩽ p(U), p(U ∧ V) = p(U) ∧ p(V).

Thus, a nucleus on L is an idempotent pre-nucleus. Unlike nuclei, pre-nuclei are
evidently closed under composition.

We denote by PN(L) the poset of pre-nuclei on L ordered by p ⩽ q if p(U) ⩽ q(U)
for all U ∈ L. It is clear that PN(L) is a complete lattice. For each subset { pi | i ∈ I } of
PN(L) and each U ∈ L,∧

i∈I
pi

 (U) =
∧
i∈I

pi(U),

∨
i∈I

pi

 (U) =
∨
i∈I

pi(U),

where
∧

i∈I pi(U) and
∨

i∈I pi(U) are calculated as in L. It follows by the infinite dis-
tributive law for L that PN(L) is also a frame.

The inclusion of nuclei into pre-nuclei N(L) ↪→ PN(L) has a left adjoint

(−)∞ : PN(L)→ N(L),

which we call the nucleation (the nuclear reflection in [35] and idempotent closure in [108]),
constructed as follows. For each ordinal α and limit ordinal λ, we define inductively

p0(U) = U, pα+1(U) = p(pα(U)), pλ(U) =
∨
α<λ

pα(U).

At each stage, the resultant map pκ : L → L is a pre-nucleus. Necessarily, as L is
small, there is a sufficiently large ordinal κ such that pκ is idempotent and therefore a
nucleus. We label this by p∞. We observe that if p ⩽ q then p∞ ⩽ q∞, that p ⩽ p∞, and if
j is a nucleus then j = j∞. That is, nucleation is functorial, and has units and counits
yielding the adjunction

N(L) PN(L)

(−)∞

⊥

witnessing N(L) as a reflective subcategory of PN(L).
Thus, the poset N(L), in addition to the meets constructed in Lemma II.37, has all

joins. For a subset
{ ji | i ∈ I } ⊆ N(L),

the join in N(L) is given by
(∨

i∈I ji
)∞

. The infinite distributive law for N(L), and hence
the fact that N(L) is a frame, is a consequence of the distributive law for PN(L) and
Lemma II.39 below (the lemma is equivalent to [108, Lemma 3.1]).

Lemma II.39. Let L be a locale, n a nucleus on L, and let { pi | i ∈ I } be a collection of
pre-nuclei on L. The infinite distributive lawn ∧

∨
i∈I

pi

∞ = n ∧
∨

i∈I
pi

∞
holds.
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Proof. We will show that n ∧
∨
i∈I

pi

κ = n ∧
∨

i∈I
pi

κ ,
for each ordinal κ, and thereby deduce the result. The base casen ∧

∨
i∈I

pi

0

= idL = n ∧
∨

i∈I
pi

0

is trivial, since U ⩽ n(U) for all U ∈ L.
We now perform the inductive step. Suppose thatn ∧

∨
i∈I

pi

α = n ∧
∨

i∈I
pi

α ,
then there is a chain of equalitiesn ∧

∨
i∈I

pi

α+1

=

n ∧
∨
i∈I

pi

 n ∧
∨
i∈I

pi

α ,
= n

n ∧
∨
i∈I

pi

α ∧∨
i∈I

pi

n ∧
∨
i∈I

pi

α ,
= nn ∧ n

∨
i∈I

pi

α ∧∨
i∈I

pin ∧ pi

∨
i∈I

pi

α .
Using that nn = n, n ⩽ n

((∨
i∈I pi

)α)
, and n ⩽ pin, for all i, we have that

n ∧
∨
i∈I

pi

α+1

= n ∧
∨
i∈I

pin ∧ pi

∨
i∈I

pi

α ,
=

∨
i∈I

n ∧ pin ∧ pi

∨
i∈I

pi

α ,
=

∨
i∈I

n ∧ pi

∨
i∈I

pi

α ,
= n ∧

∨
i∈I

pi

α+1

.

Finally, we perform the limit inductive step. If λ is a limit ordinal such thatn ∧
∨
i∈I

pi

α = n ∧
∨

i∈I
pi

α
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for each ordinal α < λ, then there is a chain of equalitiesn ∧
∨
i∈I

pi

λ =∨
α<λ

n ∧
∨
i∈I

pi

α ,
=

∨
α<λ

n ∧
∨

i∈I
pi

α ,
= n ∧

∨
i∈I

pi

λ .
Hence, by transfinite induction, the result holds. □

II.6.2 Internal pre-nuclei

We now extend the theory of pre-nuclei and nucleation to the internal context. In
doing so we will observe that N(L) is a frame for every internal locale.

Definition II.40. Let L be an internal locale of Sh(C, J). An internal pre-nucleus is a
natural transformation p : L → L such that pc : Lc → Lc is a pre-nucleus, for each
c ∈ C. The set of internal pre-nuclei, denoted by PN(L), can be ordered by p ⩽ q if
pc(U) ⩽ qc(U) for all c ∈ C and U ∈ Lc.

It is easily checked that the poset of internal pre-nuclei PN(L) on an internal locale
L of Sh(C, J) has all meets and all joins, which are computed ‘pointwise’. Thus, by
the infinite distributivity law for Lc, for each c ∈ C, PN(L) is a frame. We show that
an internal nucleation can also be performed ‘pointwise’.

Lemma II.41. Let p : L→ L be an internal pre-nucleus on an internal locale L, fibred over
a category C. The pointwise nucleations p∞c : L → Lc of each component pc of p are the
components of an internal nucleus.

Proof. For each object c ∈ C, the nucleation p∞c : Lc → Lc of pc is a nucleus, so it remains
only show that they are natural in c. This is easily shown by transfinite induction. We
will perform the case for a limit ordinal λ. Let c

g−→ d be an arrow of C. If, for all α < λ,
the square

Ld Lc

Ld Lc

g−1

pαd pαc
g−1

commutes, then we have the desired equality

g−1

∨
α<λ

pαd

 =∨
α<λ

g−1pαd =
∨
α<λ

pαc g−1.

□
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As a result, we obtain a left adjoint to the inclusion N(L) ↪→ PN(L),

N(L) PN(L),

(−)∞

⊥

just as we did for locales. The functor (−)∞ : PN(L) → N(L), the internal nucleation,
sends internal pre-nuclei to their pointwise nucleation.

Theorem II.42. Let L be an internal locale of Sh(C, J). The poset N(L) of internal nuclei is
a frame whose frame operations can be computed ‘pointwise’, by which we mean that, for each
subset { ji | i ∈ I } ⊆ N(L) and each object c of C, there are equalities∧

i∈I
ji


c

=
∧
i∈I

ji
c, and

∨
i∈I

ji


c

=
∨
i∈I

ji
c, (II.vi)

where
∧

i∈I ji
c and

∨
i∈I ji

c are computed as in N(Lc).

Proof. We saw in Lemma II.32 that N(L) has all meets and that these are computed
pointwise. The join of { ji | i ∈ I } ⊆ N(L) is the nucleation of the join of { ji | i ∈ I } as
internal pre-nuclei. Since the nucleation of internal pre-nuclei is computed pointwise,
as are joins in PN(L), the joins in N(L) are also computed pointwise in the sense of
(II.vi). Finally, as N(Lc) satisfies the infinite distributivity law for each c ∈ C, we obtain
the infinite distributivity law for N(L). □

Since every topos E is the topos of sheaves Sh(L) for some internal locale L (see,
for example, [68, Proposition VII.3.1]), and also because SubTopos(E) � N(L)op, we
have recovered the well-known fact that the poset of subtopoi of a topos is a co-frame.

Remark II.43. Let L : Cop → Frmopen be an internal locale of Sh(C, J). Since the frame
operations of N(L) are computed ‘pointwise’, for each object c of C, the projection
πc : N(L) → N(Lc) that sends an internal nucleus j : L → L to its component jc at c
preserves all joins and meets. Therefore,

πc : N(L) N(Lc)

is an open frame homomorphism.



Chapter III

Classifying topoi via doctrines

What is doctrine theory? Doctrines (also called indexed or fibred preorders), as
introduced by Lawvere in [77] and expanded upon in [78], are a natural categorical
setting in which to study first-order logic, as evidenced by the prototypical examples
derived from theories recalled in Section III.1 below. Their relation to logic can be
summarised as: doctrines are to first-order theories as Lindenbaum-Tarski algebras
are to propositional theories.

Doctrines are a powerful tool within categorical logic as the doctrine of a theory
can be seen to express certain logical syntax, interpreted by categorical constructions,
even when this is not present in the explicit symbolic syntax of the logic. An example
is given in Example III.12.

What is the classifying topos of a doctrine? In addition to the syntax of a theory,
there is an intuitive notion of the semantics of the theory as well – the mathematical
objects, and their morphisms, described by the theory. The notion of model for a
theory extends naturally to a notion of model for a doctrine P (once some choice
about the pertinent structure of P is made).

Models do not need to be set-based. The notion of model for a doctrine P can
be extended to any arbitrary topos E, yielding a category P-mod(E) of models of P
internal toE. Just as for theories, a classifying topos for a doctrine P is defined as a topos
EP for which there is a natural equivalence Geom(E,EP) ' P-mod(E) for each topos
E. Evidently, whenever a classifying topos exists for P, it is unique up to equivalence.

Our goal. This chapter exposits a doctrinal approach to classifying topos theory. We
aim to show that, if a theory T has a classifying topos E, then the process T 7→ ET can
be factored by first sending the theory to its associated doctrine, and then sending
said doctrine to its classifying topos, as displayed in the schematic

Theories Doctrines

Topoi

Doctrine associated
with a theory

Classifying topos
of a theory

Classifying topos
of a doctrine.

(III.i)

71
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Note that these are ‘processes’ or ‘constructions’ and not functors. Indeed, we will
not seek to make sense of a ‘morphism of theories’ here (although the latter process
Doctrines→ Topoi can be made suitably functorial).

However, in Example III.12 we give an example of a doctrine obtained two in-
equivalent theories over two different syntaxes. Thus, the process of sending a theory
to its associated doctrine forgets logical structure. We must keep track of this syntax if
we are to hope to build the classifying topos of a theory from its associated doctrine.

Our remedy is to use Grothendieck topologies to encode this further logical syntax.
We therefore elect to work with doctrinal sites rather than doctrines, and our schematic
(III.i) becomes

Theories
+ syntax

Doctrinal
sites

Topoi

Doctrinal site
associated with a theory

Classifying topos
of a theory

Sheaves on a
doctrinal site.

Focusing exclusively on geometric theories, the above processes restrict to

Geometric
theories

Internal
locales

Topoi

Doctrinal site
associated with a theory

Classifying topos
of a theory

Sheaves on an
internal locale,

thereby witnessing a connection between geometric theories and the theory of internal
locales studied in Chapter II. Our study of properties of internal locale morphisms
in Chapter II will yield elegant alternative proofs of previously known facts in topos
theory.

Philosophical motivation. Classifying topos theory can be tersely summarised as:
every geometric theory has a classifying topos, and every topos is the classifying
topos of some geometric theory. However, this summary can somewhat obfuscate the
fact that many non-geometric theories also have classifying topoi (though the latter
statement prefigures the geometric completion we will study in Chapter IV).

Our purpose in pursuing a doctrinal approach to classifying topos theory is mainly
philosophical: we aim to demonstrate how, in an intuitive manner, a classifying topos
can be associated with almost any system of predicate reasoning, without prejudice
as to the underlying syntax. Moreover, although we won’t investigate it here, by
Theorem I.21 the classifying topos of a doctrine satisfies a stronger ‘relative’ universal
property than the property we will prove.

Overview. The chapter proceeds as follows.

(A) Varied definitions of doctrine are used in the literature depending on the frag-
ment of logic being interpreted. We fix our terminology in Section III.1. We
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recall the ‘theory to doctrine’ construction

Theories Doctrines

and recall how, as observed by Lawvere [77], categorical structure on the doctrine
corresponds to logical syntax, a relationship made precise in the theorems of
Seely [106].

(B) Section III.2 first recalls from [73] the definition of a model of a doctrine. We
demonstrate the existence of classifying topoi for a wide class of doctrines.
During our discussion on the use of Grothendieck topologies to encode logical
syntax, the 2-category of doctrinal sites is also introduced.

(C) In Section III.3, we compare the doctrinal approach to classifying topos theory
from Section III.2 to the standard construction using syntactic sites found in [87].

(D) Finally, Section III.4 focuses on the relationship between geometric theories,
geometric doctrines and internal locales. We show that our study of properties
of internal locale morphisms from Chapter II yield elegant proofs of known
results on geometric theories.

III.1 Doctrine theory
Doctrines have appeared in many guises throughout the literature, with various
assumptions on their structure.

Definition III.1. For us, a doctrine is simply a pseudo-functor

P : Cop PreOrd.

Being fibred categories, doctrines naturally form a 2-category Doc as follows.

(i) The objects of Doc are doctrines P : Cop → PreOrd.
(ii) An arrow of Doc from P : Cop → PreOrd to Q : Dop → PreOrd consists of a pair

(F, a), where F is a functor F : C → D and a is a pseudo-natural transformation
a : P⇒ Q ◦ Fop, as in the diagram

Cop

PreOrd.

Dop

P

Q

Fop a

(iii) A 2-cell α : (F, a) ⇒ (F′, a′) is a natural transformation α : F ⇒ F′ such that
ac(x) ⩽ Q(αc)(a′c(x)) for each object c ∈ C and x ∈ P(c), i.e.

Cop

PreOrd.

Dop

P

Q

Fop F′opα
a a′⩽
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Remark III.2. Each morphism of doctrines (F, a) : P→ Q induces a functor

F o a : C o P D oQ.

We could have chosen the natural transformations Fo a⇒ F′o a′ as the 2-cells of Doc.
In the non-pathological cases, the two coincide.

Firstly, every 2-cell α : (F, a) ⇒ (F′, a′) of Doc induces a natural transformation
ᾰ : F o a ⇒ F′ o a′, with components ᾰ(c,x) : (F(c), ac(x))→ (F′(c), a′c(x)) named by the
arrows αc : F(c)→ F′(c).

Conversely, if P : Cop → PreOrd has non-empty fibres (P(c) , ∅ for all c ∈ C),
then any natural transformation β : F o a ⇒ F′ o a′ yields a natural transformation
β′ : F ⇒ F′ for which ac(x) ⩽ Q(β′c)(a′c(x)) by taking β′c : F(c) → F′(c) as the D-arrow
β(c,x) : (F(c), ac(x))→ (F′(c), a′c(x)), for some x ∈ P(c).

Example III.3. We can always obtain a doctrine from a cartesian category C by taking
its doctrine of subobjects

SubC : Cop →MSLat ⊆ PreOrd,

the doctrine where:

(i) for each object c of C, SubC(c) is the meet-semilattice of subobjects of c,

(ii) for each arrow d
f−→ c of C, SubC( f ) : SubC(c) → SubC(d) is the map which sends

a subobject e↣ c to the pullback

f ∗(e) e

d c.

⌟

f

In particular, taking the subobject doctrine for the category Sets yields the powerset
doctrine P : Setsop → CBool ⊆ PreOrd.

The formal definition of a doctrine is motivated by the ‘theory-to-doctrine’ con-
struction

Theories Doctrines

of the schematic (III.i) presented below, which assigns a doctrine to every first-order
theory. The central conceit behind the doctrine of a theory is to collect formulae accord-
ing to their context and then perform a fibred Lindenbaum-Tarski construction. Thus,
doctrines are the natural algebraic framework with which to study first-order theories
in the same way that Lindenbaum-Tarski algebras relate propositional theories with
preorders/posets.

III.1.1 From theories to doctrines

Let T be a theory in a fragment of infinitary first-order logic over a signature Σ with
N sorts. We describe how to assign a doctrine FT to the theory T. We first describe
the base category of ‘contexts’ for the sorts of Σ. Then, we will describe how to add
the doctrine structure on top. Finally, following this, we give some examples of how
the presence of logical syntactic features can be detected by algebraic properties of
the resulting doctrine.
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The category of contexts.

Definition III.4. Let Σ be a signature with N sorts. We denote by ConN the category of
contexts for the sorts, the category

(i) whose objects are finite tuples of free variables x~ or contexts, i.e. a finite set where
each element xi ∈ x~ is assigned a sort in Σ,

(ii) and whose arrows are relabellings σ : y~ → x~, i.e. any function of finite sets such
that yi and σ(yi) have the same sort for all yi ∈ y~ .

If Σ is a single sorted signature, then ConN ' FinSets. If Σ has a finite number N
of sorts, then ConN ' N × FinSets. More generally, ConN is the full subcategory of
N × FinSets on objects (Zk)k∈N where only finitely many Zk are non-empty.

Immediately we deduce that ConN has all finite limits and colimits, since the
category N × FinSets has all finite limits and colimits (these being computed point-
wise) and the full subcategory ConN ⊆ N × FinSets is closed under these. A simple
generalisation of [79, §VIII.4] yields the following observations about ConN.

Proposition III.5 (§VIII.4 [79]). Let Σ be a signature with N sorts.

(i) The category ConN is the free category with finite colimits and N generators.

(ii) The presheaf topos SetsConN classifies the theory N ·O of N objects, i.e. the empty
theory over the signature with N sorts.

The doctrine of a theory.

Definition III.6. We denote by FT : ConN → PoSet the functor that acts as follows.

(i) For each context x~, FT(x~) is the poset

a) whose elements areT-provable equivalence classes of formulae in the con-
text x~ (we will abuse notation and not differentiate between a formula and
its equivalence class),

b) and the order relation is given by provability in T, i.e. ϕ ⩽ ψ if and only if
T proves ϕ `x~ ψ.

(ii) For each relabelling of contexts σ : y~ → x~,

FT(σ) : FT(y~) FT(x~)

denotes the monotone map that acts by sending a formula ψ ∈ FT(y~) to the for-
mula ψ[x~/σy~], the formula obtained by simultaneously replacing each instance
of the variable yi ∈ y~ by σ(yi) ∈ x~ (since contexts are assumed to be disjoint, we
can simultaneously replace free variables).

Notation III.7. In Definition III.6, we have left implicit from which fragment of logic
we are taking the formulae which make up the elements FT(x~). For the most part, we
will infer the fragment from the theory. When there could be some confusion, we will
denote the fragment in subscript. For example, given a coherent theory T, we denote
by

FTCoh : ConN DLat ⊆ PreOrd
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the doctrine whose elements of each fibre are the T-provable equivalence classes of
coherent formulae, and use

FTGeom : ConN Frm ⊆ PreOrd

to denote the doctrine where we have used geometric formulae instead.

Remark III.8. Let T be a theory over a signature Σ with N sorts. We have chosen to
fibre the doctrine of a theory T over the category of contexts and relabellings ConN.
Many other choices are also used in the literature. For example, in [30], the following
category TermΣ is used as a base category instead:

(i) the objects of TermΣ are pairs
〈

x~, s~ = t~
〉
, where s~ and t~ are terms in Σ (of the

same type) whose free variables occur in the context x~;

(ii) an arrow
〈

x~, s~ = t~
〉
→ 〈

y~,u~ = v~
〉

of TermΣ is a tuple of terms w~ , whose free
variables are contained in x~, of the same sort as y~ , for which T proves the
sequent

s~ = t~ `x~ u~ [w~ /y~] = v~ [w~ /y~].

Ultimately, these other choices of base category yield Morita equivalent doctrines, in
the sense that they have equivalent classifying topoi, defined below.

As aforementioned, the simplicity of doctrine theory allows us to encapsulate
within our framework not only those theories from familiar fragments of first-order
logic, but any system of predicate reasoning. We intuit that a “first-order formal
system” F ought to be simply a set of rules regarding the manipulation of some (po-
tentially infinite) strings of symbols, which we suggestively call well-formed formulae.
The key aspect that identifies a formal system as first-order is that each well-formed
formula is assigned a context, and for each transformation of contexts, there is a sub-
stitution map that sends well-formed formulae in the domain context to well-formed
formulae in the codomain context (normally by replacing certain sub-strings of sym-
bols by other symbols).

It is then clear how to assign a doctrine to the formal system F, in a manner
analogous to the above (though we may wish to refrain from taking equivalence
classes of well-formed formulae – see Remark III.9), under the further assumptions
that:

(i) the contexts of F and their transformations constitute a category;

(ii) in F, the order `c on the well-formed formulae in context c, where ϕ `c ψ if and
only if the string ψ is derivable in F from the string ϕ, is reflexive and transitive.

(iii) for this order, each substitution map is monotone.

Remark III.9. In the literature, a doctrine P : Cop → PreOrd is often assumed to factor
through the subcategory PoSet ⊆ PreOrd. In this case, P is a genuine functor, not
only a pseudo-functor.

Of course, PoSet is a reflective subcategory of PreOrd,

PoSet PreOrd,a



III.1. DOCTRINE THEORY 77

and so by post-composing a doctrine P : Cop → PreOrd with the posetal reflection
PreOrd→ PoSet yields a universal way of turning P into a PoSet-valued doctrine.

In Definition III.6, the doctrine associated to a first-order theory thus obtained is a
PoSet-valued doctrine because the elements of each fibre are taken as the T-provable
equivalence classes of formulae. If simply the formulae are taken instead, the resultant
doctrine would be PreOrd-valued, not PoSet-valued.

We have deliberately left the possibility for PreOrd-valued doctrines open for those
readers who wish the fibres of their doctrine to be endowed with operations that do
not respect provable equivalence. For example, some modal logics possess operators
□ where the equivalence of two formulae ϕ ≡ ψ does not imply that □ϕ ≡ □ψ. These
are examples of so-called non-algebraisable logics (see [12, §5.2]).

III.1.2 Categorically interpreting logical syntax

As currently formulated, an arbitrary doctrine P : Cop → PreOrd does not interpret
any particular logical syntax. To model a certain logical syntax, we can require a
doctrine to possess the appropriate categorical structure. This can appear as structure
on the fibres, as is the case for the logical connectives { ⊥,∧,∨,> }, or as properties of
the substitution maps, in the case of the symbols { ∃,=,∀ }.

Examples III.10. (i) For any theory T in a fragment of logic in which conjunctions
of formulae and truth are expressible, each fibre of FT has finite meets. We
thus define a primary doctrine, a doctrine capable of interpreting the symbols
{ ∧,> }, as a doctrine P : Cop → PreOrd that factors through the subcategory
MSLat ⊆ PreOrd of meet-semilattices and meet-semilattice homomorphisms.
Following the standard terminology found in the literature (say, for instance,
[81]), we also assume that C is a cartesian category (this also ensures that C o P
is a cartesian category too).

A morphism (F, a) : P → Q in Doc, between primary doctrines, is said to
be a morphism of primary doctrines if the finite limit data are preserved, that is
to say: F : C → D is left exact and ac : P(c) → Q(F(c)) is a meet-semilattice
homomorphism for each c ∈ C. We denote by PrimDoc the 2-full 2-subcategory
of Doc of primary doctrines and primary doctrine morphisms (by 2-full we
mean that the 2-subcategory is full on 2-cells).

(ii) As detailed in [77] and [78], if existential quantification or equality are also
expressible , then certain transition maps of the doctrine FT have left adjoints.

a) Let ι : x~ ↪→ x~, y~ denote the inclusion of a sub-context (i.e. a coproduct
inclusion x~ → x~ + y~ in ConN). The rules of existential quantification ensure
that the map

∃FT(ι) : FT(x~, y~)→ FT(x~),
ϕ 7→ ∃y~ ϕ,

defines a left adjoint to the substitution map FT(ι).
b) Let δ : x~, y~1, y~2 → x~, y~ denote the relabelling that identifies two identical

copies of the tuple y~ (i.e. δ is a co-diagonal x~ + y~ + y~ ↠ x~ + y~ in ConN). The
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map

∃FT(δ) : FT(x~, y~1, y~2)→ FT(x~, y~),
ϕ 7→ ϕ ∧ y~1 = y~2

defines a left adjoint to FT(δ).

Note that, since every relabelling of contexts can be expressed as a composite of
a coproduct inclusion and a co-diagonal, every transition map of FT has a left
adjoint.

An existential doctrine, a doctrine capable of interpreting the the logical sym-
bols { ∧,>,∃,= }, is a primary doctrine where, in addition, P( f ) has a left adjoint

∃P( f ), for each arrow d
f−→ c ∈ C. We also require that these left adjoints sat-

isfy both the Frobenius and Beck-Chevalley conditions, which express how
existential quantification/equality interacts with, respectively, conjunction and
substitution under relabellings.

A morphism of existential doctrines (F, a) : P → Q is a morphism of primary
doctrines which also preserves the interpretation of the new symbols { ∃,= }, i.e.
a morphism for which the square

P(c) P(d)

Q(F(c)) Q(F(d))

ac

∃P( f )

ad

∃Q( f )

commutes for each arrow d
f−→ c of C. We denote the resultant 2-full 2-

subcategory of Doc by ExDoc.

(iii) A coherent doctrine is an existential doctrine that takes values in the category DLat
of distributive lattices and lattice homomorphisms, and thus interprets the sym-
bols { ∧,>,∃,=,∨,⊥ }. Morphisms of coherent doctrines are those morphisms
(F, a) of existential doctrines where a is a natural transformation of DLat-valued
functors. We denote the resultant 2-full 2-subcategory of Doc by CohDoc.

(iv) Heyting (intuitionistic) doctrines are coherent doctrines that take values in the
category Heyt of Heyting algebras and Heyting algebra morphisms, and so
interpret (intuitionistically) the symbols { ∧, >,∃,=,∨,⊥,→}. Analogously with
coherent doctrines, we can define a subcategory HeytDoc of Doc of Heyting
doctrines and their morphisms.

(v) A Boolean (classical) doctrine is a coherent doctrine that takes values in the cate-
gory Bool of Boolean algebras and Boolean algebra homomorphisms, and for

each arrow d
f−→ c ∈ C, P( f ) also has a right adjoint ∀P( f ) expressing universal

quantification. Hence, a Boolean doctrine interprets classical first-order logic.
A morphism of Boolean doctrines is a morphism (F, a) of coherent doctrines that
preserves the interpretation of classical first order logic. We denote the resultant
2-full 2-subcategory of Doc by BoolDoc.

Remark III.11. We have required existential and coherent doctrines to be examples
of primary doctrines, but we shall observe in Example III.31 how one might define
existential doctrines, etc., over non-cartesian base categories.
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Example III.12. By phrasing a study of logical theories algebraically, we are able to
recognise the existence of logical structure even when this is not present in the explicit
syntax of the theory. We now give a simple example.

Let EU be the theory with no axioms over the single-sorted signature with a single
unary relation symbol U. The doctrine

FEU
{ ⊥,∧,∨,> } : FinSets PreOrd

associated with the theory and the fragment { ⊥,∧,∨,> } can be visualised as

>

U(x) ∨U(y)

U(x) U(y)

U(x) ∧U(y)

⊥

>

U(y)

⊥

>

⊥,

where we have truncated the doctrine FEU
{ ⊥,∧,∨,> } to the subcategory

0 ↪→ 1 ↪→ 2 ⊆ FinSets.

The displayed arrows represent the action on each fibre by the substitution maps
FEU
{ ⊥,∧,∨,> }(0 ↪→ 1) and FEU

{ ⊥,∧,∨,> }(1 ↪→ 2).
We are now able to observe that both of these substitution maps have left adjoints.

The action of these left adjoints is represented in the diagram

>

U(x) ∨U(y)

U(x) U(y)

U(x) ∧U(y)

⊥

>

U(y)

⊥

>

⊥.

The elements of each subset are sent by the left adjoints to the target of the corre-
sponding arrow. One can calculate that this defines the action of a pair of left adjoints
to the substitution maps.

In fact, for every injective relabelling ι, the map FEU
{ ⊥,∧,∨,> }(ι) has a left adjoint. More-

over, these left adjoints satisfy Frobenius reciprocity and the Beck-Chevalley condition
(wherever appropriate). Therefore, the doctrine FEU

{ ⊥,∧,∨,> } categorically interprets ex-
istential quantification, even though our theory is not in a fragment of logic involving
quantifiers.

Indeed, there is an isomorphism of doctrines

FEU
{ ⊥,∧,∨,> } � FT{ ⊥,∧,∨,>,∃ }

where T is the theory over the same signature as EU, in the fragment of first-order
logic now also including existential quantification, with the single axiom> `∅ ∃x U(x).
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III.1.3 From doctrines to theories

What does it mean to say a doctrine ‘interprets’ a certain logical theory? The precise
relationship between doctrines and logical theories was elucidated in [106, Theorem
6.1 & Theorem 6.2]. In one direction, given a theory T over a signature Σ in a certain
fragment of logic, the doctrine FT as defined in Definition III.6 is of the appropriate
form. For example, if T is a coherent theory, i.e. a theory in the fragment of intuition-
istic first order logic containing the symbols { ∧,>,∃,=,∨,⊥ }, then FT is a coherent
doctrine.

The converse relationship is provided by associating a theory to each doctrine
fibred over the base category ConN as elaborated below. The outputted theory can
be chosen to be of the appropriate fragment of first-order logic. For example, if
P : ConN → Bool is a Boolean doctrine, then the associated theory TP can be chosen
to be a theory in the full fragment of (finitary) classical first-order logic.

Definition III.13. LetΣ be a signature with N sorts and let P : ConN → PoSet be a doc-
trine. We will also assume that P is of an appropriate form, e.g. primary/existential/etc.
The theory associated to P is the theory TP over a signature ΣP defined in the following
way.

(i) The sorts of ΣP are the same as the sorts of Σ and, for each U ∈ P(x~), there is a
relation symbol RU with the same type as x~.

(ii) The theory TP has as axioms all those sequents expressible in the appropriate
fragment of logic (e.g., if P is an existential doctrine, those sequents expressible
in regular logic, i.e. using the symbols { ∧,>,∃,= }) which are satisfied by the
doctrine P. For example,TP contains as an axiom the sequent RU `x~ RV[x~/σy~] for
each relabelling y~ σ−→ x~ ∈ ConN and pair U ∈ P(x~), V ∈ P(y~) such that U ⩽ P(σ)(V).

These two constructions, i.e. sending a theory T over Σ to its associated doctrine
FT : ConN → PoSet and a doctrine P : ConN → PoSet to its theory TP over ΣP, are
mutually inverse in the sense of the following theorem.

Theorem III.14 (Theorem 6.1 & Theorem 6.2 [106]). Let T be a theory over a signature Σ
with N sorts and let P : ConN → PoSet be a doctrine that interprets the underlying syntax
of T.

(i) There is a natural isomorphism P � FTP .
(ii) The theories T and TFT are equivalent in the sense that:

a) for every formula ϕ over Σ in the context x~, there exists a canonical choice of
formula ϕ over ΣFT in the context x~ where, if T proves the sequent ϕ `x~ ψ, then
TFT proves the sequent ϕ `x~ ψ;

b) for each formula χ overΣFT in context x~, there exists a formula χ′ overΣ in context
x~ such that χ and χ′ are TFT-provably equivalent and moreover, if TFT proves the
sequent χ `x~ ξ, then T proves the sequent χ′ `x~ ξ

′.

III.2 The classifying topos of a doctrinal site
In Section III.1, we were required at times to be unsatisfactorily vague as to which
fragments of first-order logic our theories belonged, or which properties we required
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of our doctrines. Although imposing certain algebraic and categorical structure on
our doctrines is the most intuitive method to model particular logical syntax, it is too
ad hoc for our purposes. We would prefer instead a unified language with which we
can simultaneously treat first-order theories from various underlying syntaxes.

In this section, we will observe that, in many cases, it is possible to encode further
structural properties of a doctrine P : Cop → PreOrd, representing logical syntax, by
a particular choice of Grothendieck topology on the category C o P. We are therefore
motivated to work with doctrinal sites:

Definition III.15. A doctrinal site (also called a fibred preorder site in [24]) consists of a
doctrine P : Cop → PreOrd and a Grothendieck topology J on the category C o P.

A doctrinal site (P, J) is equivalent in data to a relative site of the form

[πP : (C o P, J)→ (C, Jtriv)]

whereπP is a faithful fibration. Our reasons for restricting to base categories endowed
with the trivial topology are discussed in Remark IV.18.

The philosophical interpretation. As aforementioned, our overarching goal in pur-
suing a doctrinal foundation to classifying topos theory is to yield a notion of clas-
sifying topos for as many systems of predicate reasoning as possible, without any
prejudice on what the syntax of the system may be.

We already saw in Section III.1 how any formal system of predicate reasoning,
with only the mildest of conditions, can be assigned a doctrine. However, we gave in
Example III.12 an example of a doctrine that simultaneously represented two inequiv-
alent theories in different fragments of first-order logic. In order to differentiate the
intended syntax of a doctrine, we must therefore encode further information about
the doctrine.

This is the role played by the Grothendieck topology in a doctrinal site. It is
intended to capture

(i) further syntactic properties of the doctrine – such as to which fragment of first-
order logic the associated theory belongs,

(ii) and information of the desired semantics of P.

The formalism of doctrinal sites is inherently flexible, being able to capture the (set-
based) semantics of theories from a wide class of syntaxes.

The relative topos of a doctrinal site. Since a doctrinal site (P, J) is an example of a
relative site, it is natural to contemplate the induced relative topos

Sh(C o P, J)→ SetsC
op
.

The principal observation of this section is that the relative topos Sh(C o P, J) satisfies
the universal property of the classifying topos of the doctrine – i.e. for each topos F ,
there is an equivalence of categories

Geom(F ,Sh(C o P)) ' P-mod(F ),
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natural in F , where P-mod(F ) denotes the category of desired models of P in the
topos F . Hence, we will have demonstrated the final process

Doctrines/Doctrinal sites Topoi,

completing the schematic (III.i).
Suppose that T is a theory with a classifying topos. By the fact that the models of

a theory T coincide with the models of the doctrine FT, the classifying topos of the
doctrine FT coincides with the classifying toposET of the theoryT. A comparison with
the usual construction of the classifying topos of T, involving syntactic categories, is
performed in Section III.3.

Overview. The section is divided as follows.

− At the suggestion of Kock and Reyes [73], the model of a doctrine P in a topos
F can be described as a morphism of doctrines P → SubF that preserves the
necessary categorical structure. We begin in Section III.2.1 by constructing the
classifying topos of a primary doctrine.

− We then discuss the classifying topoi of doctrines modelling richer logical syntax
in Section III.2.2. We will observe that, for many of the most widely considered
doctrines, the additional syntactic structure present can be encoded by a choice
of Grothendieck topology.

− Thus motivated, we define the 2-category of DocSites and observe that many of
the notable classes of doctrines mentioned in Examples III.10 form full and faith-
ful 2-subcategories of DocSites. We define the classifying topos of a doctrinal
site and note its universal property.

Finally, we discuss how, even if the syntax of a doctrine cannot be encoded
by a choice of Grothendieck topology, it is possible to make a ‘best approxima-
tion’ that generalises the notion of the sobrification of the space of models of a
propositional theory.

III.2.1 The classifying topos of a primary doctrine

We first focus on primary doctrines and describe their classifying topoi. A natural
definition for the model of a primary doctrine is adapted from [73].

Definition III.16 (Definition 3.5 [73]). A model of a primary doctrine P is simply a
primary doctrine morphism

(F, a) : P P ,

where P : Setsop → CBool is the powerset doctrine.
We further define the category of models P-modPrim(Sets) of a primary doctrine P

as the category PrimDoc(P,P) of primary doctrine morphisms P→P .

If T is a first-order theory involving only the symbols { ∧,> }, the models of T
are easily seen to coincide with the models of the primary doctrine FT. For a model
(G, a) : FT →P of FT, the functor G : ConN → Sets picks out the interpretation of each
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context in the model, while the meet-semilattice homomorphism ax~ : FT(x~)→P(G(x~))
sends a proposition in context x~ to its interpretation as a subset of G(x~).

Of course, we could also replace the powerset doctrine with the subobject doctrine
SubE : Eop → Frmopen of a topos E to obtain a category P-mod(E) of models of a
doctrine P in any topos.

Theorem III.17. Let P : Cop →MSLat be a primary doctrine. The presheaf topos Sets(CoP)op

classifies the doctrine P, i.e. there is a natural equivalence

Geom(E,Sets(CoP)op
) ' P-modPrim(E)

for each topos E.

Proof. By the relative Diaconescu’s equivalence Theorem I.21 and the version for
PreOrd-valued relative sites in Corollary I.25, there is an equivalence

Topos


F

E
f ,

Sets(CoP)op

SetsC
op

CπP

 ' RelMorph


(C o P, Jtriv)

(C, Jtriv)

πP ,

(E o SubF ( f ∗−), J̃can)

(E, Jcan)

πF

 .
In particular, for each topos E, there is an equivalence

Topos


E

E

,
Sets(CoP)op

SetsC
op

CπP

 ' RelMorph


(C o P, Jtriv)

(C, Jtriv)

πP ,

(E o SubE(−), J̃can)

(E, Jcan)

πE

 ,
which is moreover natural in E.

There is an evident equivalence

Geom
(
E,Sets(CoP)op) ' Topos


E

E

,
Sets(CoP)op

SetsC
op

CπP

 .
The equivalence acts on objects by sending a geometric morphism E → Sets(CoP)op

to
the composite

E Sets(CoP)op
SetsC

opCπP

while, in the converse direction, a morphism of relative topoi

E Sets(CoP)op

E SetsC
op

� CπP

is sent to the factoring geometric morphism E → Sets(CoP)op
.
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By Proposition I.28, the category

RelMorph


(C o P, Jtriv)

(C, Jtriv)

πP ,

(E o SubE(−), J̃can)

(E, Jcan)

πE


is equivalent to the category

RelMorphcart((C, Jtriv,P, Jtriv), (E, Jcan, SubE, J̃can))

whose objects are pairs (F, a) of a left exact functor F : C → E and a (pseudo-)natural
transformation a : P ⇒ SubE where each component ac : P(c) → SubE(F(c)) preserves
finite meets. In other words, it is equivalent to the category

PrimDoc(P, SubE) = P-mod(E)

(for the equivalence on arrows, see Remark III.2). Thus, the topos Sets(CoP)op
satisfies

the universal property of the classifying topos of the primary doctrine P. □

III.2.2 Classifying topoi for richer syntaxes

What if our doctrine interprets a richer syntax? If T is a theory of a fragment of logic
containing at least the symbols { ∧,> }, the models of T coincide with those primary
doctrine morphisms FT → SubE that preserve the additional categorical structure
that interprets the further necessary logical syntax. Therefore, just as with primary
doctrines and following [73], we define a model of an existential/coherent/etc. doctrine
P in a topos E as a morphism of existential/coherent/etc. doctrines (F, a) : P → SubE.
We denote the resultant categories of models by P-modEx(E)/P-modCoh(E)/etc.

Encoding syntax with Grothendieck topologies. As aforementioned, we can evade
this ad hoc approach to logical syntax, which is unsatisfactory for our desired holistic
treatment, by encoding logical syntax using Grothendieck topologies. Note that, if P
and Q are, say, existential doctrines, then there is a chain of inclusions

CohDoc(P,Q) ⊆ ExDoc(P,Q) ⊆ PrimDoc(P,Q).

This suggests that the progressively more expressive syntaxes can be captured by
a chain of Grothendieck topologies JPrim ⊆ JEx ⊆ JCoh. The following proposition
expresses precisely this fact (the topology JPrim is simply the trivial topology on CoP).

Proposition III.18. Let P : Cop → MSLat and Q : Dop → MSLat be primary doctrines,
and let (F, a) : P→ Q be a morphism of primary doctrines.

(i) If P and Q are existential doctrines, the morphism (F, a) also preserves the existential
structure if and only if the induced functor F o a : C o P→ D oQ sends JEx-covering
sieves in C o P to JEx-covering sieves inD oQ, where JEx is the Grothendieck topology
on C o P (respectively,D oQ) generated by covering families of the form

(d, x) (c,∃gx),
g

for each x ∈ P(d) and d
g−→ c ∈ C (resp., each x ∈ Q(d) and d

g−→ c ∈ D).
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(ii) If P and Q are coherent doctrines, (F, a) is a morphism of coherent doctrines if and only
if the induced functor F o a : C o P → D o Q sends JCoh-covering sieves in C o P to
JCoh-covering sieves inD oQ, where JCoh denotes the Grothendieck topology generated
by covering families of the form

(d, x) (c,∃gx ∨ ∃hy) (e, y).
g h

(iii) If P and Q are Boolean doctrines, (F, a) preserves the Boolean structure if and only if it
is a morphism of coherent doctrines.

Proof. Suppose that P and Q are existential doctrines. Recall that the morphism of
primary doctrines (F, a) : P→ Q is also a morphism of existential doctrines if and only
if, for each x ∈ P(d) and d

g−→ c ∈ C,

ac∃P(g)(x) = ∃Q(F(g))ad(x).

This is precisely equivalent to requiring that the image under the induced functor
F o a : C o P→D oQ of the JEx-covering arrow

(d, x) (c,∃P(g)x)
g

in C o P, i.e. the arrow

(F(d), ad(x)) (F(c), ac∃P(g)(x)),
F(g)

is also JEx-covering in D o Q. This completes the proof of (i). Part (ii) is similarly
demonstrated.

We turn to (iii). In one direction, every morphism of Boolean doctrines is necessar-
ily coherent. Conversely, suppose that (F, a) : P→ Q is a coherent doctrine morphism.
We deduce that, since complements are unique (see [31, §4.13]), and we have that, for
each x ∈ P(c),

ac(x ∧ ¬x) = ac(⊥) = ⊥, ac(x ∨ ¬x) = ac(>) = >,
the lattice homomorphism ac : P(c)→ Q(F(c)) must also preserve negation and hence
is a Boolean algebra homomorphism. Then, using that, for a Boolean doctrine,

∀P( f ) = ¬∃P( f )¬ for each arrow d
f−→ c of C, we conclude that (F, a) also preserves

the interpretation of universal quantification, completing proof of (iii). □

Corollary III.19. (i) Given an existential doctrine P, the topos Sh(C o P, JEx) classifies
the doctrine P.

(ii) Given a coherent/Boolean doctrine P, the topos Sh(C o P, JCoh) classifies the doctrine P.

Proof. Let P : Cop → MSLat be an existential doctrine. By Theorem III.17, there is an
equivalence

Geom(E,Sets(CoP)op
) ' P-modPrim(E),

' RelMorphcart((C, Jtriv,P, Jtriv), (E, Jcan, SubE, J̃can)).
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To obtain the existential models P-modEx(E) of P, by Proposition III.18, it suffices
to restrict the above equivalence to the subcategory of JEx-continuous morphisms of
relative sites as follows

P-modEx(E) RelMorphcart((C, Jtriv,P, JEx), (E, Jcan, SubE, J̃can))

P-modPrim(E) RelMorphcart((C, Jtriv,P, Jtriv), (E, Jcan, SubE, J̃can)).

'

'

Thus, the equivalence Geom(E,Sets(CoP)op
) ' P-modPrim(E) also restricts to an equiv-

alence
Geom(E,Sh(C o P, JEx)) ' P-modEx(E).

Hence, Sh(CoP, JEx) classifies the existential doctrine P. The proof for coherent/Boolean
doctrines is near identical. □

Remark III.20. After defining them in Examples III.10(iv), Heyting doctrines have
been neglected in our subsequent discussion. This is because intuitionistic logic
resists a unified treatment using Grothendieck topologies. Namely, the behaviour
of Heyting implication→ cannot, in general, be captured by an exactness property as
enforced by a Grothendieck topology.

Despite this, if we focus exclusively on set-based models – or more generally
models in Boolean topoi, then it becomes possible encode the structure of intuitionistic
logic using a Grothendieck topology in the sense that, for a Heyting doctrine P, there
exists a Grothendieck topology JHeyt such that a morphism of primary doctrines

(F, a) : P P

is a morphism of Heyting doctrines if and only if the induced functor

F o a : C o P Sets oP

sends JHeyt-covering sieves to J̃can-covering sieves.
Let P be a Heyting doctrine and let (F, a) : P→P be a model of P as an existential

doctrine. The model (F, a) is also a model of P as a Heyting doctrine if and only if, for
each c ∈ C, the lattice homomorphism ac : P(c) → P(F(c)) also preserves the Heyting
implication→. Since P(F(c)) is a Boolean algebra, this is equivalent to requiring that,
for each x, y ∈ P(c),

¬ac(x) ∨ ac(y) = ac(x)→ ac(y) = ac(x→ y).

In particular, as complements in P(F(c)) are unique, ac preserves pseudo-complements
(i.e. Heyting negation − → ⊥) if and only if, for each x ∈ P(c),

ac(¬x ∨ x) = ac(¬x) ∨ ac(x) = > = ac(>)

Thus, we deduce that (F, a) is a Heyting model of P if and only if the induced
functor F o a : C o P → Sets oP is JHeyt-continuous, where JHeyt is the Grothendieck
topology on C o P generated by following three species of covering families:
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(i) firstly, families of the form

(d, x) (c,∃gx ∨ ∃hy) (e, y),
g h

for x ∈ P(d), y ∈ P(e), and arrows d
g−→ c, e h−→ c ∈ C (ensuring that (F, a) preserves

the coherent structure of P);

(ii) secondly, families of the form

(c,¬x) (c,>) (c, x),
idc idc

for all c ∈ C and x ∈ P(c) (ensuring that ac preserves pseudo-complements);

(iii) and finally, families of the form

(c,¬x) (c, x→ y) (c, y),
idc idc

for all c ∈ C and x, y ∈ P(c) (ensuring that ac preserves Heyting implication).

Requiring that a morphism (F, a) : P→P , as primary doctrines, is JHeyt-continuous
is equivalent to requiring that (F, a) factors through the Boolean completion of the Heyt-
ing doctrine P from [46, §2.3]. However, if we wish to consider the semantics of an
intuitionistic theory in non-Boolean topoi, we cannot expect to find a Grothendieck
topology that encodes the semantics of the theory, as evidenced in Example III.21
below.

Example III.21. We give a simple example of a Heyting doctrine whose models in a
pair of topoi cannot simultaneously be captured by the choice of a single Grothendieck
topology. For simplicity, we will consider a Heyting algebra H (i.e. the Heyting doc-
trine for a propositional intuitionistic theory) since a morphism of primary doctrines
H→ SubE is equivalent in datum to a finite meet preserving map H→ SubE(1).

Let 3 denote the 3-element Heyting algebra

>

#

⊥.

Equivalently, 3 is the frame of opens for the Sierpinski space S. As a Heyting algebra,
there is a unique 2-valued model of 3, the homomorphism of Heyting algebras

>

#

⊥

>

⊥,
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which corresponds to the open point of S. It is the unique finite meet preserving map
f : 3→ 2 for which both the sieve { ⊥ ⩽ >, # ⩽ > } on> and the empty sieve ∅ on⊥ are
sent by f to Jcan-covering sieves in 2 (here Jcan denotes the canonical topology on the
frame 2).

Therefore, the category of models of 3 as a Heyting doctrine in the topos of sets
Sets ' Sh(2) can be encoded by a Grothendieck topology J#→> in the sense that there
is an equivalence

1 ' HeytDoc(3, 2) = 3-modHeyt(Sets) ' Geom(Sets,Sh(3, J#→>)),

where J#→> is the Grothendieck topology whose covering sieves are:

(i) J#→>(>) =
{
{ ⊥ ⩽ >, # ⩽ > } , { ⊥ ⩽ >, # ⩽ >,> ⩽ > }

}
,

(ii) J#→>(#) =
{
{ ⊥ ⩽ #, # ⩽ # }

}
,

(iii) and J#→>(⊥) =
{
∅, { ⊥ ⩽ ⊥ }

}
.

This is precisely the topology JHeyt suggested in Remark III.20 above.
However, there are two 3-valued models of 3, the Heyting algebra homomor-

phisms

>

#

⊥

>

#

⊥,

and

>

#

⊥

>

#

⊥

– corresponding to the two open continuous endomorphisms of S. Of these two maps,
only the latter sends J#→>-covering sieves to Jcan-covering sieves in 3. Hence, there is
no longer an equivalence

2 ' HeytDoc(3, 3) = 3-modHeyt(Sh(3)) ; Geom(Sh(3),Sh(3, J#→>)) ' 1.

In other words, we cannot simultaneously describe the models of 3 (as a Heyting
algebra) in arbitrary topoi using a single Grothendieck topology on 3.

III.2.3 The 2-category of doctrinal sites.

Our use of doctrinal sites as a formalism is motivated by a desire to exploit the unified
treatment of doctrines and syntax afforded by assigning a Grothendieck topology. We
now describe the 2-category of doctrinal sites, and observe, as well, that taking the
classifying topos of a doctrinal site is bifunctorial.

Definitions III.22. (i) Given two categories C,D, a functor F : C → D is said to be
flat if it defines a morphism of sites

F : (C, Jtriv) (D, Jtriv)

when both C and D are endowed with the trivial topology. We note that this
generalises the definition of flat as synonymous with left exact we have used
previously – indeed, a flat functor F : C → D preserves any finite limits that
exist in C (see [107, Corollary 4.14] or Remark I.4).
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(ii) We denote the 2-category of doctrinal sites by DocSites.

a) The objects are doctrinal sites.
b) An arrow (P, J) → (Q,K) of DocSites is a morphism of the associated

relative sites, i.e. a pair (F, a) consisting of a flat functor F : C → D and a
natural transformation a : P⇒ Q ◦ Fop such that the induced functor

F o a : (C o P, J) (D oQ,K)

is a morphism of sites.
c) A 2-cell between two morphisms of doctrinal sites

(P, J) (Q,K)

(F,a)

(F′,a′)

α

is a natural transformation α : F⇒ F′ such that

ac(x) ⩽ Q(αc)(a′c(x))

for each object c ∈ C and x ∈ P(c).

Example III.23. Although the definition of a morphism of doctrinal sites may appear
initially unmotivated within the context of standard doctrine theory, we note that, for
many of the examples of doctrines that we have encountered, the definition coincides
with the pre-existing notions we have for morphisms of doctrines.

If P : Cop → MSLat and Q : Dop → MSLat are both primary doctrines, then a
morphism (F, a) : (P, J) → (Q,K) ∈ DocSites of doctrinal sites, where K is a rela-
tively subcanonical topology, is a morphism of primary doctrines in the sense of
Examples III.10(i) such that, in addition,

F o a : (C o P, J) (D oQ,K)

is cover preserving. In particular, the morphisms (P, Jtriv) → (Q, Jtriv) of DocSites
are precisely morphisms of primary doctrines. Thus, there exists a full and faithful
2-embedding

PrimDoc DocSites

that sends a primary doctrine P : Cop →MSLat to the doctrinal site (P, Jtriv).
Similarly, by Proposition III.18, there exist full and faithful embeddings of 2-

subcategories
ExDoc

CohDoc DocSites

BoolDoc
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which send an existential (respectively, coherent/Boolean) doctrine

P : Cop MSLat

to the doctrinal site (P, JEx) (respectively, (P, JCoh)).

Definition III.24. For a doctrinal site (P, J), we will call the relative topos

Sh(C o P, J) SetsC
op

the classifying topos of (P, J).

This is the classifying topos of a doctrinal site (P, J) in the sense that, for any topos
E, by Corollary I.25 and in a similar fashion to Theorem III.17 and Corollary III.19,
there is an equivalence

Geom(E,Sh(C o P, J)) ' Topos


E

E

,

Sh(C o P,K)

Sh(C, J)

CπP

 ,

' RelMorph


(C o P,K)

(C, J)

πP ,

(E o SubE(−), J̃can)

(E, Jcan)

πE

 ,
' DocSites((P, J), (SubE, J̃can)).

Since doctrinal sites are examples of relative sites, morphisms of doctrinal sites are
morphisms of relative sites (see Definition I.18), and the 2-cells of DocSites induce
2-cells between morphisms of relative sites Remark III.2, there is an evident bifunctor

DocSites RelTopos.

The map on objects RelTopos → Topos that sends a relative topos F → E to the
domain topos F is also bifunctorial, and the composite

DocSites RelTopos Topos

is the bifunctor that sends a doctrinal site to its classifying topos.
This completes the last process Doctrinal sites→ Topoi in schematic (III.i). Since

the models of a theoryT, in a suitable syntax, coincide with the models of the doctrine
FT, the triangle of processes

Theories
+ syntax

Doctrinal
sites

Topoi

T 7→(FT,K)

T 7→ET (P,J)7→Sh(CoP,J)

commutes in that Sh(Conop
N o FT,K) ' ET, where K is the appropriate Grothendieck

topology on Conop
N o FT corresponding to the underlying syntax of the theory T.
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Sobrifying the desired models

Definition III.25. Following the above discussion, the following are equivalent:

(i) The syntactic rules of a theory concern exactness properties, by which we mean
that the syntactic rules can be encoded by a Grothendieck topology as above;

(ii) The theory has a classifying topos.

Since such a theory is therefore Morita equivalent to a geometric theory, we might call
such theories geometrizable.

Even when a theory is not geometrizable, there is a ‘best approximation’ by a
geometrizable theory that generalises the notion of the sobrification of the space of
models of a propositional theory.

Sobrifying the space of models of a propositional theory. Let T be a propositional
theory over a signature Σ, and let T-mod(2) denote the set of 2-valued models of T.
Each formula ϕ over Σ defines a subset of T-mod(2) –

~ϕ � =
{

M ∈ T-mod(2)
∣∣∣ M ⊨ ϕ }

,

the set of models that satisfy ϕ, otherwise called the interpretation of ϕ. Using set-
theoretic operations, the definable subsets can be manipulated in a manner consistent
with the logical operations of intuitionistic logic, e.g. the interpretation of the con-
junction of two formulae is expressed by the intersection as in the diagram

~ϕ � ~ψ �

~ϕ�∩~ψ�

T-mod(2).

With these subsets as the basic opens, it is possible to generate a topology on the set
T-mod(2). We call the resultant topological space the space of models.

The frame of opensO(T-mod(2)) is the Lindenbaum-Tarski algebra for a geometric
propositional theory T′. Hence, if T-mod(2) is a sober space, then

T-mod(2) ' Loc(2,O(T-mod(2))) ' T′-mod(2),

i.e. if T-mod(2) is sober, then T is geometrizable. Even when T is not geometrizable,
the sobrification of the space T-mod(2) evidently yields the ‘best approximation’ of T
by a geometrizable theory.

Example III.26 (Cofinite naturals). What would an ungeometrizable propositional the-
ory look like? Let Ncof denote the space of the natural numbers endowed with the
cofinite topology. The frame of opens O(Ncof) is the Lindenbaum-Tarski algebra for
the following geometric propositional theory TNcof .
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(i) For each natural number n ∈N, there is a basic proposition [x , n].

(ii) The axioms of TNcof consist of the sequents

> ` [x , n] ∨ [x , n′]

for each pair n,n′ ∈Nwith n , n′.

For each n ∈N, there is a 2-valued model pn of TNcof that evaluates basic propositions
as

pn([x , n′]) =

> if n , n′,
⊥ if n = n′.

But there is a further 2-valued model p∞ ‘at infinity’ where p∞([x , n]) = > for all
n ∈N. In other words, there is an extra point in the sobrification PtO(Ncof) ofNcof.

The only model of TNcof that satisfies the infinite conjunction
∧

n∈N[x , n] is p∞.
Therefore, the models for the theory

T′ = TNcof ∪
∧

n∈N
[x , n] ` ⊥


correspond to the points of the inebriated1 spaceNcof ⊆ PtO(Ncof).

However, we cannot simply consider T′ as a theory over the syntax of infinitary
propositional logic since then we would introduce new definable subsets to the space
of models T′-mod(Sets) ' N, and therefore change the topology. Instead, we must
make the unnatural restriction that the only well-formed formula involving an infinite
conjunction is the formula

∧
n∈N[x , n].

The desired models of a primary doctrine. The same intuition observed in the
propositional case extends to the predicate setting. Let P : Cop → PreOrd be a primary
doctrine representing a predicate theory that interprets the symbols { ∧,> }. By the
desired models of P, we mean a specified subcategory

P-mod(Sets) ⊆ PrimDoc(P,P).

The category P-mod(Sets) represents those set-based models of P as a primary doctrine
that also preserve unspecified further syntactic structure. We might be tempted
to make natural assumptions about P-mod(Sets), such as that it ought to be a full
subcategory or replete under isomorphisms, but these will prove unnecessary.

The pair (P,P-mod(Sets)) of a doctrine and a category of its desired set-based
models is said to be geometrizable if P-mod(Sets) is of the form

P-mod(Sets) ' DocSites((P, J), (P , J̃can)) ⊆ PrimDoc(P,P)

for some Grothendieck topology J on C o P. In other words, the syntactic rules that
specify our desired models P-mod(Sets) can be encoded by a Grothendieck topology.
When this is the case, the doctrine P has a classifying topos (for set-based models)
since, just as in Corollary III.19, there is an equivalence

P-mod(Sets) ' DocSites((P, J), (P , J̃can)) ' Geom(Sets,Sh(C o P, J)).
1That is to say, not sober.
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Evidently, a ‘best approximation’ to P-mod(Sets) by a category of the form

DocSites((P, J), (P , J̃can))

can be obtained by setting J as the Grothendieck topology where a sieve{
(ci, xi)

fi−→ (d, y)
∣∣∣∣∣ i ∈ I

}
in C o P is J-covering if and only if, for every desired model (F, a) ∈ P-mod(Sets), the
image {

aci(xi)
F( fi)|aci (xi)−−−−−−→ ad(y)

∣∣∣∣∣ i ∈ I
}

is jointly surjective (i.e. F o a sends J-covers to J̃can-covers).
This is evidently the ‘best approximation’ of the pair (P,P-mod(Sets)) by a ge-

ometrizable pair (P,DocSites((P, J), (P , J̃can))) in that it describes an adjunction

DesiredModels(P) Geomtrizable(P)a

where DesiredModels(P) is the poset of subcategories of PrimDoc(P,P) ordered by
inclusion, and Geomtrizable(P) is the subposet of geometrizable categories of desired
models.

III.3 Syntactic categories
The standard textbook accounts of classifying topos theory [87], [22, §2], [63, §D3],
[79, §X] construct the topos ET using the syntactic category CT of a theory T. In order
to express the syntactic category construction, the theory T must exist in a fragment
of first-order logic that interprets regular logic (i.e. the fragment whose permissible
symbols are { ∧,>,∃,= }). Thus, as previously emphasised, our framework of doctrinal
sites enables the construction of classifying topoi for theories from weaker logical
syntaxes.

When the necessary regular structure is present, the two approaches, i.e. using
doctrines and syntactic categories to represent classifying topoi, evidently yield equiv-
alent topoi by the universal property of the classifying topos. In this section, we will
compare the two approaches in more detail.

Overview. We proceed as follows.

− We first recall the necessary background on existential sites from [24], in which
language we phrase our development.

− An existential doctrinal site whose underlying doctrine is also a primary doctrine
has enough expressive power to construct a ‘syntactic category’. We recall this
construction in Section III.3.2, as well as the pseudo-adjunction Syn a Sub(−) be-
tween the syntactic category construction and taking the doctrine of subobjects.

− In Section III.3.3, the pseudo-adjunction Syn a Sub(−) is extended to give an
pseudo-adjunction between existential doctrinal sites and regular sites.
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− The two topoi of sheaves we can now associate with an existential doctrinal
site – Sh(C o P, Jo) and Sh(Syn(P), JSyn) – are compared in Section III.3.4. For
an existential doctrine P, we exhibit a functor ζP : C o P → Syn(P) that yields a
dense morphism of sites

ζP : (C o P, Jo) (Syn(P), JSyn)

and hence an equivalence Sh(C o P, Jo) ' Sh(Syn(P), JSyn).

III.3.1 Existential doctrinal sites

First, we recall some definitions from the theory of existential fibred sites [24, §5]. Note
that the exposition in [24] exists in the more general framework of indexed categories
F : Cop → CAT, whereas we have elected to restrict to indexed preorders (or doctrines
in our language).

Definition III.27 (Definition 5.1 [24]). Let P : Cop → PreOrd be a doctrine such that,

for each arrow d
f−→ c ∈ C, the map P( f ) : P(c) → P(d) has a left adjoint ∃ f . Suppose

we are also given, for each c ∈ C, a Grothendieck topology Jc on the preorder P(c) for
which ∃ f : P(c)→ P(d) sends Jc-covers to Jd-covers.

(i) We say that the pair (P, (Jc)c∈C) satisfies the relative Frobenius condition if for each
sieve S on the object (d, y) ∈ C o P for which the sieve{

∃ f z ⩽ y
∣∣∣∣∣ (c, z)

f−→ (d, y) ∈ S
}

is Jd-covering then the sieve{
∃ f z ⩽ x

∣∣∣∣∣ (c, z)
f−→ (d, y) ∈ S, z ⩽ P( f )(x)

}
is Jd-covering too, for any x ∈ P(d) with x ⩽ y.

(ii) We say that the pair (P, (Jc)c∈C) satisfies the relative Beck-Chevalley condition if for
each sieve S on (d, y) ∈ C o P for which the sieve{

∃ f z ⩽ y
∣∣∣∣∣ (c, z)

f−→ (d, y) ∈ S
}

is Jd-covering, given an arrow e h−→ d ∈ C, the sieve{
∃gz ⩽ P(h)(y)

∣∣∣∣∣ (c, z)
f−→ (d, y) ∈ S, h ◦ g = f

}
is Jd-covering too.

The pair (P, (Jc)c∈C) is said to be a existential doctrinal site if the relative Frobenius and
relative Beck-Chevalley conditions are both satisfied.
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Let P : Cop → PreOrd be a doctrine such that each fibre P(c) has a Grothendieck

topology Jc and, for each arrow d
f−→ c ∈ C, the map P( f ) : P(c) → P(d) has a cover-

preserving left adjoint ∃ f . In light of Proposition III.18, we would want to define a
Grothendieck topology Jo on the category C o P for which a sieve{

(ci, xi)
fi−→ (d, y)

∣∣∣∣∣ i ∈ I
}

is Jo-covering if and only if {
(d,∃ fixi)

idd−−→ (d, y)
∣∣∣∣ i ∈ I

}
is Jd-covering. Such an assignment of sieves to objects is reflexive and transitive, but
not necessarily stable. We observe that the stability of Jo under arrows of the form

(d, x)
idd−−→ (d, y) (respectively, (e,P(h)(y)) h−→ (d, y)) is precisely given by the relative

Frobenius condition (resp., the relative Beck-Chevalley condition), and since any

arrow (e, x) h−→ (d, y) ∈ C o P can be factored as

(e, x) (e,P(h)(y)) (d, y)
ide h

we obtain the following proposition.

Proposition III.28 (Theorem 5.1 [24]). For the doctrine P : Cop → PreOrd above, Jo defines
a Grothendieck topology on the category C o P if and only if the pair (P, (Jc)c∈C) satisfies both
the relative Frobenius and relative Beck-Chevalley conditions.

Definition III.29 (Theorem 5.1 [24]). Let (P, (Jc)c∈C) be an existential doctrinal site. We
call the Grothendieck topology Jo on C o P, where a sieve{

(ci, xi)
fi−→ (d, y)

∣∣∣∣∣ i ∈ I
}

is Jo-covering if and only if {
(d,∃ fixi)

idd−−→ (d, y)
∣∣∣∣ i ∈ I

}
is Jd-covering, the existential topology for the pair (P, (Jc)c∈C).

The relative Frobenius and relative Beck-Chevalley conditions are related to the
usual Frobenius and Beck-Chevalley conditions by the following proposition.

Proposition III.30 (Proposition 5.3 [24]). Let (P, (Jc)c∈C) be an existential doctrinal site.

(i) If P(c) has all finite meets for each c ∈ C, then the pair (P, (Jc)c∈C) satisfies the relative
Frobenius condition if and only if P satisfies the Frobenius condition - i.e.

∃ f z ∧ x = ∃ f (z ∧ P( f )(x)).
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(ii) If C has all pullbacks, then the pair (P, (Jc)c∈C) satisfies the relative Beck-Chevalley
condition if and only if P satisfies the Beck-Chevalley condition - i.e. for each pullback
square

c ×e d d

c e
k

g

h
f

of C, the square

P(c ×e d) P(d)

P(c) P(e)

∃g

∃ f

P(k) P(h)

commutes.

Hence we note that, for any existential doctrinal site (P, (Jc)c∈C), if P is a primary
doctrine, then P is automatically an existential doctrine, and the existential topology
Jo contains the topology JEx. Such an existential doctrinal site should be understood
as a doctrine which interprets at least regular logic, if not further, richer syntax.

Examples III.31. Let P : Cop → PreOrd be a doctrine such that, for each d
f−→ c ∈ C, the

map P( f ) : P(c) → P(d) has a left adjoint ∃ f . Of particular interest is the case where
the Grothendieck topology Jc assigned to each fibre P(c) of an existential doctrinal
site (P, (Jc)c∈C) is subcanonical, i.e. a family { xi ⩽ y | i ∈ I } of inequalities in P(c) is
Jc-covering only if the join

∨
i∈I xi exists and y ⩽

∨
i∈I xi (if P(c) is a poset, y =

∨
i∈I xi).

For each arrow d
f−→ c of C, being a left adjoint, ∃ f preserves all joins that exist in

P(d) and so ∃ f is automatically cover-preserving if Jd and Jc are both subcanonical.
Consideration of certain cases will allow us to generalise existential doctrines and
coherent doctrines to non-cartesian base categories, as mentioned in Remark III.11.

(i) There exists an existential doctrinal site (P, (Jtriv)c∈C), where each fibre P(c) has
been given the trivial topology Jtriv, if and only if:

a) (relative Frobenius condition) for each arrow d
f−→ c of C, x, y ∈ P(c) with x ⩽ y

and z ∈ P(d) such that
∃ f z ⩽ y and y ⩽ ∃ f z,

there exists some w ∈ P(d) with w ⩽ z such that

∃ f w ⩽ x and x ⩽ ∃ f w;

b) (relative Beck-Chevalley condition) for each pair of arrows

e

d c

h
f

of C, y ∈ P(c) and z ∈ P(d) such that

∃ f z ⩽ y and y ⩽ ∃ f z,
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there exists a commutative square

e′ e

d c

g

k h
f

in C such that
∃gP(k)(z) ⩽ x and x ⩽ ∃gP(k)(z).

Note that if P : Cop →MSLat is an existential doctrine, (P, (Jtriv)c∈C) is an existen-
tial doctrinal site.

We denote by JEx the existential topology on CoP induced by the existential
doctrinal site (P, (Jtriv)c∈C), i.e. the Grothendieck topology generated by covering
families of the form

(d, x) (c,∃gx),
g

for x ∈ P(d) and d
g−→ c ∈ C, in analogy with Proposition III.18(i). We de-

fine RelExDoc, the 2-category of relative existential doctrines, as the 1-full 2-
subcategory of DocSites on objects of the form (P, JEx), where (P, (Jtriv)c∈C) is an
existential doctrinal site. The category ExDoc of existential doctrines is thus
now a 1-full 2-subcategory of RelExDoc.

(ii) Suppose that we can endow each fibre P(c) with the Grothendieck topology JCoh,
where a sieve S on y ∈ P(c) is JCoh-covering precisely if S contains a finite family

{ xi ⩽ y | i ∈ I } ⊆ S

such that y ⩽
∨

i∈I xi. If P(c) is a lattice, JCoh defines a Grothendieck topology on
P(c) if and only if P(c) is a distributive lattice. The pair (P, (JCoh)c∈C) defines an
existential doctrinal site if and only if:

a) (relative Frobenius condition) for each pair x, y ∈ P(c) with x ⩽ y, and each

finite collection of pairs di
fi−→ c and z ∈ P(di), indexed by i ∈ I, such that∨

i∈I
∃ fizi ⩽ y and y ⩽

∨
i∈I
∃ fizi,

for each i ∈ I there exists some wi ∈ P(di) with wi ⩽ zi such that∨
i∈I
∃ fiwi ⩽ x and x ⩽

∨
i∈I
∃ fiwi;

b) (relative Beck-Chevalley condition) for each arrow e h−→ c of C, y ∈ P(c), and

each finite collection of pairs di
fi−→ c and z ∈ P(di), indexed by i ∈ I, such

that ∨
i∈I
∃ fizi ⩽ y and y ⩽

∨
i∈I
∃ fizi,
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for each i ∈ I, there exists a finite collection of pairs of arrows g j and k j,
indexed by j ∈ Ji, such that there is a commutative square

e′j e

d c

g j

k j h

f

of C, and secondly∨
i∈I

∨
j∈Ji

∃g jP(k j)(zi) ⩽ x and x ⩽
∨
i∈I

∨
j∈Ji

∃g jP(k j)(zi).

Just as above, by analogy with Proposition III.18(ii), we denote the existential
topology on C o P induced by the existential doctrinal site (P, (JCoh)c∈C) by JCoh,
i.e. the Grothendieck topology generated by covering families of the form

(d, x) (c,∃gx ∨ ∃hy) (e, y),
g h

for x ∈ P(d), y ∈ P(d), and arrows d
g−→ c, e h−→ c ∈ C. We call the resultant doctrinal

site (P, JCoh) a relative coherent doctrine and denote the 1-full 2-subcategory of
DocSites on relative coherent doctrines by RelCohDoc. We once again have
that CohDoc is a 1-full 2-subcategory of RelCohDoc.

III.3.2 Syntactic categories

Recall that each cartesian category C yields a primary doctrine via the doctrine of
subobjects SubC : Cop → MSLat. Taking the doctrine of subobjects of a cartesian
category naturally defines a 2-functor

Sub(−) : Cart PrimDoc.

(i) Each cartesian functor F : C → D restricts to a meet-semilattice homomorphism
aF

c : SubC(c)→ SubD(F(c)) natural in c ∈ C. Hence, the pair (F, aF) defines a
morphism of primary doctrines (F, aF) : SubC → SubD.

(ii) Each natural transformation α : F⇒ F′ defines a 2-cell

SubC SubD

(F,aF)

(F′,aF′ )

α
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of PrimDoc. The required inequality aF(x) ⩽ SubC(αc)(aF′(x)), for each c ∈ C and
each x ∈ SubC(c), follows by the universal property of the pullback

F(x) SubC(αc)(F′(x)) F′(x)

F(c) F′(c).

αx

⌟

αc

Moreover, the 2-functor Sub(−) can easily be checked to be full and faithful on 1-cells.
From a doctrine P : Cop → PreOrd with sufficient structure, it is possible to con-

struct a syntactic category Syn(P). This construction is converse to taking the doctrine
of subobjects in the sense that Syn(SubC) ' C for a certain subclass of cartesian
categories, namely regular categories. It is only possible to construct the syntactic
category of a doctrine P when P is rich enough to interpret provably functional relations.
These are predicates that, according to the internal logic of a doctrine (see [55, §4.3]
or below), encode the graph of a function between two other predicates. For that, we
need at least regular logic. In this subsection we review material found in [98], [99]
and [100] regarding the syntactic category construction. Our exposition is similar to
the explanation found in [30, §3].

The internal language of a doctrine. As explicated in [55, §4.3], we can transliterate
the structure of an existential doctrine into a more familiar logical language.

Let P : Cop →MSLat be an existential doctrine.

(i) If U ∈ P(c1 × . . . × cn), we will write U(x1, . . . , xn).

(ii) For U,V ∈ P(c), we will write U(x) ∧ V(x) instead of (U ∧ V)(x).

(iii) For an arrow d
f−→ c ∈ C and U ∈ P(c), we will write U( f (x)) in place of P( f )(U).

(iv) Given objects c, d ∈ C and W ∈ P(c × d), we will write ∃y : d W(x, y) in place of
∃P(pr2)W, where pr2 is the projection

c × d d.
pr2

(v) Given U ∈ P(c), we will write U(x1) ∧ x1 = x2 in place of ∃∆cU, where ∆c is the
diagonal

c c × c.
∆c

(vi) More generally, for any arrow d
f−→ c and V ∈ P(d), we will write

∃y : d V(y) ∧ f (y) = x

for ∃P( f )V.

(vii) Finally, given U,V ∈ P(c) with U ⩽ V, we will write

U(x) `x:c V(x).
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Inequalities in the fibres of a doctrine are thus lent a logical intuition when rewritten as
sequents in this manner. For example, is it easier to intuit the validity of the equation

∃∆c×d>c×d = P(pr1,3)(∃∆c>c) ∧ P(pr2,4)(∃∆d>d),

where pr1,3 and pr2,4 are the projections

c × d × c × d

c × c d × d,

pr1,3pr2,4

or the validity of the equivalence (x, y) = (x′, y′) a`x,x′:c; y,y′:d x = x′ ∧ y = y′? (See [78]
for an entirely categorical proof of the former).

In fact, this transliteration can be formalised into a sequent calculus, as is done in
[55, §4.3], in which the symbols used in the transcription can be manipulated as one
would expect them to be, and the calculus has a complete and sound interpretation
in existential doctrines – meaning that a sequent can be proven in the calculus if and
only if the corresponding inequality is satisfied in every existential doctrine.

In this section, we will at times use the internal language of an existential doctrine
to intuit results whose explicit demonstrations would be tangentially tedious to our
exposition. Elementary proofs, without the use of the internal language of a doctrine,
are provided in Appendix A.

Building a syntactic category. It seems superfluous to recall that, given two subsets
A ⊆ X and B ⊆ Y, the graph of a function f : A→ B consists of a subset f ⊆ X×Y such
that

(x, y) ∈ f =⇒ x ∈ A, y ∈ B,
(x, y), (x, y′) ∈ f =⇒ y = y′,

x ∈ A =⇒ ∃ y ∈ B (x, y) ∈ f .

The conceit behind provably functional relations is to translate these implications into
the internal language of a doctrine.

Definition III.32. Let P : Cop → MSLat be an existential doctrine. The syntactic cate-
gory Syn(P) of P is the category:

(i) whose objects are pairs (c,U) where c is an object of C and U ∈ P(c),

(ii) and each arrow (c,U) → (d,V) is given by some W ∈ P(c × d) that defines a
provably functional relation, i.e. the sequents

W(x, y) `x:c; y:d U(x) ∧ V(y),
W(x, y) ∧W(x, y′) `x:c; y,y′:d y = y′,

U(x) `x:c ∃y : d W(x, y)

are derivable in the internal language of P, or more concretely the inequalities

W ⩽ P(pr1)(U) ∧ P(pr2)(V),
P(pr1,2)(W) ∧ P(pr1,3)(W) ⩽ P(pr2,3)∃∆d>d,

U ⩽ ∃pr1
W
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are satisfied, where pr1 and pr2 are the projections

c c × d d,
pr1 pr2

pr1,2, pr1,3 and pr2,3 are the projections

c × d × d

c × d c × d d × d,

pr1,3

pr1,2

pr2,3

and ∆d : d→ d × d is the diagonal.

The identity morphism on (c,U) is given by ∃∆cU ∈ P(c × c), while the composite of
two arrows

(c,U) (d,V) (e,V′)W W′

is given by the composite of W and W′ as relations, i.e.

∃pr1,3

(
P(pr1,2)(W) ∧ P(pr2,3)(W′)

)
,

which is ∃y : d W(x, y) ∧W′(y, z) in the internal language.

Remark III.33. We have presented the syntactic category construction for an existen-
tial doctrine. This is analogous to the category of maps construction for an allegory (see
[39, §2.132]). Indeed, for each existential doctrine P, the two constructions coincide
in that Syn(P) ' MAP(A(P)), where A(P) is the allegory of relations on P, i.e. the
allegory whose objects are elements U ∈ P(c×d) (note that P must be a regular doctrine
in order to express the relational composite of U ∈ P(c × d) and V ∈ P(d × e)).

Example III.34. LetT be a theory in a fragment of first order logic that contains regular
logic, i.e. the symbols { ∧,>,∃ } (see [63, Defintion D1.1.3]). The syntactic category
Syn(FT) of the existential doctrine FT : ConN →MSLat, by definition, coincides with
the usual syntactic category CT for T as described in [63, §D1.4].

The syntax-subobject adjunction. Taking the syntactic category of an existential
doctrine yields a left inverse to the restriction of the 2-functor Sub(−) : Cart→ PrimDoc
to a suitable 2-subcategory – the 2-category of regular categories.

Definition III.35 (§A1.3 [63]). By Reg, we denote the 2-category:

(i) whose objects are regular categories – categories with finite limits and image
factorisations that are stable under pullback (we will also require that a regular
category is well-powered – i.e. each object has a small set of subobjects),

(ii) whose 1-cells are regular functors (also called exact functors in [6] and [28]) – finite
limit preserving functors that also preserve regular epimorphisms,

(iii) and whose 2-cells are natural transformations between regular functors.
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For each regular category C, the subobject doctrine SubC : Cop → PreOrd is an
existential doctrine (see [55, Theorem 4.4.4]). The left adjoint to SubC( f ), for an arrow
f ofC, is given by the existence of images (see [63, Lemma A1.3.1]). Thus, the subobject
2-functor Sub(−) : Cart→ PrimDoc from above restricts to a 2-functor

Sub(−) : Reg ExDoc.

The syntactic category construction also induces a 2-functor Syn : ExDoc→ Reg.
For an existential doctrine P, the category Syn(P) is regular: it has finite limits and the
image factorisation of an arrow (c,U) W−→ (d,V) ∈ Syn(P) is given by

(c,U) (d,∃pr2
W) (d,V)W

(see [98, §2.4 & 2.5]). A morphism of existential doctrines (F, a) : P → Q preserves
the interpretation of regular logic, and therefore (F, a) induces a regular functor
Syn(F, a) : Syn(P)→ Syn(Q).

The two functors form a pseudo-adjunction

ExDoc Reg.
Sub(−)

Syn

a (III.ii)

By pseudo-adjunction we mean that, rather than there being a natural isomorphism of
hom-categories, there is instead only a natural equivalence. Since Sub(−) is full and
faithful on 1-cells, the counit is a natural equivalence of categories Syn(SubC) ' C
for each C ∈ Reg. The pseudo-adjunction (III.ii) can be deduced from the analogous
pseudoadjunction found in [99, Proposition 1.3] and [100, Theorem 3.6].

III.3.3 Syntactic sites

We desire a version of the pseudo-adjunction (III.ii) that also incorporates Grothendieck
topologies. To that end, we introduce the 2-category of regular sites and a particular 2-
category of existential doctrinal sites which we denote by ExDocSites. We then extend
the 2-functors Syn : ExDoc → Reg and Sub(−) : Reg → ExDoc to these 2-categories
by showing that for each existential doctrinal site (P, (Jc)c∈C) ∈ ExDocSites (respec-
tively, regular site (C,K)) there exists a natural choice of Grothendieck topology JSyn

on Syn(P) making (Syn(P), JSyn) a regular site (resp., a natural choice of Grothendieck
topology K|SubC(c) on SubC(c), for each c ∈ C, making (SubC, (K|SubC(c))c∈C) an existential
site). Finally, we demonstrate that these extended 2-functors are pseudo-adjoint.

Definition III.36. (i) Let RegSites be the 2-category whose objects are regular sites,
which are sites (C,K) where C is a regular category and K is a Grothendieck
topology on C such that the sieve generated by each regular epimorphism c↠ d
is a K-cover. The 1-cells of RegSites are cover preserving regular functors and
the 2-cells are all natural transformations between these.

(ii) By ExDocSites we denote the the 1-full 2-subcategory of DocSites on objects
of the form (P, Jo) for an existential doctrinal site (P, (Jc)c∈C) whose underlying
doctrine P is also a primary doctrine (and therefore, by Proposition III.30, an
existential doctrine).
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Remark III.37. Let (C,K) ∈ RegSites be a regular site. As every morphism d
f−→ c ∈ C

can be factored as a regular epimorphism followed by a monomorphism

d f (d) c,

the Grothendieck topology K on C is entirely determined by which families of subob-
jects { ei ↣ c | i ∈ I } are K-covering for each c ∈ C.

For a regular site (C,K), by endowing each subobject lattice SubC(c) with the
Grothendieck topology K|SubC(c), we obtain an existential site (C, (K|SubC(c))c∈C). We note
that the left adjoint

∃ f : SubC(c) SubC(d),

for each arrow c
f−→ d ∈ C, preserves covers. If a family of arrows { ai ↣ b | i ∈ I } in

SubC(c) is K-covering then, using the diagram

ai b f (ai) f (b)

c d,
f

the fact that ai ↠ f (ai) and b↠ f (b) are both K-covers, and the fact that K satisfies the
transitivity condition, we observe that

{
f (ai)↣ f (b)

∣∣∣ i ∈ I
}

is a K-covering family too.
We denote the resulting topology on C o SubC by KSub. It is easily checked that,

given regular sites (C,K) and (D,K′) and a regular functor F : C → D, F sends K-covers
to K′-covers if and only if the induced morphism of doctrines (F, aF) : SubC → SubD
sends KSub-covers to K′Sub-covers. Thus, we obtain a 2-functor

Sub(−) : RegSites ExDocSites

which, moreover, is full and faithful on 1-cells since Sub(−) : Reg→ ExDoc is full and
faithful on 1-cells.

Conversely, for each existential site (P, (Jc)c∈C) ∈ ExDocSites, we can endow the
syntactic site Syn(P) with the Grothendieck topology JSyn where a family of arrows{

(ci,Ui)
Wi−→ (d,V)

∣∣∣∣ i ∈ I
}

is JSyn-covering if and only if the family

{ ∃pr2
Wi ⩽ V | i ∈ I }

is Jd-covering. Recall that the image factorisation of an arrow (c,U) W−→ (d,V) ∈ Syn(P)
is given by

(c,U) (d,∃pr2
W) (d,V),W
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whose left factor (c,U) W−→ (d,∃pr2
W) is trivially a JSyn-cover. Thus, regular epimor-

phisms are JSyn-covers and so (Syn(P), JSyn) is a regular site. It is equally trivially
observed that if (F, a) : (P, Jo)→ (Q, J′o) is a morphism of ExDocSites then the induced
functor Syn(F, a) : Syn(P)→ Syn(Q) sends JSyn-covers to J′Syn-covers, and hence there
is a functor

Syn : ExDocSites RegSites.

Proposition III.38. The pseudo-adjunction (III.ii) extends to give a second pseudo-adjunction
and a morphism of adjunctions

ExDoc ExDocSites

Reg RegSites,

Syn Sub(−)

U′

U

Sub(−)Syn aa

i.e. Syn ◦ U = U′ ◦ Syn and Sub(−) ◦ U′ = U ◦ Sub(−), where U and U′ are the forgetful
2-functors.

Proof. For each pair of a regular site (C,K) ∈ RegSites and an existential doctrinal site
(P, (Jc)c∈C), the necessary equivalence

RegSites((Syn(P), JSyn), (C,K)) ' ExDocSites((P, Jo), (SubC,KSub)) (III.iii)

is easily obtained by restricting the equivalence Reg(Syn(P),C) ' ExDoc(P, SubC) to
those regular functors Syn(P) → C (respectively, morphisms of existential doctrines
P→ SubC) which are cover preserving (resp., for which the induced functorsDoP→
C o SubC are cover preserving). □

III.3.4 Syntactic sites versus doctrinal sites

For each existential doctrinal site (P, (Jc)c∈C) ∈ ExDocSites, there are now two choices,
Sh(C o P, Jo) and Sh(Syn(P), JSyn), for the topoi we can associate with the doctrinal
site. In particular, if T is a theory in a fragment of logic that contains regular logic,
then there are two choices of site for the classifying topos of T – one built from the
doctrine associated to T, and the other built from the syntactic category.

However, already by the natural equivalence (III.iii), we can deduce a natural
equivalence

Geom(E,Sh(Syn(P), JSyn)) ' RegSites((Syn(P), JSyn), (E, Jcan)),
' ExDocSites((P, Jo), (SubE,KSubE)),
' Geom(E,Sh(C o P, Jo))

for each topos E. Hence, there is an equivalence of topoi

Sh(C o P, Jo) ' Sh(Syn(P), JSyn), (III.iv)

and so it is equivalent, at the level of topos theory, to represent a theory using a
doctrinal site or a syntactic site.



III.3. SYNTACTIC CATEGORIES 105

Despite this, it is instructive to see where this equivalence comes from. For each
(P, (Jc)c∈C) ∈ ExDocSites, we will construct a functor ζP : C o P → Syn(P) and then
demonstrate that

ζP : (C o P, Jo)→ (Syn(P), JSyn)

is a dense morphism of sites, from which we deduce the equivalence (III.iv) by
Lemma I.8.

Since C o P and Syn(P) share the same objects, it is obvious how we would wish
ζP to act on objects. Our first task therefore is to conjure a provably functional relation

from an arrow (c,U)
f−→ (d,V) of C o P.

Lemma III.39. Let P : Cop →MSLat be an existential doctrine. For an arrow (c,U)
f−→ (d,V)

of C o P, i.e. whenever U ⩽ P( f )(V), the proposition

∃idc× f U ∈ P(c × d)

is a provably functional relation (c,U)→ (d,V) ∈ Syn(P).

In the internal language of P, ∃idc× f U is written as U(x) ∧ f (x) = y, while the
inequality U ⩽ P( f )(V) becomes U(x) `x:c V( f (x)). Written this way, the sequents

U(x) ∧ f (x) = y `x:c; y:d V(y),
U(x) ∧ f (x) = y ∧U(x) ∧ f (x) = y′ `x:c; y,y′:d y = y′,

U(x) ∧ f (x) = y `x:c; y:d ∃y′ : d U(x) ∧ f (x) = y′

required for ∃idc× f U to be provably functional are evidently satisfied.
The assignments

(c,U) 7→ (c,U),

(c,U)
f−→ (d,V) 7→ (c,U)

∃idc× f U
−−−−−→ (d,V)

define a functor ζP : C o P → Syn(P). By definition, ζP preserves identities. That ζP

preserves the composite

(c,U) (d,V) (e,W)
f g

is expressed by the equivalence

∃y : d (U(x) ∧ f (x) = y ∧ V(y) ∧ g(y) = z) a`x:c,z:e U(x) ∧ g ◦ f (x) = z

in the internal language of the doctrine P. Elementary demonstrations of Lemma III.39
and the functoriality of ζP are given in Appendix A.

Intuitively, the functor ζP : C o P → Syn(P) is ‘adjoining those arrows that ought
to exist’ (i.e. those for which a provably functional relation exists) and ‘identifying
those arrows that ought to be the same’ (i.e. those for which the internal language of
P proves an identity of arrows).

Proposition III.40. Let (P, (Jc)c∈C) be an existential doctrinal site. The functor ζP defines a
dense morphism of sites

ζP : (C o P, Jo) (Syn(P), JSyn),

and hence there is an equivalence of topoi Sh(C o P, Jo) ' Sh(Syn(P), JSyn).
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Proof. We check the four conditions of Definition I.6 one by one.

(i) The first condition, Definition I.6(i), is immediate once we recall that a family of
morphisms {

(ci,Ui)
fi−→ (d,V)

∣∣∣∣∣ i ∈ I
}

in C o P

is Jo-covering if and only if{
∃ fiUi = ∃pr2

∃idci× fiUi → V
∣∣∣ i ∈ I

}
in P(d)

is Jd-covering, if and only if the family of morphisms{
(ci,Ui)

∃idci× fi Ui

−−−−−−→ (d,V)
∣∣∣∣∣ i ∈ I

}
in Syn(P)

is JSyn-covering.

(ii) Condition Definition I.6(ii) follows since the functor ζP is surjective on objects.

(iii) Let (c,U) W−→ (d,V) be a provably functional relation, i.e. an arrow of Syn(P). As
W ⩽ P(pr1)(U), there is an arrow (c × d,W)

pr1−−→ (c,U) of C o P. Consider the
diagram

(c × d,W) (c,U) (d,V)
ζP(pr1)=∃idc×d×pr1 W W (III.v)

in Syn(P). To satisfy condition Definition I.6(iii), it suffices to show that the

arrow (c×d,W)
ζP(pr1)−−−−→ (c,U) is JSyn-covering and the composite of (III.v) is in the

image of ζP. The former follows from the inequality

U ⩽ ∃pr1
W = ∃pr2

∃idc×d×pr1
W

while the latter is expressed by the equivalences

∃x′ : c W(x, y) ∧ x = x′ ∧W(x′, y′) a`x:c; y,y′:d W(x, y) ∧W(x, y′),
a`x:c; y,y′:d W(x, y) ∧ y = y′

in the internal language of P. An elementary proof is provided in Lemma A.3
in Appendix A.

(iv) Let

(c,U) (d,V)
f

g

be a pair of parallel arrows of C o P that are identified in the image of ζP,
i.e. ∃idc× f U = ∃idc×gU. To satisfy condition Definition I.6(iv), we aim to find a
Jo-cover S of (c,U) such that, for all h ∈ S, f ◦ h = g ◦ h. Let

e c dh
f

g
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be an equalizer diagram in C, and hence the square

e c

c c × d

h

h idc× f

idc×g

(III.vi)

is a pullback. The fork

(c,P(h)(U)) (c,U) (d,V)h
f

g

in C o P commutes, and the arrow (c,P(h)(U)) h−→ (c,U) is Jo-covering since

∃idc× f U = ∃idc×gU =⇒ U ⩽ P(idc × f )∃idc×gU,
=⇒ U ⩽ ∃hP(h)(U),

where the last implication is an application of the Beck-Chevalley condition for
the square (III.vi).

□

The choice of functor ζP is suitably natural. Recall that MorphSites denotes the
bicategory of sites, morphisms of sites and natural transformations between these. The
two sites that can be assigned to an existential doctrinal site (P, (Jc)c∈C) ∈ ExDocSites,

(P, (Jc)c∈C) 7→ (C o P, Jo) and (P, (Jc)c∈C) 7→ (Syn(P), JSyn),

yield a pair of bifunctors

ExDocSites MorphSites.
o

Syn

It is easily checked that the morphisms of sites ζP : (C o P, Jo) → (Syn(P), JSyn) is the
component at the existential doctrinal site (P, (Jc)c∈C) of a natural transformation

ExDocSites MorphSites

o

Syn

ζ

Since ζP is a dense morphism of sites for each (P, (Jc)c∈C), the composite 2-cell Sh ∗ ζ,

ExDocSites MorphSites Topos,

o

Syn

Sh
ζ

is an isomorphism.



108 CHAPTER III. CLASSIFYING TOPOI VIA DOCTRINES

Remark III.41. Let T be a geometric theory over a signature Σwith N sorts. (See Sec-
tion III.4 for more on geometric theories; also this remark, with suitable modifications,
will apply to any theory in a fragment of first-order logic that contains regular logic.)
A textbook account of classifying topos theory, as can be found in [63, §D1.4], [79, §X]
or [22, §1.4], presents the classifying topos ET of Twith the syntactic site (CT, JT).

(i) The syntactic category CT of T is the category

a) whose objects are the T-provable equivalence classes of formulae { x~ : ϕ }
over Σ,

b) and whose arrows { x~ : ϕ } [θ]−−→ { y~ : ψ } are T-provable equivalence classes
of T-provably functional formulae, that is formulae θ in the context x~, y~
such that T proves the sequents

θ `x~,y~ ϕ ∧ ψ, ϕ `x~ ∃y~ θ, θ ∧ θ[z~/y~] `x~,y~,z~ y~ = z~.

(ii) In the syntactic topology JT on CT, a family of arrows{
{ xi~ : ϕi }

[θi]−−→ { y~ : ψ }
∣∣∣∣ i ∈ I

}
is JT-covering if and only if T proves the sequent

ψ `y~

∨
i∈I
∃x~i θi.

We immediately recognise the category CT as the syntactic category construction
Syn(FT) for the doctrine FT : ConN → Frm associated with the theory T. Similarly,
the syntactic topology JT is precisely the topology JSyn obtained from the existential
doctrinal site (FT, (Jx~)x~∈ConN ), where each fibre FT(x~) has been endowed with the canon-
ical topology on the frame. (The induced topology Jo on Conop

N o FT is precisely the
topology KFT from Definition II.11.)

Thus, by Proposition III.40, we conclude that both (Conop
N o FT, Jo) and (CT, JT)

are both sites of definition for the classifying topos ET, as visualised in the ‘bridge’
diagram

ET
the classifying

topos of T,

FT : ConN → Frm
the geometric doctrine,

(CT, JT)
the syntactic site.

The site (Conop
N o FT,KFT) was dubbed the alternative syntactic site of the theory T in

[125].
Why would one choose one site of definition for ET over another? As we will

make use of in Chapter VII, the site (Conop
N o FT,KFT) can be more amenable than the
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standard syntactic site for some calculations. Notably, every arrow ( x~ , ϕ ) σ−→ ( y~ , ψ )
is a restriction of the arrow

( x~ , ϕ ) ( y~ , ψ )

( x~ , > ) ( y~ , > ),

σ

σ

and moreover, since ( z~ , > ) is the product
∏

zi∈z~( zi,> ) in Conop
N o FT, the arrow

( x~ , > ) σ−→ ( y~ , > ), labelled by a relabelling σ : y~ → x~, is induced universally as in
the diagram

( x~ , > )
∏
yi∈y~

( yi,> ) = ( y~ , > )

( σ(yi),> ) ( yi,> ).

σ

prσ(yi) pryi

idσ(yi)=idyi

Conversely, there are desirable properties of the syntactic site (CT, JT) that are
not shared by the alternative site (Conop

N o FT,KFT). For example, the topology JT is
subcanonical (see [79, Lemma X.4.5]) while the topology KFT on Conop

N o FT is not (see
Remark II.15(ii)).

III.4 Geometric theories as internal locales
Finally, we focus exclusively on doctrines that interpret geometric logic. Let T be a
theory of geometric logic, i.e. T is a theory in that fragment of first-order infinitary
logic whose permissible symbols are { ∧,>,⊥,∨,∃,= }, over a signature Σ with N
sorts. The doctrine FT : ConN → DLat associated to the theory is an internal locale of
the presheaf topos SetsConN .

(i) The doctrine FT takes values in the category Frm.

(ii) For each arrow x~ σ−→ y~ ∈ ConN, FT(σ) has a left adjoint ∃FT(σ) – the left adjoint
∃FT(σ) acts on a formula ϕ ∈ FT(y~) by

∃FT(σ)(ϕ) =

∃y~ ϕ ∧
∧
yi∈y~

yi = σ(yi)

 .
(iii) Moreover, these left adjoints satisfy both the Frobenius and Beck-Chevalley

conditions.

Thus, by the classification of internal locales of SetsConN given in [68, Proposition
VI.2.2] (see also Theorem II.10), we obtain the following proposition, as observed in
the single-sorted case in [63, Theorem D3.2.5] (the observation could also be obtained
using the theory of localic expansions of [22, §7.1], see also Section III.4.1).

Proposition III.42 (Theorem D3.2.5 [63]). An internal locale L of SetsConN corresponds,
up to equivalence, to an N-sorted geometric theory T (the exact notion of equivalence for
theories is provided by Theorem III.14).
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Geometric doctrines. We are therefore inclined to define a geometric doctrines as
follows:

Definitions III.43. (i) A geometric doctrine is a doctrine that factors as

L : Cop → Frmopen ⊆ PreOrd

and moreover satisfies one of the equivalent conditions:

a) L satisfies the relative Beck-Chevalley condition;
b) L defines an internal locale of the presheaf topos SetsC

op
.

(ii) We define the 2-category GeomDoc of geometric doctrines and their morphisms
as the 1-full 2-subcategory GeomDoc ⊆ DocSites on objects of the form (L,KL),
where the Grothendieck topology KL on C o L is the same topology as in
Definition II.11, i.e. the topology where a sieve S in C o L is KL-covering if
and only if S contains a small family{

(ci,Ui)
fi−→ (d,V)

∣∣∣∣∣ i ∈ I
}

in C o L such that
V =

∨
i∈I
∃ fiUi.

Just as in Proposition III.18, we can identify a morphism of geometric doctrines
(F, a) : L → L′ as a pair consisting of a flat functor F : C → D between the base
categories and a natural transformation a : L ⇒ L′ ◦ Fop where, for each d

g−→ c ∈ C,
the square

Ld Lc

L′F(d) L′F(c)

ad

∃L(g)

ac

∃L′(F(g))

commutes. Thus, ifL,L′ : Cop ⇒ Frmopen are two internal locales fibred over the same
category, then

GeomDoc(L,L′) = Loc
(
SetsC

op)
(L′,L).

Indeed, for any topos E ' Sh(C, J), there is a 1-full 2-embedding

Loc(E)op GeomDoc.

Note also that we have not restricted ourselves to geometric doctrines that are
fibred over cartesian categories. We will instead use GeomDoccart to refer to the 1-full
2-subcategory of geometric doctrines that are fibred over cartesian categories.

Applications to geometric logic. Having identified geometric theories with internal
locales, the remainder of this section is dedicated to applying our results on internal
locales from Chapter II to deduce corresponding results on geometric theories. The
results we prove were previously known in the literature via other methods. But,
in the author’s estimation, the perspective of internal locale theory yields the most
elegant demonstrations of these facts.
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III.4.1 Localic expansions

Our applications to geometric logic concern expansions of theories. Expansions of
theories are ubiquitous in mathematics since, as soon as one notion is defined, it is
natural to consider the same objects equipped with extra structure (formalised by
localic expansions) or special cases (formalised by quotient theories). Over the next few
results, we will observe that the structure of localic expansions is closely tied to theory
of internal locales developed in Chapter II.

Definition III.44 (Definition 7.1.1 [22]). Let T be a geometric theory over a signature
Σ. A localic expansion of T consists of an expanded signature Σ′ ⊇ Σ and a geometric
theory T′ over Σ′ such that:

(i) the expanded signature Σ′ adds no new sorts to the signature Σ,

(ii) the theory T′ proves every every axiom ϕ `x~ ψ of the theory T.

Corollary III.45 (Theorem 7.1.3 [22]). For each localic expansionT′ ofT, there is an induced
localic geometric morphism

eT′T : ET′ ET.

Proof. For each context x~, we denote by eT′T
−1
x~ the map

eT
′
T

−1
x~ : FT(x~)→ FT

′
(x~),

[ϕ]T 7→ [ϕ]T′ ,

where we have used the notation [ϕ]T and [ϕ]T′ to differentiate between the class of
formulae that are provably equivalent to ϕ according to the theory T and according
to the theory T′.

Since T′ proves every axiom of T, if [ϕ]T ⩽ [ψ]T, then [ϕ]T′ ⩽ [ψ]T′ , and so the
map eT′T

−1
x~ is monotone. Moreover, since

[ϕ ∧ ψ]T = [ϕ]T ∧ [ψ]T and

∨
i∈I
ϕi


T

=
∨
i∈I

[ϕ]T,

and similarly for T′, the map eT′T
−1
x~ is clearly also a frame homomorphism. Addition-

ally, it is easily observed that eT′T
−1
x~ is natural with respect to the maps FT(σ) and ∃FT(σ)

since eT′T
−1
x~ also preserves substitution and the interpretation of the logical symbols

{=,∃ }.
Therefore, the maps eT′T

−1
x~ , for each context x~ ∈ ConN, are the components of an

internal locale morphism eT′T : FT′ → FT. Thus, by applying Proposition II.23, there is
a localic geometric morphism

Sh
(
eT
′
T

)
: Sh

(
FT′

)
' ET′ ET ' Sh

(
FT

)
as desired, which we label by eT′T . □
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Example III.46. Every theory T over a signature Σwith N sorts is a localic expansion
of the N-sorted empty theory N ·O. The induced localic geometric morphism

eTN·O : ET EN·O ' SetsConN

is precisely the localic geometric morphism CπFT
: ET ' Sh(FT)→ SetsConN associated

with the internal locale FT of SetsConN .

Conservative expansions. A localic expansion T′ of a geometric theory T is said
to be conservative if whenever T′ proves a sequent ϕ `x~ ψ over the non-expanded
signature Σ, then T also proves the sequent. Thus, an expansion T′ is conservative
if it proves no new theorems over the language of the original theory. It is easily
observed that the expansion T′ of T is conservative if and only if, for each context x~
over Σ, the frame homomorphism

eT
′
T

−1
x~ : FT(x~)→ FT

′
(x~)

is injective. Thus, the following corollary is obtained by Proposition II.28;

Corollary III.47. The induced localic geometric morphism eT′T : ET′ → ET of a localic expan-
sion T′ of T is surjective if and only if T′ is a conservative expansion.

III.4.2 Quotient theories

A quotient theory is a particular kind of localic expansion where the signature does
not change, i.e. a quotient theory is obtained by adding further axioms to the original
theory. There is an equivalence between quotient theories and subtopoi, as found in
[22, Theorem 3.2.5]. We give an elementary proof of this fact using internal sublocales.

Definition III.48 (Definition 3.2.2-4 [22]). Let T be a geometric theory.

(i) A quotient theory of T is a geometric theory T′ over the same signature Σ as T
and which contains the axioms of T.

(ii) Two quotient theories T′,T′′ of T are said to be syntactically equivalent, written
as T′ ≡s T′′, if the axioms of T′ are provable by the theory T′′ and vice-versa.

Corollary III.49 (Theorem 3.2.5 [22]). Let T be a geometric theory. There is a bijective
correspondence between the ≡s-equivalence classes of quotient theories of T and the subtopoi
of ET.

Proof. A quotient theory T′ of T is a particular case of a localic expansion of T, and
so, by Corollary III.45, there is an internal locale morphism

eT
′
T : FT′ FT.

Moreover, since T′ is a theory over the same signature as T, for each context x~,
the frame homomorphism eT′T

−1
x~ : FT(x~) → FT′(x~) is evidently surjective. Thus, the

internal locale morphism eT′T is an internal sublocale embedding eT′T : FT′ ↣ FT and,
by Theorem II.34, the theory T′ yields a subtopos eT′T : Sh

(
FT′

)
↣ Sh

(
FT

) ' ET.
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For the converse, by Theorem II.34, a subtopos

f : F Sh
(
FT

) ' ET
must be induced by an internal locale morphism, i.e. an internal locale morphism
f : L→ FT where, for each x~, the component frame homomorphism f−1

x~
: FT(x~)→ L(x~)

is surjective. Let T f be the quotient theory of Twhose axioms consist of the sequents
ϕ `x~ ψ, for each pair of formulae ϕ,ψ for which f−1

x~
([ϕ]T) ⩽ f−1

x~
([ψ]T). To complete the

proof, we need only note that L � FT f and that TeT′
T
≡s T′ for each quotient theory of

T and subtopos f : F ↣ ET. □

The frame of quotient theories. Given two quotient theories T′, T′′ of T, we order
the theories by T′′ ⩽ T′ if T′′ proves every axiom of T′. Thus, we have that T ≡s T′′ if
and only if T′ ⩽ T′′ and T′′ ⩽ T′. Thus, we are able to form ThT, the poset of quotient
theories of T, whose elements are the ≡s-equivalence classes of quotient theories of T
ordered by as above.

Corollary III.50 (Theorem 4.1.3 [22]). The poset ThT of quotient theories ofT is a co-frame.

Proof. We first note that there is a factorisation of internal sublocale embeddings

FT′′ FT′

FT

eT
′′
T′

eT
′′
T

eT
′
T

if and only if T′′ ⩽ T′. Thus, in combination with Corollary III.49, we have that
ThT � N

(
FT

)op. An application of Theorem II.42 now yields the result. □





Chapter IV

The geometric completion

Completions of doctrines. In the categorical formulation of logic and syntax af-
forded by doctrine theory, a natural question arises: given a doctrine

P : Cop PreOrd

and a certain syntax we wish P to interpret, is there a universal way of completing P
to this new syntax?

Many such logical completions have been studied in recent years. In [96], Pasquali
constructs a co-free completion of a primary doctrine to an elementary doctrine. The
quotient completion of an elementary doctrine has been extensively studied by Maietti
and Rosolini (see [81]–[84]). The existential completion, introduced by Trotta in [119],
universally completes a primary doctrine to an existential doctrine. The existential
completion is adapted by Trotta and Spadetto in [121, §3] to give a completion of a
primary doctrine to one which interprets universal quantification. In [30] Coumans
gives a completion of coherent doctrines that generalises the canonical extension of
distributive lattices.

The geometric completion we present is another such completion.

Philosophical motivation. While syntactic completions of doctrines are obviously
of a philosophical interest for their universal property, it is also desirable that they be
semantically invariant, i.e. the category of models associated with a doctrine P and its
completion TP are categorically equivalent. Thus, one is able to study the semantics
of the doctrine P but within the potentially more familiar framework of the syntax of
TP. We will observe in Theorem IV.16 that, if the desired models of a doctrine P are
encoded by a Grothendieck topology J on C o P, then the geometric completion of
(P, J) is semantically invariant. It is this property which allows the intended use of the
geometric completion: to re-express a study of the semantics for various doctrines by
a single treatment for geometric doctrines.

The ideal completion for preorders. The geometric completion we will study is
a fibred generalisation of the ideal completion for preorders, which is described in
[68, §III.4] and [60, §II.2.11]. Recall that given a preorder P, the preorder 2Pop of all
monotone maps f : Pop → 2, given their pointwise ordering, is the free join completion
of P (the universal property of 2Pop can be deduced from Remark IV.2). Furthermore,

115
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2Pop is isomorphic to the set of down-sets of P ordered by inclusion, and is additionally
a frame.

Recall also that if we endow P with a Grothendieck topology (a Grothendieck
topology on a preorder is sometimes also called a covering system), then we can form
the frame J-Idl(P) of J-ideals on P. The elements of J-Idl(P) are the J-closed down-sets
I ⊆ P, i.e. those down-sets such that if { y j ⩽ x | j ∈ J } is a J-covering sieve with each
y j in I, then x ∈ I too.

The map η(P,J) : P → J-Idl(P), which sends an element x ∈ P to the J-closure of the
principal down-set ↓x generated by x, constitutes a ‘geometric completion’ of the pair
(P, J) in the sense that it satisfies a universal property:

Theorem IV.1 (Proposition II.2.11 [60]). For a meet-semilattice P and a Grothendieck
topology J on P, the frame J-Idl(P) satisfies the universal property that for each meet-semilattice
homomorphism a : P → L into a frame L which is J-continuous, meaning that a(x) =∨

y⩽x∈S a(y) for each J-covering sieve S on x, there exists a unique frame homomorphism
a : J-Idl(P)→ L for which the triangle

P J-Idl(P)

L

η(P,J)

a a

commutes.

Remark IV.2 (Theorem 6.2 [19]). In Theorem IV.1, the requirement that P be a meet-
semilattice can be relaxed. If P is any preorder, and J is a Grothendieck topology on P,
then the frame J-Idl(P) satisfies the universal property that, for each J-continuous
monotone map a : P → L into a frame L, there exists a unique monotone map
a : J-Idl(P)→ L such that a preserves all joins and a ◦ η(P,J) = a.

The map a also preserves finite meets, and hence is a frame homomorphism, if
and only if a : P→ L defines a morphism of sites a : (P, J)→ (L, Jcan).

For certain cases, the geometric completion can be understood as an internal ideal
completion, externalised via the perspective of fibred topos theory [24, §6]. A strictly
functorial doctrine P : Cop → PreOrd, fibred over a small category C, can be viewed
as an internal preorder of the presheaf topos SetsC

op
, and a Grothendieck topology J

on the Grothendieck construction C o P acts as an internal covering system on P.
The pair (P, J) admits a fibred ideal completion, as established in [24, Theorem 6.1], that
generalises the ideal completion for preorders. This yields the geometric completion
of the doctrine P, relative to the Grothendieck topology J on C o P.

Key results. The universal property of the geometric completion we present in
Theorem IV.16 is an extension (to include change of base category) of the universal
property of the fibred ideal completion established in [24]. We will show that the ge-
ometric completion defines an idempotent 2-monad on the category of doctrinal sites
DocSites from Definitions III.22. We also simplify the description of the geometric
completion from [24] for certain doctrines. This simpler description can be leveraged
to recover the geometric completion on an arbitrary doctrine.
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We also relate the geometric completion to two other classes of completions of
doctrines. The first are coarse geometric completions, which are obtained when we
‘forget’ some of the geometric information added by geometric completion. This is
encoded by equipping the geometric completion of a doctrinal site with a weaker
topology. The coarse geometric completions thus obtained are no longer idempotent
but are instead lax-idempotent.

The latter class we study are subgeometric completions, which are intended to capture
completions of doctrines to some, but not all, of the data of geometric syntax – for
example, in Section IV.3.3 we will prove that Trotta’s existential completion [119] is
subgeometric.

We also demonstrate throughout how these completions of doctrines yield com-
pletions of categories, such as the regular completion [27], via the syntactic category
construction from Section III.3.

Overview. The chapter is divided as follows.

(A) The geometric completion is developed in Section IV.1 as an application of
the fibred ideal completion of [24, §6]. That the geometric completion of a
doctrinal site is universal, semantically invariant and idempotent is proved in
Section IV.1.2, extending the universal property found in [24], and this universal
property is used to develop the 2-monadic aspects of the geometric completion
in Section IV.1.3.

We also describe how, in combination with the syntactic category construc-
tion from Section III.3, the geometric completion for doctrines yields a geometric
completion for regular sites in Section IV.1.4.

(B) The geometric completion is idempotent since we can keep track of the geo-
metricity of a geometric doctrine by assigning a suitable Grothendieck topology.
Section IV.2 is dedicated to the study of completions when some of this infor-
mation is ‘forgotten’ by assigning a coarser Grothendieck topology. We develop
a general framework for coarse geometric completions, and also prove that every
coarse geometric completion is lax-idempotent.

(C) Finally, we study subgeometric completions in Section IV.3. Vaguely speaking, a
2-monad T on a 2-subcategory of doctrines, viewed as a completion of doctrines
at the suggestion of [120], is ‘subgeometric’ if a suitable sub-class of geometric
doctrines are all T-algebras and the data added to the completion TP of a doctrine
P can be ‘seen’ by a certain Grothendieck topology JT

P onD o TP. We will show
that the geometric completion of P is isomorphic to the doctrine obtained by
completing P according to T, keeping track of the new data by the topology JT

P ,
and then geometrically completing.

We begin in Section IV.3.1 with a motivating example: Trotta’s existential
completion [119]. The formal definition of a subgeometric completion is intro-
duced in Section IV.3.2, where we also give sufficient conditions for a subgeo-
metric completion to be lax-idempotent.

We then turn to further examples of subgeometric completions. In Sec-
tion IV.3.3 we develop a general theory for obtaining subgeometric completions
via subdoctrines of the free geometric completion, which encompasses the ex-
istential completion and the coherent completion of a primary doctrine. We
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also relate these completions to the regular and coherent completion of a carte-
sian category (see [27]). Finally, various pointwise completions are shown to be
subgeometric in Section IV.3.4.

IV.1 The geometric completion of a doctrine

We are able to define the geometric completion of a doctrinal site using only results
on internal locales recalled in Chapter II. Given a doctrinal site (P, J) ∈ DocSites the
relative topos

CπP : Sh(C o P, J) SetsC
op

is localic by [23, Proposition 7.11] and the fact thatπP is a faithful functor (alternatively,
CπP is localic by [63, Examples A4.6.2(a) & (c)]). Thus, by Theorem II.7, the topos
Sh(C o P, J) is the topos of sheaves on an internal locale (i.e. a geometric doctrine)

CπP ∗(ΩSh(CoP,J)) : Cop Frmopen

of SetsC
op

.

Definition IV.3 (Definition 6.2 [24]). The geometric completion of a doctrinal site (P, J)
is the geometric doctrine CpP ∗(ΩSh(CoP,J)) : Cop → Frmopen. We denote the geometric
completion of (P, J) by Z(P, J).

Recall from [24, Proposition 4.2] or Section II.2 that the doctrine

Z(P, J) : Cop Frmopen

is isomorphic to the functor

SubSh(CoP,J)(C∗pP
◦よC(−)) : Cop Frmopen.

We claim that this choice of geometric completion is 2-functorial in DocSites, and
moreover universal, idempotent and semantically invariant. The proof of these facts
is delayed until Section IV.1.2 and Section IV.1.3. We proceed as follows.

− Immediately below, in Section IV.1.1, we recall the explicit description of the
geometric completion Z(P, J) of a doctrinal site (P, J), as described in [24, §6].
We also demonstrate that, in special cases, the calculation of the geometric
completion can be simplified.

Firstly, we show that the geometric completion of an existential doctrinal
site (seen in Section III.3.1) can be computed ‘pointwise’. Secondly, we give a
simpler description of the geometric completion in the case where each fibre of P
has a top element and these are preserved by transition maps. By showing that
the free top completion is subgeometric, we can recover the geometric completion
of an arbitrary doctrine.

− In Section IV.1.2, the unit of the geometric completion is defined and the univer-
sal property is proved.
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− We demonstrate the 2-monadic aspects of the geometric completion in Sec-
tion IV.1.3 and identify the algebras of the monad as the geometric doctrines.

− Finally, in Section IV.1.4, we relate the geometric completion for doctrines to the
geometric completion for regular sites via the syntactic category construction
from Section III.3.

IV.1.1 Calculating the geometric completion

An explicit description of the geometric completion Z(P, J) : Cop → Frmopen for a
doctrinal site (P, J) can be computed directly using the description of the subobject
classifier of a Grothendieck topos found in [79, §III.7], as is done in [24, Proposition
6.2]. This returns Z(P, J) as the doctrine where:

(i) for each object c ∈ C, Z(P, J)(c) is the frame of J-closed subobjects in Sets(CoP)op
of the

presheaf C(πP(−), c) : (C o P)op → Sets (for a description of J-closed subobjects,
see [23, §2.1]),

(ii) and for each arrow d
f−→ c of C, the transition map

Z(P, J)( f ) : Z(P, J)(c) Z(P, J)(d)

sends a J-closed subobject ς↣ C(πP(−), c) to the pullback

f ∗(ς) ς

C(πP(−), d) C(πP(−), c).

⌟

By unravelling definitions, this is equivalent to the concrete description presented
below.

Construction IV.4. Let P : Cop → PreOrd be a doctrine and let J a Grothendieck
topology on C o P. The geometric completion Z(P, J) : Cop → Frmopen admits the
following description.

(i) For each object c of C, an element S of Z(P, J)(c) is a set of pairs ( f , x), where d
f−→ c

is an arrow of C and x ∈ P(d), such that:

a) if ( f , x) ∈ S, then ( f ◦ g, y) ∈ S for each arrow e
g−→ d of C and y ∈ P(e) with

y ⩽ P(g)(x);

b) for each arrow d
f−→ c of C, given a subset

{
(gi, yi)

∣∣∣ i ∈ I
} ⊆ S such that, for

each i ∈ I, gi factors as
ei

d c,

hi
gi

f

if there is an x ∈ P(d) and, for all i ∈ I, yi ⩽ P(hi)(x) for which the family{
(ei, yi)

hi−→ (d, x)
∣∣∣∣ i ∈ I

}
of morphisms in C o P is J-covering, then ( f , x) ∈ S.



120 CHAPTER IV. THE GEOMETRIC COMPLETION

We then order Z(P, J)(c) by inclusion.

(ii) For each arrow d
f−→ c of C, Z(P, J)( f ) : Z(P, J)(c)→ Z(P, J)(d) sends S ∈ Z(P, J)(c) to

f ∗(S), where
f ∗(S) =

{
(g, y)

∣∣∣ ( f ◦ g, y) ∈ S
} ∈ Z(P, J)(d).

The closure operator. Clearly, if J and J′ are Grothendieck topologies on C o P with
J′ ⊆ J, then Z(P, J)(c) ⊆ Z(P, J′)(c) for each object c of C. Hence, for every Grothendieck
topology J, Z(P, J)(c) is a subset of Z(P, Jtriv)(c), where Jtriv is the trivial topology onCoP.
An element S ∈ Z(P, Jtriv)(c) that is contained in the subset Z(P, J)(c) ⊆ Z(P, Jtriv)(c), i.e.
S satisfies property (b) above, is said to be J-closed. This is precisely what it means for
the subobject ς↣ C(πP(−), c) corresponding to S to be J-closed in the sense of [23].

A closure operation for subobjects is described in [23, §2.1]. In the particular case of
subobjects of the presheaf C(πP(−), c), i.e. elements S ∈ Z(P, J)(c), the J-closure can be
understood entirely in terms of internal locale theory.

Since the embedding Sh(CoP, J)↣ Sets(CoP)op
is a geometric morphism for which

the triangle

Sh(Z(P, J)) ' Sh(C o P, J) Sets(CoP)op ' Sh(Z(P, Jtriv))

SetsC
op

commutes, by Theorem II.34 the geometric morphism is induced by an embedding of
internal locales Z(P, J) ↣ Z(P, Jtriv). That is, for each object c ∈ C, there is a surjective
frame homomorphism (−)c : Z(P, Jtriv)(c)↠ Z(P, J)(c) such that, for each arrow d

g−→ c ∈
C, the diagram

Z(P, Jtriv)(d) Z(P, Jtriv)(c)

Z(P, J)(d) Z(P, J)(c)

(−)d

∃Z(P,Jtriv)( f )

Z(P,Jtriv)( f )

(−)c

∃Z(P,J)(c)

Z(P,J)( f )

is a morphism of adjunctions.

Definition IV.5. Let S be an element of Z(P, Jtriv)(c). We call the image of S under

(−)c : Z(P, Jtriv)(c) Z(P, J)(c)

the J-closure of S, and denote it by S. The corresponding subobject ς of C(pP(−), c) is
precisely the J-closure of ς.

The geometric completion of an existential doctrinal site. Recall Definition III.27,
that an existential doctrinal site (P, (Jc)c∈C) consists of a doctrine P : Cop → PreOrd
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and a Grothendieck topology Jc on each fibre P(c) such that Jo defines a Grothendieck
topology on C o P, where a sieve{

(ci, xi)
fi−→ (d, y)

∣∣∣∣∣ i ∈ I
}

is Jo-covering if and only if {
(d,∃ fixi)

idd−−→ (d, y)
∣∣∣∣ i ∈ I

}
is Jd-covering, where ∃ fi is a left adjoint to P( fi) that preserves covers.

Since the arrow (d, x)
f−→ (c,∃ f x) is a Jo-cover for any arrow d

f−→ c ∈ C, an element
S ∈ Z(P, J)(c) is entirely determined by its elements of the form (idc, x) ∈ S. Hence, by
Construction IV.4, we obtain the following.

Proposition IV.6. For an existential doctrinal site (P, (Jc)c∈C), the geometric completion
Z(P, Jo) is isomorphic to its pointwise ideal completion, that is:

(i) for each object c of C, Z(P, J)(c) is the frame Jc-Idl(P(c)),

(ii) for each arrow d
f−→ c of C, Z(P, J)( f ) : Z(P, J)(c) → Z(P, J)(d) sends a Jc-ideal I to the

Jd-ideal
f ∗(I) =

{
y ∈ P(d)

∣∣∣∃ f y ∈ I
}
.

Remark IV.7. Recall that existential doctrinal sites were intended to interpret theories
that interpret at least the syntax of regular logic, i.e. the symbols { ∧,>,∃ }, if not
further syntax. It is therefore not surprising that completing to geometric logic, whose
permissible symbols are { ∧,>,∃,⊥,∨ }, involves adding only fibre-wise structure.

Example IV.8. When P : Cop → DLat is a coherent doctrine, and C o P is equipped
with the topology JCoh, we recognise by Proposition IV.6 that the fibre of the geometric
completion Z(P, JCoh)(c) is the coherent locale associated with the distributive lattice
P(c) under the (point-free) Stone duality for distributive lattices (see [60, §II.3.3], cf.
[111]).

In particular, if B : Cop → Bool is a Boolean doctrine, then

Z(B, JCoh) : Cop StFrmopen

sends c ∈ C to the Stone frame corresponding to the Boolean algebra B(c). If there is
an isomorphism B � FT for some single-sorted classical theory T over a signature Σ,
then Z(B, JCoh)(x~) (where x~ ∈ Con1 is a context/tuple of variables of length n) coincides
with the frame of opens of the familiar nth Stone space of the theory T (see [52,
§6.3]). Doctrines of this form – or rather, since Stone frames are spatial, the doctrines
Pt ◦ Z(B,Kfin

B ) : Conop
1 → StSpace – were dubbed polyadic spaces in the note [64] and

suggested for use in categorically proving standard theorems of classical logic, a desire
realised in [43].

Examples IV.9. (i) Suppose thatT is a coherent theory (or indeed any subfragment
of geometric logic). Then T can also be considered as a geometric theory. The
geometric completion of the doctrinal site (FTCoh, JCoh) is simply the geometric
doctrine FTGeom.
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(ii) (Morleyization) If T is instead a classical theory, then by a well-known trick
known as Morleyization (see [63, Lemma D1.5.13]), there exists a Morita equiva-
lent geometric theoryT′. The geometric completion of the doctrinal site (FTBool, JCoh)
is given by FT′Geom.

When top elements are available

In the remainder of this subsection we demonstrate that, in the special case of a
doctrine P : Cop → PreOrd where P(c) has a top element, for each object c ∈ C, and

P( f ) preserves that top element for each arrow d
f−→ c of C, the description of the

geometric completion given in Construction IV.4 can be simplified further.
We will then show how the description in Construction IV.4 can be recovered

for an arbitrary doctrinal site (P, J) by freely adding (preserved) top elements to the
doctrine P. This yields a different proof to [24], though more circumlocutory, that
Construction IV.4 describes the geometric completion of (P, J). We do so to illustrate
our first example of a subgeometric completion. A subgeometric completion is a partial
completion to the data of a geometric doctrine which can be ‘subsumed’ by the geo-
metric completion. This will be explored further in Section IV.3. To avoid confusion
in the subsequent paragraphs, we will temporarily relabel the doctrine described in
Construction IV.4 as Z′(P, J) while we prove the isomorphism Z(P, J) � Z′(P, J).

If, for each object c of C, P(c) has a top element >c which is preserved by P( f ) for

each arrow d
f−→ c of C, then the projection πP : C o P → C has a right adjoint: the

functor
tP : C → C o P

which sends c ∈ C to (c,>c) ∈ C o P. Thus, we can apply the description of the direct
image of CpP given in [79, Theorem VII.10.4], to obtain that

Z(P, J) � CpP ∗(ΩSh(CoP,J)) = ΩSh(CoP,J) ◦ top
P : Cop → Frmopen.

Therefore, using the description of the subobject classifier of Sh(Co P, J) found in [79,
§III.7], for each c ∈ C, an element of Z(P, J)(c) is a J-closed sieve S on (c,>c) and, for

each d
f−→ c ∈ C, Z(P, J)( f ) sends S to

f ∗(S) =
{

(e,V)
g−→ (d,>d)

∣∣∣∣∣ (e,V)
f◦g−−→ (c,>c) ∈ S

}
.

We therefore observe that Z(P, J) is indeed isomorphic to the doctrine Z′(P, J) as de-
scribed in Construction IV.4. The witnessing isomorphism is given by sending a
J-closed sieve S on (c,>c) to the set{

( f , x)
∣∣∣∣∣ (d, x)

f−→ (c,>c) ∈ S
}
∈ Z′(P, J)(c).

The free top completion. In the absence of top elements, we can freely add them
to the doctrine P : Cop → PreOrd and demonstrate that, by carefully selecting a
Grothendieck topology, we obtain a doctrinal site whose geometric completion is
isomorphic to Z(P, J) – that is to say, adding top elements is a subgeometric completion.
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Definition IV.10. Let P : Cop → PreOrd be a doctrine and let J be a Grothendieck
topology on C o P.

(i) Denote by P> : Cop → Sets the free top completion, the doctrine where

a) for each object c of C, P>(c) is the preorder P(c) ⊕ >c, where a top element
>c has been freely added to P(c);

b) for each arrow d
f−→ c of C, P>( f ) : P>(c)→ P>(d) is the monotone map

P>( f )(x) =

P( f )(x) if x ∈ P(c),
>d if x = >c.

(ii) We define a Grothendieck topology J> on C o P> in the following way:

a) for each object of the form (c, x), with x ∈ P(c), a sieve S on (c, x) is J>-
covering if and only if S is J-covering;

b) for an object of the form (c,>c), a sieve S on (c,>c) is J>-covering if and

only if, for each arrow of the form (d, x)
f−→ (c,>c), the sieve f ∗(S) on (d, x) is

J-covering.

The terminology free top completion is justified as a universal property is clearly
satisfied. For any morphism of doctrines (F, a) : P→ Q where Q(d) has a top element
for each c ∈ Cwhich is preserved by Q(g) for each e

g−→ d ∈ D, there is a unique natural
transformation a> : P> ⇒ Q ◦ Fop such that the triangle

P P>

Q ◦ Fop

a a>

commutes and a>c sends >c ∈ P>(c) to the top element of Q(F(c)), for each c ∈ C.
Note that C o P defines a subcategory of C o P> and J is the restriction of J> to this

subcategory. Note also that, for each c ∈ C, the family{
(d, x)

f−→ (c,>c)
∣∣∣∣∣ x ∈ P(d), d

f−→ c ∈ C
}

generates a J>-covering sieve.

Lemma IV.11. For each doctrine P : Cop → PreOrd and Grothendieck topology J on C o P,
J> is a Grothendieck topology on C o P>.

Proof. The maximality and stability conditions for J> are trivially satisfied since J is a
Grothendieck topology onCoP, as is the transitivity condition J> for sieves on objects
of the form (d, x) with x ∈ P(d).

It thus remains to show that if S is a J>-covering sieve on (c,>c) and R is a sieve on

(c,>c) such that h∗(R) ∈ J>(d, x) for each arrow (e, y) h−→ (c,>c) in S, then R is J>-covering,

i.e. f ∗(R) ∈ J(d, x) for each arrow (d, x)
f−→ (c,>c) with x ∈ P(d).
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As f ∗(S) ∈ J(d, x) and, for each arrow (e, y) k−→ (d, x) of f ∗(S), i.e. for which the com-

posite (e, y) k−→ (d, x)
f−→ (c,>c) is an element of S, we have that f ∗(R) is J-covering since

k∗( f ∗(R)) = ( f ◦ k)∗(R) is J>-covering (and so J-covering) by the transitivity condition
for J. Thus, by definition, R is J>-covering. □

Lemma IV.12. The site (C o P, J) is a dense subsite of (C o P>, J>).

Proof. This is immediate since CoP is a full subcategory of CoP> and the only objects
not contained in C o P, i.e. those objects of the form (c,>c), are covered by objects
contained in the subcategory. □

The free top completion is subgeometric. Having developed the free top comple-
tion for a doctrinal site, we can finally observe that this constitutes a subgeometric
completion in the current loose sense that Z(P, J) � Z(P>, J>) (a formal definition of
subgeometricity is provided in Section IV.3.2). As a consequence, we obtain the
isomorphism Z(P, J) � Z′(P, J) as desired.

Proposition IV.13. There is a chain of isomorphisms of doctrines:

Z(P, J) � Z(P>, J>) � Z′(P>, J>) � Z′(P, J).

Proof. That Z(P, J) � Z(P>, J>) follows since the topoi Sh(CoP, J) and Sh(CoP>, J>) are
equivalent by Lemma IV.12. That Z(P>, J>) � Z′(P>, J>) follows as P> has (preserved)
top elements.

We will sketch the isomorphism between Z′(P>, J>) and Z′(P, J). We observe that
each J>-closed sieve S on (c,>c) is uniquely determined by the set

lc(S) =
{

( f , x)
∣∣∣∣∣ (d, x)

f−→ (c,>c) ∈ S, x ∈ P(d)
}
∈ Z′(P, J).

If lc(S) = lc(S′), then S and S′ agree on arrows of the form (d, x)
f−→ (c,>c), where

x ∈ P(d) ⊆ P>(d). Conversely, if (d,>d)
f−→ (c,>c) ∈ S, then both S and S′ contain the

family

R =
{

(e, x)
g−→ (d,>d)

f−→ (c,>c)
∣∣∣∣∣ x ∈ P(e), e

g−→ d ∈ C
}

which covers (d,>d)
f−→ (c,>c). Hence, (d,>d)

f−→ (c,>c) ∈ S′ too. The same argument
with S and S′ swapped completes the proof that lc(S) = lc(S′) implies that S = S′. The
maps lc, for each c ∈ C, are thus evidently the components of a natural isomorphism
between Z′(P>, J>) and Z′(P, J). □

IV.1.2 Universal property of the geometric completion

We are now able to prove that the geometric completion of a doctrinal site is universal
in DocSites, idempotent and semantically invariant as claimed. We first recall the
construction of the unit of the geometric completion, which, unsurprisingly, is the
same as the unit of the fibred ideal completion defined in [24, Proposition 6.2], before
turning to the universal property of the geometric completion, which extends the uni-
versal property of [24]. Finally, we discuss some of the basic preservation properties
of the unit.
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The unit of the geometric completion. The unit generalises the notion of taking the
closure of a principal down-set for a preorder with a covering system. Let P be a
doctrine and let J be a Grothendieck topology on C o P. For each object c ∈ C and
x ∈ P(c), the set

↓x =
{

(g, y)
∣∣∣∣ e g−→ c ∈ C, y ∈ P(e) and y ⩽ P(g)(x)

}
is an object of Z(P, Jtriv)(c). For each arrow d

f−→ c, the transition map

Z(P, Jtriv)( f ) : Z(P, Jtriv)(c) Z(P, Jtriv)(d)

acts on this element by

Z(P, Jtriv)( f )(↓x) = { (h, y) | ( f ◦ h, y) ∈ ↓x },

=
{

(h, y)
∣∣∣∣ e h−→ c ∈ C, y ∈ P(e) and y ⩽ P( f ◦ g)(x)

}
,

=
{

(h, y)
∣∣∣∣ e h−→ c ∈ C, y ∈ P(e) and y ⩽ P(g)P( f )(x)

}
,

= ↓P( f )(x).

Hence, we obtain a (pseudo-)natural transformation ↓ (−) : P⇒ Z(P, Jtriv).

Definition IV.14. Let (P, J) be a doctrinal site. We will use

η(P,J) : P⇒ Z(P, J)

to denote the the composite (pseudo-)natural transformation

P Z(P, Jtriv) Z(P, J).
↓(−) (−)

The natural transformation η(P,J) yields a morphism of doctrinal sites

(idC, η(P,J)) : (P, J) (Z(P, J),KZ(P,J)).

In fact, as shown in [24, Proposition 7.2], one can prove a stronger statement.

Proposition IV.15 (Proposition 7.2 [24]). The induced functor idC o η(P,J) yields a dense
morphism of sites

idC o η(P,J) : (C o P, J) (C o Z(P, J),KZ(P,J)).

From Proposition IV.15, we immediately deduce that for each object c of C and
each S ∈ Z(P, J)(c),

S =
∨

( f ,x)∈S
∃Z(P,J)( f )

(
η(P,J)

d (x)
)
. (IV.i)

We will frequently abuse notation and write η(P,J) for the natural transformation,
the morphism of doctrinal sites (idC, η(P,J)) : (P, J) → (Z(P, J),KZ(P,J)), and the functor
idC o η(P,J) : C o P→ C o Z(P, J).
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The universal property of the geometric completion.

Theorem IV.16. To each doctrine P : Cop → PreOrd and Grothendieck topology J on C o P,
the natural transformation η(P,J) : P⇒ Z(P, J) constitutes the unit of the geometric completion
of (P, J) for which the following properties are satisfied.

(i) Universality: for each morphism of doctrinal sites (F, a) : (P, J) → (L,KL) whose
codomain is a geometric doctrine L : Dop → Frmopen, there exists a unique morphism
of geometric doctrines

(F, a) : Z(P, J) L

such that the triangle

P Z(P, J)

L ◦ Fop

a

η(P,J)

a

commutes;

(ii) Semantic invariance: if the desired (set-based) models P are encoded by J, i.e. there is
an equivalence

P-mod(Sets) ' DocSites((P, J), (P ,KP)),

then there is an equivalence of categories of models

P-mod(Sets) ' Z(P, J)-mod(Sets);

(iii) Idempotency: for each doctrinal site (P, J), we have that

Z(P, J) � Z(Z(P, J),KZ(P,J)).

Proof. Let (F, a) : (P, J) → (L,KL) be a morphism of doctrinal sites. By Lemma I.19,
there exists a commutative square of geometric morphisms

Sh(L) ' Sh(D o L,KL) Sh(C o P, J)

SetsD
op

SetsC
op
.

CπL

Sh(Foa)

� CπP

Sh(F)

Let g : Sh(L)→ SetsC
op

denote the composite geometric morphism

Sh(L) SetsD
op

SetsC
op
.

CπL Sh(F)

By [24, Proposition 7.2], the factoring topos in the hyperconnected-localic factori-
sation of g (see [63, §A4.6]) is given by the topos of sheaves on the internal locale
g∗(ΩSh(L)) of SetsC

op
. Whence, we have that

g∗(ΩSh(L)) = Sh(F)∗ ◦ CπL ∗(ΩSh(L)),
= CπL ∗(ΩSh(L)) ◦ Fop,

� L ◦ Fop.
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Therefore, as CπP is localic, by [63, Lemma A4.6.4] there is a factorisation of Sh(F o a)
as

Sh(L) Sh(L ◦ Fop) Sh(C o P, J)

SetsD
op

SetsC
op
.

CπL �

Sh(Foa)

CπL◦Fop

CπP
Sh(F)

Thus, as Sh(C o P, J) ' Sh(Z(P, J)), there is a commutative triangle of geometric mor-
phisms

Sh(L ◦ Fop) Sh(Z(P, J))

SetsC
op
.

CπL◦Fop CπZ(P,J)

Therefore, by ??, we obtain a morphism of internal locales a : L ◦ Fop → Z(P, J), or
rather a morphism of geometric doctrines (F, a) : Z(P, J) → L, satisfying the required
conditions.

That the geometric completion is semantically invariant follows from the relative
Diaconescu’s equivalence:

P-mod(Sets) ' DocSites((P, J), (P ,KP)),
' Geom(Sets,Sh(C o P, J)),
' Geom(Sets,Sh(C o Z(P, J),KZ(P,J))),
' DocSites((Z(P, J),KZ(P,J)), (P ,KP)),
' Z(P, J)-mod(Sets).

That the geometric completion is idempotent follows from the fact that

Z(P, J) � CπZ(P,J) ∗(ΩSh(Z(P,J))) = Z(Z(P, J),KZ(P,J)).

□

Remark IV.17. A direct proof of Theorem IV.16, without mention of internal locales,
could also be given. Given a morphism of doctrinal sites (F, a) : (P, J) → (L,KL),
where L : Dop → Frmopen is a geometric doctrine, we obtain the unique morphism of
geometric doctrines (F, a) : Z(P, J)→ L that makes the triangle

P Z(P, J)

L ◦ Fop

a

η(P,J)

a

commute by defining, for each S ∈ Z(P, J)(c),

ac(S) =
∨

(g,x)∈S
∃L(F(g))ad(x).
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Remark IV.18. Given a theory T over a signature Σ with N sorts, the category ConN

of contexts is normally considered to be entirely algebraic in content. That is to say,
the semantics of the empty theory OΣ over the signature Σ are equivalent to the flat
functors Flat(ConΣ,Sets) (see [63, Corollary D3.1.2] or Proposition III.5). In order to
amplify the analogy with theories, we have elected to work with doctrinal sites (P, J),
where only the categoryCoP is endowed with a Grothendieck topology J representing
richer syntax, while the base category C is effectively treated as being endowed with
the trivial topology.

We could rectify this myopia by considering the 2-category DocSitesWTB, the 2-
category of doctrinal sites with topologies on the base category.

(i) The objects of DocSitesWTB are relative sites

[πP : (C o P,K)→ (C, J)] ,

where P : Cop → PreOrd is a doctrine;

(ii) a 1-cell

(F,F o a) : (C, J,C o P,K) (D, J′,D oQ,K′)

of DocSitesWTB consists of a morphism of doctrines (F, a) : P → Q such that
(F,F o a) is a morphism of relative sites.

(iii) The 2-cells we include are the same as for DocSites.

We note that, because for each object (C, J,C o P,K) ∈ DocSitesWTB the geometric
morphism

CπP : Sh(C o P,K) SetsC
op

factors through Sh(C, J)↣ SetsC
op

, by Lemma II.16 the Grothendieck topology KZ(P,K)

on CoZ(P,K) contains the Giraud topology JπZ(P,K) , where Z(P,K) denotes the geometric
completion of (P,K) as in Definition IV.3. Hence, (C, J,C o Z(P,K),KZ(P,K)) defines an
object of DocSitesWTB.

Applying a similar method to that employed in Theorem IV.16, we can deduce
that

(C, J,C o Z(P,K),KZ(P,K))

is the universal completion of (C, J,C o P,K) to an object of DocSitesWTB of the form
(D, J′,D o L,KL) for an internal locale L : D→ Frmopen of Sh(D, J′).

The universal property of the geometric completion as stated in Theorem IV.16 is
therefore the restriction of this more general statement to the 1-full 2-subcategory of
DocSitesWTB on objects of the form

(C, Jtriv,C o P,K),

i.e. the 2-category DocSites from Definitions III.22. However, as explained above, for
the purposes of our intended, logical applications the extra generality is not needed.
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Preservation properties of the unit. For each object c ∈ C, the unit η(P,J)
c : P→ Z(P, J)

preserves finite meets. This can be seen directly. If the meet x ∧ y of two elements
x, y ∈ P(c) exists, or if P(c) has a top element >c, then the meet ↓x∧ ↓ y ∈ Z(P, Jtriv)(c) is
given by ↓ (x ∧ y) and ↓>c defines a top element of Z(P, Jtriv)(c). Thus, as

(−)c : Z(P, Jtriv) Z(P, J)

preserves finite meets as well, so does the composite η(P,J)
c = (−)c◦ ↓ (−)c.

It is also easily recognised that joins and existential quantifiers are preserved by
the unit η(P,J) if and only if the Grothendieck topology J is of a certain form. Given a
subset { yi | i ∈ I } ⊆ P(c) whose join

∨
i∈I yi exists in P(c), since

idC o η(P,J) : (C o P, J) (C o Z(P, J),KZ(P,J))

is cover preserving and reflecting by Proposition IV.15, we have that

η(P,J)
c

∨
i∈I

yi

 =∨
i∈I
η(P,J)

c (yi)

if and only if  (c, yi)
idc−−→

c,
∨
i∈I

yi


∣∣∣∣∣∣∣ i ∈ I


is a J-covering family. Identically, if P( f ) : P(c)→ P(d) has a left adjoint ∃P( f ), then, for
each x ∈ P(d),

η(P,J)
c ◦ ∃P( f )(x) = ∃Z(P,J) ◦ η(P,J)

d (x),

if and only if the singleton {
(d, x)

f−→ (c,∃P( f )x)
}

is a J-covering arrow.

IV.1.3 The geometric completion as a monad

In [119, §5], the language of 2-monad theory is used to describe the universal property
of the existential completion. This is expanded upon in [120] into a rich description of
the logical completions of elementary doctrines via 2-monad theory. Thus inspired, we
will use the language of 2-monad theory for investigating the geometric completion.

Recall that a 2-monad on a 2-category C is a triple (T, η, µ) consisting of an 2-
endofunctor T : C → C, and 2-natural transformations η : idC → T and µ : T ◦ T → T
such that the diagrams

T3 T2 idC ◦ T T2 T ◦ idC

T2 T, T

µT

Tµ

µ

ηT

µ

Tη

µ

(IV.ii)

strictly commute. The geometric completion will be a 2-monad on the 2-category
DocSites.
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We will initially develop the 1-monadic structure, and add the 2-monadic structure
in Proposition IV.19. For any morphism (F, a) : (P, J) → (Q,K) of doctrinal sites, there
exists a morphism of geometric doctrinal sites (F, a) : Z(P, J)→ Z(Q,K) by the universal
property of the geometric completion:

(P, J) (Z(P, J),KZ(P,J))

(Q,K) (Z(Q,K),KZ(Q,K)).

(idC,η(P,J))

(F,a) (F,a)

(idD,η(Q,K))

Thus, the geometric completion is 1-functorial in that it yields a 1-functor

Z : DocSites GeomDoc.

The universal property of the geometric completion ensures that the functor Z is a
left 1-adjoint to the inclusion of geometric doctrines into doctrinal sites:

DocSites GeomDoc.
Z

a (IV.iii)

The unit of the adjunction is the natural transformation η : idDocSites → Z whose
component at a doctrinal site (P, J) is η(P,J) : (P, J) → (Z(P, J),KZ(P,J)). The counit of the
adjunction is the natural transformation whose component at a geometric doctrine L
is the isomorphism of geometric doctrines L � Z(L,KL) induced by the equivalence
of topoi Sh(L) ' Sh(Z(L,KL)).

In Proposition IV.19 below we add the 2-monadic aspects. The strict 2-adjunction
we prove extends the 2-adjunction found in [24, Theorem 7.1], which presents the
universal property of the geometric completion without base change (i.e. all doctrines
considered are fibred over the same base category).

Proposition IV.19 (cf. Theorem 7.1 [24]). The geometric completion

Z : DocSites GeomDoc

can be made into a 2-functor such that

DocSites GeomDoc
Z

a

is a strict 2-adjunction.

Proof. We first show that Z can be made 2-functorial. Let (F, a), (F′, a′) : (P, J) ⇒ (Q,K)
be morphisms of doctrinal sites. We must show that every natural transformation
α : F⇒ F′ that defines a 2-cell between morphisms of doctrinal sites

(P, J) (Q,K)

(F,a)

(F′,a′)

α
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also yields a 2-cell of morphisms of geometric doctrines

Z(P, J) Z(Q,K).

(F,a)

(F′,a′)

α

That is, we must show that, for each c ∈ C and S ∈ Z(P, J)(c),

ac(S) ⩽ Z(Q,K)(αc)(a′c(S)).

A direct proof is possible (see [128, Proposition 4.13]), but it can also be achieved
by an application of Corollary I.27. First, recall from Remark III.2 that the 2-cell α
induces a natural transformation

C o P D oQ.

Foa

F′oa′

ᾰ

In turn, ᾰ induces a 2-cell of geometric morphisms

Sh(P, J) Sh(Q,K)

Sh(Foa)

Sh(F′oa′)

Sh(ᾰ)

by [63, Remark C2.3.5].
Recall also that the Grothendieck topology KZ(Q,K) onDoQ is relatively subcanon-

ical as defined in Definition I.26 (see Remark II.15(ii)). Therefore, by Corollary I.27
the 2-cell of geometric morphisms

Sh(Z(P, J),KZ(P,J)) ' Sh(P, J) Sh(Q,K) ' Sh(Z(Q,K),KZ(Q,K))

Sh(Foa)

Sh(F′oa′)

Sh(ᾰ)

induces a natural transformation Foa⇒ F′oa′ and hence, since Z(P, J) has non-empty
fibres, also a 2-cell

Z(P, J) Z(Q,K).

(F,a)

(F′,a′)

α

as desired (see Remark III.2).
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We now show that, for each doctrinal site (P, J) ∈ DocSites and geometric doctrine
L ∈ GeomDoc, there is a natural isomorphism of categories

DocSites((P, J), (L,KL)) � GeomDoc(Z(P, J),L). (IV.iv)

The isomorphism on objects is provided by the universal property of the geometric
completion. We demonstrate the isomorphism on arrows. Given a pair of morphisms
of doctrines (F, a), (F′, a′) : (P, J) ⇒ (L,KL) and a natural transformation α : F ⇒ F′, if
ac(x) ⩽ L(αc)(a′c(x)) for all c ∈ C and x ∈ P(c), i.e. α defines a 2-cell α : (F, a) ⇒ (F′, a′),
then α also defines a 2-cell α : (F, a)⇒ (F′, a′) by the 2-functoriality of Z shown above.
Conversely, if ac(S) ⩽ L(αc)(a′c(S)) for all c ∈ C and S ∈ Z(P, J)(c), then

ac(x) = ac(η
(P,J)
c (x)) ⩽ L(αc)(a′c(η

(P,J)
c (x))) = L(αc)(a′c(x)),

and so α defines a 2-cell α : (F, a) ⇒ (F′, a′). Thus, we obtain the isomorphism (IV.iv).
Hence, we have demonstrated the strict 2-adjunction

DocSites GeomDoc
Z

a

as desired. □

Remark IV.20. The isomorphism (IV.iv) could also be obtained by the more gen-
eral observation: whenever (Q,K) is a doctrinal site such that each component
η(Q,K)

d : Q(d) → Z(Q,K)(d) of the unit is injective, for any other doctrinal site (P, J)
and a pair of morphisms of doctrinal sites (F, a), (F, a′) : (P, J)⇒ (Q,K), a natural trans-
formation α : F ⇒ F′ defines a 2-cell (F, a) ⇒ (F′, a′) if and only if α defines a 2-cell
(F, a)⇒ (F′, a′). This is a consequence of the fact that if η(Q,K)

d is injective for each d ∈ D,
then K is a relatively subcanonical topology.

Therefore, the induced functor on hom-categories

DocSites((P, J), (Q,K)) GeomDoc(Z(P, J),Z(Q,K))

is full and faithful. The specific isomorphism (IV.iv) can then be obtained by noting
that η(L,KL) : L→ Z(L,KL) is an isomorphism for any geometric doctrine L.

It remains to describe the algebras of the geometric completion monad (Z, η, µ)
of the adjunction (IV.iii). Since the geometric completion is an idempotent monad,
a simple application of [13, Corollary 4.2.4, Volume 2] (extended to the 2-categorical
setting) yields the following corollary.

Corollary IV.21. The algebras for the monad (Z, η, µ) coincide with geometric doctrines, i.e.

DocSitesZ ' GeomDoc.

In particular, by restricting the adjunction (IV.iii), for each category C there is a 2-equivalence

(DocSites/C)Z ' Loc
(
SetsC

op)op
,

where (DocSites/C) denotes the 1-full 2-subcategory of DocSites whose objects are doctrinal
sites fibred over the category C.
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IV.1.4 The geometric completion of a regular site

We are able to combine the geometric completion of a doctrine with the syntactic
category construction studied in Section III.3 to define the geometric completion of
a regular site, which sends a regular site to a geometric category. Unsurprisingly,
this amounts to assigning to each regular site (C,K) the full subcategory of Sh(C,K)
spanned by subobjects of representables.

Definition IV.22. We denote by GeomCat the 2-category of geometric categories, the
2-category

(i) whose objects are geometric categories – regular categories whose subobject
lattices have arbitrary joins that are preserved by pullback,

(ii) whose 1-cells are geometric functors – regular functors that also preserve joins of
subobjects,

(iii) and whose 2-cells are natural transformations between these.

Each geometric category G can be equipped with the geometric topology JGeom, the
Grothendieck topology whose covering families are the jointly epimorphic ones, to
obtain a regular site (G, JGeom). In light of Remark III.37, this is the topology whose
restriction JGeom|SubG(g) to the subobject lattice SubG(g), for g ∈ G, is the topology where

{ ei ↣ h | i ∈ I } is a JGeom|SubG(g)-cover ⇐⇒ h =
∨
i∈I

ei.

This assignment of a regular site to a geometric category G is easily observed to
determine a full and faithful 2-embedding GeomCat ↪→ RegSites.

Theorem IV.23. There is a pseudo-adjunction

RegSites GeomCat
ZCat

a

for which each square in the diagram

ExDocSites GeomDoccart

RegSites GeomCat
ZCat

Syn Sub(−)Sub(−)Syn

Z

a

aa

a

(IV.v)

commutes.

Proof. In order to obtain the commutativity of the diagram (IV.v), we define

ZCat : RegSites GeomCat
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as the composite Syn ◦ Z ◦ Sub(−). The pseudo-adjunction is then obtained by the
natural equivalences, for each regular site (C,K) ∈ RegSites and geometric category
G ∈ GeomCat,

GeomCat(Syn(Z(SubC,KSub)),G) ' GeomDoccart(Z(SubC,KSub), SubG),
' ExDocSites((SubC,KSub), (SubG,KSubG)),
' RegSites((C,K), (G, JGeom)),

where in the last equivalence we have used that Sub(−) : RegSites → ExDocSites is
full and faithful. □

IV.2 Coarse geometric completions

Because the geometric completion takes a Grothendieck topology as a second argu-
ment, it is an idempotent completion (see Theorem IV.16). This is in contrast to many
of the other completions of doctrines considered in the literature (e.g. Trotta’s existen-
tial completion [119]). The geometric completion would not be idempotent if we did
not have the ability to take suitable topologies as a second argument.

Consider the terminal frame 2. Being a frame, there is a canonical isomorphism
Jcan-Idl(2) � 2, but one can easily calculate that Jtriv-Idl(2) is the 3-element frame 3 (i.e.
the opens of the Sierpinski space). We can interpret this behaviour as a ‘loss of infor-
mation’ by taking a coarser Grothendieck topology Jtriv ⊆ Jcan on 2. In order to relate the
geometric completion to other completions of doctrines considered in the literature,
we consider in this section the behaviour of the geometric completion for doctrines
when, for each geometric doctrine L, we deliberately choose a coarser Grothendieck
topology JA

L ⊆ KL on the category C o L (or indeed forget the Grothendieck topology
entirely by assigning the trivial topology Jtriv to C o L).

We thus arrive at the notion of a coarse geometric completion – a 2-monad ZA acting
on a 2-full 2-subcategory of DocSites. As evidenced by the example given above,
this monad ZA is no longer idempotent (unless each JA

L is chosen to be KL), unlike
the geometric completion monad Z. We will observe that each coarse geometric
completion is instead lax-idempotent. After establishing the lax-idempotency of a
coarse geometric completion in Corollary IV.28, we demonstrate in Corollary IV.30
how this yields a lax-idempotent geometric completion for cartesian, regular and
coherent categories.

Definition IV.24. A coarse geometric completion consists of the following data.

(i) We are given a 2-full 2-subcategory A-Doc ⊆ DocSites. The objects of A-Doc
we call A-doctrines and their morphisms we call A-doctrine morphisms.

(ii) There is a 2-subcategory GeomDocA ⊆ GeomDoc which is full on 1-cells and
2-cells satisfying the following conditions.

a) For each L ∈ GeomDocA, there is a choice of Grothendieck topology JA
L

on the category C o L which is coarser than the topology KL, i.e. JA
L ⊆ KL,

such that (L, JA
L) is an object of A-Doc. Moreover, the choice of topology

JA
L is functorial in the sense that, for each morphism of geometric doctrines
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(F, a) : L→ L′, there is a morphism of A-doctrines

(F, a) : (L, JA
L) (L′, JA

L′).

In other words, there is a 2-full 2-embedding GeomDocA ↪→ A-Doc.
b) For each object (P, J) ∈ A-Doc, the geometric completion Z(P, J) is contained

in GeomDocA and the unit η(P,J) : P → Z(P, J) defines a morphism of A-
doctrines

η(P,J) : (P, J) (Z(P, J), JA
Z(P,J)).

Theorem IV.25. Let A-Doc ⊆ DocSites and GeomDocA ⊆ GeomDoc define a coarse
geometric completion. There is a strict 2-adjunction

A-Doc GeomDocA

ZA

a

where ZA is the 2-functor

A-Doc DocSites GeomDoc.
Z

Proof. For each (P, J) ∈ A-Doc and L ∈ GeomDocA, the natural isomorphism on
objects of the categories

A-Doc((P, J), (L, JA
L)) � GeomDocA(ZA(P, J),L) (IV.vi)

acts by sending a morphism of geometric doctrines (F, a) : ZA(P, J)→ L to the composite

(P, J) (ZA(P, J), JA
ZA(P,J)) (L, JA

L)
η(P,J) (F,a)

and, vice versa, sending an arrow (F, a) : (P, J)→ (L, JA
L) to the morphism of geometric

doctrines (F, a) as induced by the diagram

(P, J) (Z(P, J), JA
Z(P,J)) (Z(P, J),KZ(P,J))

(L, JA
L) (L,KL)

(F,a)

η(P,J)

(F,a) (F,a)

and Theorem IV.16. That this extends to an isomorphism on arrows, and hence the
isomorphism of categories (IV.vi), follows from Proposition IV.19 and the fact that
A-Doc ⊆ DocSites and GeomDocA ⊆ GeomDoc are both full on 2-cells. □

Of course, 2 is a quotient frame (or sublocale) of 3. Similarly, the coarse geo-
metric completion of a geometric doctrine Z(L, JA

L) is related to the geometric doc-
trine L by a pointwise surjective morphism of geometric doctrines Z(L, JA

L) → L
(or internal sublocale embedding) corresponding to the inclusion of the subtopos
Sh(C o L,KL)↣ Sh(C o L, JA

L) (see Proposition II.28 – if JA
L is the trivial topology, the

morphism Z(L, Jtriv)→ L is precisely the KL-closure operation from Definition IV.5).
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Lax idempotency for coarse geometric completions. As previously mentioned, the
strict 2-adjunction

A-Doc GeomDocA

ZA

a

of a coarse geometric completion is not necessarily idempotent. We dedicate the
remainder of this section to showing that ZA satisfies a weaker form of idempotency:
lax-idempotency.

Let T : C → C be a 2-monad with unit η : idC → T and multiplication µ : T2 → T.
The 2-monad T is lax-idempotent1 if the composites of the diagram

TA T2A,
ηTA

µA

although perhaps not strictly equal to the identities idTA and idT2A, as is the case for
an idempotent monad, can instead be related by canonical 2-cells such that there is
an adjunction µA a ηTA (see [74, Proposition 1.2]). Specifically, we require a require a
2-cell

TA T2A,

TηA

ηTA

λA

natural in A, such that the horizontal composites

A TA T2A,

TηA

ηTA

ηA
λA TA T2A A

TηA

ηTA

µA
λA

are both identity 2-cells (see [74, Definition 1.1]).
Often it can be more tractable, if circumlocutory, to demonstrate lax-idempotency

by an equivalent condition regarding the algebras of the monad. Recall from [72] that,
given a pair of (strict) T-algebras (A, a) and (B, a), a lax morphism of T-algebras is a pair
( f , α) where f : A→ B is an arrow of Cwhile α is a 2-cell α : b ◦T f ⇒ f ◦ a that fills the
square

TA TB

A B

T f

a b

f

α

1In [74], lax-idempotent monads are called KZ-doctrines. However, using this terminology would
be confusing in the context of doctrines in the sense of Lawvere.
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and satisfies the coherence conditions

T2A T2B T2A T2B

TA TB = TA TB

A B A B
f

a b

T f

T2 f

µA µB

f

a b

T f

Ta TB

T2 f

α α

Tα

(IV.vii)

and
A B A B

TA TB =

A B A B.

ηA ηB

f

T f

f

a b
f

f

idA idB

α

(IV.viii)

It is shown in [72, Theorem 6.2] that T is lax-idempotent if and only if for each pair
(A, a) and (B, b) of (strict) T-algebras and a morphism f : A→ B there is a unique 2-cell
α : b ◦ T f ⇒ f ◦ a such that ( f , α) : (A, a)→ (B, b) is a lax morphism of T-algebras.

We require two lemmas concerning the algebras of ZA in order to demonstrate that a
coarse geometric completion ZA : A-Doc→ A-Doc is lax-idempotent. Since, in the per-
tinent examples of coarse geometric completions we will consider in Examples IV.29,
the Grothendieck topology J given on CoP for an A-doctrine (P, J) ∈ A-Doc is chosen
for us, in what follows we simplify notation and denote the object (P, J) of A-Doc by
simply P. Also in aid of legibility, if (G, b) = ξ : P→ Q is a morphism of A-doctrines,
we will abuse notation and write ξ for the natural transformation b : P ⇒ Q ◦ Gop as
well.

Lemma IV.26. Let P : Cop → PreOrd and Q : Dop → PreOrd be a pair of A-doctrines and
let ξ : ZA(P)⇒ P and ζ : ZA(Q)⇒ Q be natural transformations such that the triangles

P ZA(P) Q ZA(Q)

P, Q

ηP

ξ

ηQ

ζ

commute. Given a morphism of doctrine (F, a) : P → Q, for each arrow d
f−→ c ∈ C and

x ∈ P(d), there is an inequality

ζc ◦ ∃ZA(Q)(F( f )) ◦ ηQ
d ◦ ad(x) ⩽ ac ◦ ξc ◦ ∃ZA(P)( f ) ◦ ηP

d (x).

Proof. Firstly, using the inequality ηP
d (x) ⩽ ZA(P)( f ) ◦ ∃ZA(P)( f ) ◦ ηP

d (x), we deduce that

ηQ
d ◦ ad(x) = ηQ

d ◦ ad ◦ ξd ◦ ηP
d (x),

⩽ ηQ
d ◦ ad ◦ ξd ◦ ZA(P)( f ) ◦ ∃ZA(P)( f ) ◦ ηP

d (x),

= ZA(Q)(F( f )) ◦ ηQ
c ◦ ac ◦ ξc ◦ ∃ZA(P)( f ) ◦ ηP

d (x).
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Thus, by the adjunction ∃Z(Q)(F( f )) a Z(Q)(F( f )), we have that

∃ZA(Q)(F( f )) ◦ ηQ
d ◦ ad(x) ⩽ ηQ

c ◦ ac ◦ ξc ◦ ∃ZA(P)( f ) ◦ ηP
d (x),

and we therefore obtain the desired inequality

ζc ◦ ∃ZA(Q)(F( f )) ◦ ηQ
d ◦ ad(x) ⩽ ζc ◦ ηQ

c ◦ ac ◦ ξc ◦ ∃ZA(P)( f ) ◦ ηP
d (x),

= ac ◦ ξc ◦ ∃ZA(P)( f ) ◦ ηP
d (x).

□

Lemma IV.27. If (P, ξ) is a ZA-algebra, then ξc : ZA(P)(c)→ P(c) preserves joins for all c ∈ C.

Proof. Let us first show that P(c) must have all joins. For a subset { xi | i ∈ I } of P(c),
we claim that the join

∨
i∈I xi is given by ξc

(∨
i∈I η

P
c (x)

)
. For each i ∈ I, we have that

xi = ξc ◦ ηP
c (x) ⩽ ξc

∨
i∈I
ηP

c (x)


while, if given y ∈ P(c) with xi ⩽ y for all i ∈ I, we have the converse inequality

ξc

∨
i∈I
ηP

c (x)

 ⩽ ξc ◦ ηP
c (y) = y.

Hence, the join
∨

i∈I xi is given by ξc
(∨

i∈I η
P
c (x)

)
.

To show that ξc preserves these joins, we first observe that the diagrams

ZAZA(P) ZA(P) ZA(P) P

ZA(P) ZA(P) P, ZAZA(P) ZA(P)

ZA(ξ)

µP ξ

ξ

ηZA(P) ηPηZA(P)

ξ ZA(ξ)

both commute – the left-hand diagram commutes since ZA is a monad and (P, ξ) is a
ZA-algebra, while the right-hand square commutes as η is natural. Note also that µP

and ZA(ξ) are morphisms of geometric doctrines. In particular, for each c ∈ C, both µP
c

and ZA(ξ)c commute with all joins.
Therefore, given a subset {Si | i ∈ I } ⊆ ZA(P)(c), we observe that∨

i∈I
ξc(Si) = ξc

∨
i∈I
ηP

c ◦ ξc(Si)

 ,
= ξc

∨
i∈I

ZA(ξ)c ◦ ηZA(P)
c (Si)

 ,
= ξc ◦ ZA(ξ)c

∨
i∈I
η

ZA(P)
c (Si)

 ,
= ξc ◦ µP

c

∨
i∈I
η

ZA(P)
c (Si)

 ,
= ξc

∨
i∈I
µP

c ◦ η
ZA(P)
c (Si)

 = ξc

∨
i∈I

Si


and hence joins are indeed preserved. □
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Finally we complete the proof that ZA is lax-idempotent. The argument is remi-
niscent of that found in [119, Theorem 5.6].

Corollary IV.28. Each coarse geometric completion ZA : A-Doc→ A-Doc is lax-idempotent.

Proof. Let (P, ξ) and (Q, ζ) be algebras of the 2-monad ZA. For each morphism of
A-doctrines (F, a), we first demonstrate that the identity transformation idF : F ⇒ F
defines a 2-cell that fills the square

ZA(P) ZA(Q)

P Q.

(F,a)

ξ ζ

(F,a)

idF

We thus need to demonstrate, for all S ∈ ZA(P)(c), the inequality

ζc ◦ ac(S) ⩽ ac ◦ ξc(S).

By combining Remark IV.17, Lemma IV.26 and Lemma IV.27, we obtain the desired
inequality:

ζc ◦ ac(S) = ζc

 ∨
( f ,x)∈S

∃ZA(Q)(F( f )) ◦ ηQ
d ◦ ad(x)

 ,
=

∨
( f ,x)∈S

ζc ◦ ∃ZA(Q)(F( f )) ◦ ηQ
d ◦ ad(x),

⩽
∨

( f ,x)∈S
ac ◦ ξc ◦ ∃ZA(P)( f ) ◦ ηP

d (x),

⩽ ac ◦ ξc

 ∨
( f ,x)∈S

∃ZA(P)( f ) ◦ ηP
d (x)

 = ac ◦ ξc(S).

Its trivially shown that ((F, a), idF) satisfies the coherence conditions (IV.vii) and (IV.viii).
For any other 2-cell α : ζ ◦ (F, a)⇒ (F, a) ◦ ξ satisfying the coherence condition

P Q P Q

ZA(P) ZA(Q) =

A B P Q,

ηP ηQ

(F,a)

(F,a)

(F,a)

ξ ζ

(F,a)

(F,a)

idP idQ

α

the equality α = idF is forced, and so ((F, a), idF) is the unique such lax ZA-algebra
morphism. □

Examples IV.29. We obtain the following lax-idempotent 2-monads as applications
of Theorem IV.25 and Corollary IV.28.
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(i) By Docflat denote the 1-full 2-subcategory of DocSites on objects of the form
(P, Jtriv). Equivalently, Docflat is the 2-full 2-subcategory of Doc on doctrines and
flat morphisms of doctrines. The assignment of the trivial topology Jtriv to each
geometric doctrineL ∈ GeomDoc yields a 2-embedding GeomDoc ↪→ Doc that
satisfies the conditions of Definition IV.24. Thus, we obtain a coarse geometric
completion that we will call the free geometric completion

Docflat GeomDoc.
ZFr

a

In particular, this restricts to a strict 2-adjunction

PrimDoc GeomDoccart,

ZFr

a

between the 2-category of primary doctrines and the 2-category of geometric
doctrines indexed over cartesian base categories. The free geometric completion
coincides with the completion studied in [38, §3.1.3].

(ii) There is a 2-embedding of GeomDoc into the 2-full 2-subcategory RelExDoc
of DocSites of relative existential doctrines, given by sending a geometric
doctrine L ∈ GeomDoc to (L, JEx) ∈ RelExDoc, satisfying the conditions of
Definition IV.24. Hence, we obtain a coarse geometric completion that we call
the existential geometric completion

RelExDoc GeomDoc,
ZEx

a

This strict 2-adjunction restricts to the 2-subcategories of existential doctrines
and geometric doctrines over a cartesian base category

ExDoc GeomDoccart.

ZEx

a

By Proposition IV.6, the existential geometric completion is a pointwise con-
struction.

(iii) Similarly, we obtain a coarse coherent completion for relative coherent doctrines,
the coherent geometric completion

RelCohDoc GeomDoc,
ZCoh

a

where GeomDoc ↪→ RelCohDoc is the 2-embedding that sends a geometric
doctrine L ∈ GeomDoc to (L, JCoh) ∈ RelCohDoc. Once again, this restricts to a
strict 2-adjunction

CohDoc GeomDoccart.

ZCoh

a

Once again, by Proposition IV.6, this is a pointwise construction.
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Coarse geometric completions for categories. We now relate how the coarse geo-
metric completions considered in Examples IV.29 interact with the syntactic category
construction from Section III.3. We will obtain (coarse) geometric completions for
cartesian categories, regular categories and coherent categories.

A coherent category (see [63, §A1.4], also called a logical category in [87]) is a regular

category whose subobject lattices SubC(c) have finite joins and, for each arrow d
f−→ c of

C, SubC( f ) preserves these finite joins. A coherent functor F : C → D, between coherent
categories, is a regular functor that preserves finite joins as well. We denote by Coh
the 2-category of coherent categories, coherent functors and natural transformations
between these.

The 2-functors ZCat
Ex : Reg → GeomCat and ZCat

Coh : Coh → GeomCat constructed
below in Corollary IV.30 are evidently given by the composites

Reg RegSites GeomCat
ZCat

and

Coh RegSites GeomCat,
ZCat

where Reg ↪→ RegSites (respectively, Coh ↪→ RegSites) denotes the 2-embedding
that sends a regular (resp., coherent) category C to the regular site (C, JReg) (resp.,
(C, JCoh)). Here JReg denotes the regular topology and JCoh denotes the coherent topology
(see [63, Examples A2.1.11]).

Corollary IV.30. There are lax-idempotent pseudo-adjunctions:

(i) Cart GeomCat,

ZCat
Fr

a

(ii) Reg GeomCat,

ZCat
Ex

a

(iii) Coh GeomCat.

ZCat
Coh

a

Proof. We will only spell out the proof for (i), the other pseudo-adjoints being con-
structed in a similar fashion. We define ZCat

Fr : Cart → GeomCat as the composite
Syn ◦ ZFr ◦ Sub(−), as in the diagram

PrimDoc GeomDoccart

Cart GeomCat.

ZCat
Fr

ZFr

Sub(−) Sub(−)Syn

a

a

a

The required natural equivalence of categories, for each C ∈ Cart and G ∈ GeomCat,

Cart(C,G) ' GeomCat(Syn(ZFr(SubC)),G)
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follows by the chain of equivalences

Cart(C,G) ' PrimDoc(SubC, SubG),
' GeomDoccart(ZFr(SubC), SubG),
' GeomCat(Syn(ZFr(SubC)),G),

where we have used that Sub(−) is full and faithful. □

IV.3 Subgeometric completions

Having hinted at the existence of subgeometric completions throughout, we finally
turn to their systematic treatment. The term subgeometric completion is intended to
convey the following vague sense: a completion TP of a doctrine P is ‘subgeometric’ if
the data added by T can be ‘seen’ by a certain Grothendieck topology JT on the category
C o TP, and has the property that Z(P, Jtriv) � Z(TP, JT) – i.e. freely geometrically
completing P is the same as completing P according to T, keeping track of this new
information by JT, and then geometrically completing. We have already observed this
phenomenon in Section IV.1.1 with the free top completion, and we will see further
examples below. It is this vague notion of ‘subgeometricity’ that we seek to formalise
in this section.

We proceed as follows.

− Immediately below in Section IV.3.1 we present another motivating example
for the theory of subgeometric completions: we demonstrate that the existen-
tial completion of a primary doctrine due to Trotta [119] satisfies our vague
understanding of subgeometricity as stated above.

− We use this, and our study of the free top completion in Section IV.1.1, as intu-
ition when introducing the formal definition of a subgeometric completion in
Section IV.3.2. We also discuss sufficient conditions under which a subgeometric
completion can automatically be deduced to be lax-idempotent.

− In the remaining two subsections, Section IV.3.3 and Section IV.3.4, we discuss
several examples of subgeometric completions. In the former, we discuss subge-
ometric completions obtained by considering special ‘compatible’ subdoctrines
of the free geometric completion. In this way, we recover the existential com-
pletion as well as the coherent completion for primary doctrines. We also relate
these completions of primary doctrines to the corresponding regular completion
and coherent completion of cartesian categories (see [27]). Finally, in the latter
subsection, we give examples of ‘pointwise’ subgeometric completions.

IV.3.1 The existential completion is subgeometric

We begin by explicitly describing the free geometric completion ZFr(P) of a primary
doctrine P ∈ PrimDoc as defined in Examples IV.29(i). This is the geometric doctrine
Z(P, Jtriv) : Cop → Frmopen and thus, by Construction IV.4, can be described in the
following way.
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(i) For each object c of C, an element S of ZFr(P)(c) is a set of pairs ( f , x), where d
f−→ c

is an arrow of C and x ∈ P(d), such that if ( f , x) ∈ S, for each arrow e
g−→ d of C

and y ∈ P(e), if y ⩽ P(g)(x) then ( f ◦ g, y) ∈ S too. We order ZFr(P)(c) by inclusion.

(ii) For each arrow d
f−→ c of C, ZFr(P)( f ) : ZFr(P)(c)→ ZFr(P)(d) sends S ∈ ZFr(P)(c) to

f ∗(S) =
{

(g, y)
∣∣∣ ( f ◦ g, y) ∈ S

} ∈ ZFr(P)(d).

The description of the free geometric completion ZFr(P) given above is markedly
similar to the existential completion of a primary doctrine established in [119, §4], which
we recall below. We will be able to relate the two: the free geometric completion
of a primary doctrine can be computed as the existential completion followed by
the existential geometric completion – i.e. the pointwise free join completion (see
Examples IV.29(ii)).

The existential completion. Recall from [119] that the existential completion of a
primary doctrine P : Cop →MSLat is the functor P∃ : Cop →MSLat defined as follows.

(i) Let c be an object of C. Consider the set whose elements are pairs ( f , x) where

d
f−→ c is an arrow of C and x ∈ P(d). We order this set by setting (g, y) ⩽ ( f , x) if

there is an arrow e h−→ d, making the triangle commute

e

d c,

h
g

f

such that y ⩽ P(h)(x). We define P∃(c) as the poset obtained when we identify
two elements such that ( f , x) ⩽ (g, y) and (g, y) ⩽ ( f , x). Just as in [119], we will
abuse notation and not differentiate between the pair ( f , x) and its equivalence
class.

(ii) Given an arrow e
g−→ c of C, the map P∃(g) : P∃(c) → P∃(e) acts by sending an

element ( f , x) ∈ P∃(c) to (k,P(h)(x)) ∈ P∃(e), where

e ×c d e

d c

k

h
⌟

g

f

is a pullback square in C.

This is the ‘existential completion’ of P in following sense.

(i) For each arrow e
g−→ c of C, the map P∃(g) : P∃(c) → P∃(e) has a left adjoint ∃P∃(g)

that sends ( f , x) ∈ P∃(e) to (g ◦ f , x) ∈ P∃(d). With these left adjoints, the doctrine
P∃ satisfies the Frobenius and Beck-Chevalley conditions (see [119, Proposition
4.2 & Theorem 4.3]).

(ii) There is a natural transformation ιP : P → P∃ given by sending x ∈ P(c) to
(idc, x) ∈ P∃(c) (see [119, Proposition 4.10]).
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(iii) Given an existential doctrine Q : Dop → MSLat, for each morphism of primary
doctrines (F, a) : P→ Q, there is a unique natural transformationα∃ : P∃ ⇒ Q◦Fop

such that:

a) the triangle

P P∃

Q ◦ Fop

α

ιP

α∃

commutes,

b) for each arrow e
g−→ c of C, the square

P∃(c) P∃(e)

Q(F(c)) Q(F(e))

α∃c

∃P∃(g)

α∃e

∃Q(F(g))

commutes (see [119, Theorem 4.14]).

In [119, Proposition 4.9], it is shown that the existential completion defines a
2-functor

(−)∃ : PrimDoc ExDoc.

We can now observe that the existential completion satisfies our loose notion of
‘subgeometricity’.

Proposition IV.31. For each primary doctrine P : Cop →MSLat, there is a natural isomor-
phism

ZFr(P) � ZEx(P∃) = Z(P∃, JEx).

Proof. This is immediate since the data of a down-set of P∃(c), i.e. an element of ZEx(P∃)
by Proposition IV.6, is precisely the data of an element S ∈ ZFr(P)(c). □

Remark IV.32. Given a primary doctrine P, the construction presented above of its
existential completion P∃ is slightly simplified to that found in [119]. Namely, we
have added a left adjoint ∃P∃(g) to P∃(g) for every arrow e

g−→ c of C, whereas in [119] a
generalised construction is given that freely adds a left adjoint∃P∃(g) to P∃(g) for arrows
in a chosen class Λ of morphisms of C closed under pullbacks and compositions and
containing all identities.

It is not hard to generalise our exposition to show that this modified existential
completion is also subgeometric. In Proposition IV.31, the Grothendieck topology JEx

is replaced by the topology J(Ex,Λ), whose covering sieves are precisely those generated
by the singleton arrows

(d, x) (c,∃P∃( f )x),
f

for each arrow d
f−→ c ∈ Λ. The conditions on Λ are precisely what are needed to en-

sure that J(Ex,Λ) satisfies definition of a Grothendieck topology – e.g., pullback stability
corresponds to the stability condition on J(Ex,Λ). As follows from Examples III.10(ii),
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taking Λ as the class of product projections corresponds to freely completing with re-
spect to existential quantification, while takingΛ as the class of diagonals corresponds
to freely completing with respect to an equality predicate.

IV.3.2 Generalised subgeometric completions

We now develop an abstract framework which captures the notion of a subgeometric
completion. We also give sufficient conditions under which a subgeometric comple-
tion is automatically lax-idempotent. In the latter subsections Section IV.3.3 and
Section IV.3.4, we will demonstrate that the examples of subgeometric completions
we have encountered so far satisfy this generalised definition.

Definition IV.33. Let A-Doc be a 2-full 2-subcategory of Doc (an object of A-Doc will
be called an A-doctrine, and an arrow of A-Doc a morphism of A-doctrines) such that
the image of the 2-functor

A-Docflat Docflat GeomDoc ⊆ Docflat
ZFr

is contained in A-Doc, as is the unit η(P,Jtriv) : P→ ZFr(P) for each A-doctrine P ∈ A-Doc.
Here A-Docflat represents the 2-full 2-subcategory of A-Doc whose objects are A-
doctrines and whose 1-cells are A-doctrine morphisms that are also flat. A 2-monad
(T, ε, ν) on the 2-category A-Doc, thought of as a completion of A-doctrines, is said to
be subgeometric if it satisfies the following conditions.

(i) For each A-doctrine P : Cop → PreOrd in A-Doc, there exists a choice of A-
doctrine morphism

ξP : TZFr(P) ZFr(P)

such that (ZFr(P), ξP) defines a T-algebra.

(ii) For each A-doctrine P : Cop → PreOrd, there exists a Grothendieck topology JT
P

on the categoryD o TP such that:

a) the unit εP : P→ TP of the monad yields a morphism of doctrinal sites

εP : (P, Jtriv) (TP, JT
P),

b) for each A-doctrine P : Cop → PreOrd, the A-doctrine morphism ξP from
above yields a morphism of doctrinal sites

ξP : (TZFr(P), JT
ZFr(P)) (ZFr(P),KZFr(P)),

c) and the mapping that sends an A-doctrine P : Cop → PreOrd to the doctrinal
site (TP, JT

P) can be made functorial, i.e. each morphism of A-doctrines
θ : P→ Q yields a morphism of doctrinal sites

Tθ : (TP, JT
P) (TQ, JT

Q).

Thus there exists a 1-functor A-Doc → DocSites that acts on objects by
P 7→ (TP, JT

P) (we label this functor by JT). In fact, since two morphisms
Tθ,Tθ′ : TP⇒ TQ share the same 2-cells in both Doc and DocSites, JT can
be taken as a 2-functor.
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Remark IV.34. (i) Condition (i) of Definition IV.33 expresses that the completion T
completes an A-doctrine P to some fragment of the data of a geometric doctrine.
Evidently, if ZFr(P) already possesses the structure which T is freely adding, then
ZFr(P) is a T-algebra. Condition (ii) expresses that the added data can be ‘seen’
by a choice of Grothendieck topology.

(ii) In Definition IV.33, we also made the distinction between the category A-Doc, on
which the monad of the subgeometric completion (T, ε, ν) acts, and the category
A-Docflat. This pedantry is necessary to include as examples all the completions
we would expect to be subgeometric. For example, the free top completion does
not induce a monad on Docflat. For a preorder P, the inclusion P ↪→ P ⊕ > = P>

of P into its free top completion, i.e. the unit of the completion, does not induce a
morphism of doctrinal sites (P, Jtriv)→ (P>, Jtriv), but it does induce a morphism
of doctrinal sites (P, Jtriv)→ (P>, J>triv) (see Lemma IV.12).

Theorem IV.35. For each subgeometric completion (T, ε, ν) on a 2-subcategory A-Doc of
Doc, the square

A-Docflat Docflat

DocSites GeomDoc

JT ZFr

Z

commutes up to 2-natural isomorphism. In particular, for each A-doctrine P : Cop → PreOrd,
there is an isomorphism ZFr(P) � Z(T(P), JT

P).

Proof. The component of the 2-natural isomorphism Z ◦ JT � ZFr at an A-doctrine P is
given by Z(εP) – that is the arrow

(P, Jtriv) (ZFr(P),KZFr(P))

(TP, JT
P) (Z(TP, JT

P),KZ(TP,JT
P ))

η(P,Jtriv)

εP Z(εP)

η(TP,JTP )

as induced by the universal property of the geometric completion. By the 2-naturality
of ε, it is trivial to see that the arrows Z(εP) are the components of a 2-natural trans-
formation.

It remains to show that Z(εP) is an isomorphism for each A-doctrine P ∈ A-Doc.
We exploit the universal property of the geometric completion to construct an inverse.
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Consider the diagram

(ZFr(P),KZFr(P))

(P, Jtriv) (TP, JT
P) (Z(TP, JT

P),KZ(TP,JT
P ))

(TP, JT
P) (TZFr(P), JT

ZFr(P))

(Z(TP, JT
P),KZ(TP,JT

P )) (ZFr(P),KZFr(P)),

εP

εP Tη(P,Jtriv)

ξP

η(TP,JTP )

ΞP

η(TP,JTP )

Z(εP)

η(P,Jtriv) Z(εP)

η(P,Jtriv)

(IV.ix)

where the arrow ΞP : (Z(TP, JT
P),KZ(TP,JT

P )) → (ZFr(P),KZFr(P)) is induced by the universal
property of the geometric completion.

We claim that the diagram (IV.ix) commutes – it suffices to only check that the
triangle

(P, Jtriv) (TP, JT
P)

(TZFr(P), JT
ZFr(P))

(ZFr(P),KZFr(P))

εP

Tη(P,Jtriv)

ξP

η(P,Jtriv)
(IV.x)

commutes (the other sub-diagrams follow by definition). The triangle (IV.x) commutes
since

ξP ◦ Tη(P,Jtriv) ◦ εP = ξP ◦ εZFr(P) ◦ η(P,Jtriv) since ε is natural,

= η(P,Jtriv) since (ZFr(P), ξP) is a T-algebra.

Therefore, by the universal property of the geometric completion, we obtain the
desired equations Z(εP) ◦ ΞP = idZ(TP,JT

P ) and ΞP ◦ Z(εP) = idZFr(P). □

Remark IV.36. We saw in Section IV.1.1 that for each doctrine P : Cop → PreOrd and
Grothendieck topology J onCoP, there is a Grothendieck topology J> on the category
C o P>, where P> is the free (preserved) top completion, such that Z(P, J) � Z(P>, J>).
It is not hard to see that the notion of subgeometric completion and the result of
Theorem IV.35 can be extended to encompass 2-subcategories A-Doc ⊆ DocSites in
addition to 2-subcategories A-Doc ⊆ Doc as currently presented. We present the
modified result below.
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Let A-Doc be a 2-full 2-subcategory of DocSites endowed with a 2-monad (T, ε, ν).
By GeomDocA denote the image of the composite

A-Doc DocSites GeomDoc.
Z

Suppose that, for each object (P, J) ∈ A-Doc, there exists a choice JA
(P,J) of a Grothendieck

topology on the category C o Z(P, J) such that (Z(P, J), JA
(P,J)) ∈ A-Doc and Z(P, J) also

satisfies the following properties.

(i) The choice of topology JT
(P,J) is 2-functorial, i.e. the action on objects that sends

Z(P, J) ∈ GeomDocA to the doctrinal site (Z(P, J), JA
(P,J)) ∈ A-Doc can be extended

to a 2-functor
JT : GeomDocA A-Doc.

(ii) For each (P, J) ∈ A-Doc, there is a morphism

ξ(P,J) : T(Z(P, J), JT
(P,J)) (Z(P, J), JT

(P,J))

of A-Doc for which ((Z(P, J), JT
(P,J)), ξ(P,J)) is a T-algebra and, moreover, the un-

derlying functor and natural transformation pair of ξ(P,J) define a morphism of
doctrinal sites ξ(P,J) : T(Z(P, J), JT

(P,J))→ (Z(P, J),KZ(P,J)).

Then the square

A-Doc DocSites

A-Doc DocSites GeomDoc

T Z

Z

commutes up to natural isomorphism.

When are subgeometric completions lax-idempotent? In Corollary IV.28, we ob-
served that the free geometric completion ZFr is lax-idempotent. We may wonder if
this infers that any subgeometric completion is also lax-idempotent. The inference
holds, under some further assumptions.

Proposition IV.37. Let (T, ε, ν) be a subgeometric completion acting on A-Doc, such that

(i) for each A-doctrine P, the natural transformation η(P,JT
P ) : TP → Z(TP, JT

P) is pointwise
injective,

(ii) and, for each A-doctrine P, the multiplication of the free geometric completion

µP : ZFrZFr(P) ZFr(P)

yields a morphism (ZFrZFr(P), ξZFr(P))→ (ZFr(P), ξP) of T-algebras,

then (T, ε, ν) is lax-idempotent.
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Proof. Recall that a 2-monad (τ, e,m) on D is lax-idempotent if, for each d ∈ D, there
is a 2-cell λd : τed ⇒ eτd, natural in d, such that the two horizontal composites

d τd ττd,

τed

eτd

ed
λd τd ττd τd,

τed

eτd

md
λd

i.e. λd ∗ ed and md ∗ λd, are the identity 2-cells.

Our strategy for the proof is to lift the 2-cell λP : ZFr(η
(P,Jtriv)) ⇒ η(ZFr(P),Jtriv), corre-

sponding to an A-doctrine P, to a 2-cell λP : TεP ⇒ εTP. We will then use that the free
geometric completion ZFr is lax idempotent, i.e. that λP ∗ η(P,Jtriv) and µP ∗ λP are both
the identity 2-cells, to deduce the corresponding equations for the 2-monad T.

Since for each A-doctrine P, the natural transformation η(P,JT
P ) : TP → Z(TP, JT

P) is
pointwise injective, by Remark IV.20 the functor

DocSites((TP, JT
P), (TTP, JT

TP)) GeomDoc
(
Z(TP, JT

P),Z(Z(TP, JT
P), JT

Z(TP,JT
P )

)
)

induced by η(TP,JT
P ) is full and faithful. Hence, so too is the functor

DocSites((TP, JT
P), (TTP, JT

TP)) GeomDoc(ZFr(P),ZFrZFr(P)) (IV.xi)

induced by the composite ΞP ◦ η(TP,JT
P ), where ΞP is the inverse to Z(εP) as constructed

in Theorem IV.35. We will write ΘP for the composite ΞP ◦ η(TP,JT
P ) : TP→ ZFr(P).

Therefore, since ZFr is lax-idempotent, the corresponding 2-cell λP : ZFr(η
(P,Jtriv)) ⇒

η(ZFr(P),Jtriv) lifts, as (IV.xi) is full, to a 2-cell λP : TεP ⇒ εTP (this 2-cell is of course labelled
by idC, where P is fibred over the category C – but that should not be confused with
it being the identity 2-cell).

Note that, by definition, for each A-doctrine P the diagram

TP

P Z(TP, JT
P)

ZFr(P)

η(TP,JTP )

ΘP

εP

η(P,Jtriv)

ΞPZFr(ε
P)
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commutes. Therefore, the diagram

P TP TTP

P ZFr(P) ZFrZFr(P),

εP

TεP

εTP

η(P,Jtriv)

ΘP ΘZFr(P)◦TΘP
ZFr(η(P,Jtriv))

η(ZFr(P),Jtriv)

λP

λP

also commutes. Since

DocSites((P, Jtriv), (TTP, JT
TP)) DocSites((P, Jtriv), (ZFrZFr(P),KZFrZFr(P)))

is faithful, again by Remark IV.20, we conclude that λP ∗εP is indeed the identity 2-cell.
We exploit a symmetric argument to conclude that νP ∗λP is also the identity 2-cell.

We claim that the diagram

TP TTP TP

ZFr(P) ZFrZFr(P) ZFr(P)

TεP

εTP

ΘP ΘZFr(P)◦TΘP
ZFr(η(P,Jtriv))

η(ZFr(P),Jtriv)

νP

ΘP

µP

λP

λP

(IV.xii)

also commutes. Using that

DocSites((TP, JT
P), (TP, JT

P)) GeomDoc(ZFr(P),ZFr(P))

is faithful, again by Remark IV.20, we conclude that νP ∗ λP is the identity 2-cell as
desired.

However, demonstrating the commutativity of (IV.xii), that is the commutativity
of the required square

TTP TP

ZFrZFr(P) ZFr(P),

νP

ΘZFr(P)◦TΘP ΘP

µP

(IV.xiii)
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is more involved. First, recall from Theorem IV.35 that, for each A-doctrine P, the
square

TP Z(TP, JT
P)

TZFr ZFr(P)

η(TP,JTP )

Tη(P,Jtriv)
ΞP

ξP

(IV.xiv)

commutes. We can show that the square (IV.xiii) commutes by decomposing it as

TTP TP

TZ(TP, JT
P) TTZFr(P) TZFr(P) Z(TP, JT

P)

TZFr(P) ZFr(P)

Z(TZFr(P), JT
ZFr(P)) TZFrZFr(P) TZFr(P)

ZFrZFr(P) ZFr(P).

νP

µP

TTη(P,Jtriv)

νZFr(P)

Tη(P,Jtriv)

Tη(TP,JTP )

TΞp
TξP

ξP

ξP

η(TP,JTP )

ΞP

ξP

TµP

ξZFr(P)

Tη(ZFr(P),Jtriv)

η
(TZFr(P),JT

ZFr(P))

ΞZFr(P)

1

2

3

4

5

6

The squares 1 and 2 commute by (IV.xiv), and the square 3 is just T applied
to (IV.xiv). The square 4 commutes by the naturality of ν : TT → T. The square 5
commutes since (ZFr(P), ξP) is a T-algebra. The square 6 commutes by the assumption
that µP yields a morphism (ZFrZFr(P), ξZFr(P)) → (ZFr(P), ξP) of T-algebras. Finally, the
remaining equation to check, that

ξP ◦ TµP ◦ Tη(ZFr(P),Jtriv) = ξP,

follows from µP ◦ η(ZFr(P),Jtriv) = idZFr(P), the unit law for (ZFr, η, µ). □

IV.3.3 Subgeometric completions via subdoctrines

Let P : Cop → MSLat be a primary doctrine. The statement of Proposition IV.31
expresses that the fibre at c of the geometric completion P∃(c) can be recovered as the
subset of ZFr(P)(c), specifically as the subset of elements of the form ∃ fη

(P,Jtriv)
d (x), where

d
f−→ c is an arrow of C and x ∈ P(d). Furthermore, the elements ∃ fη

(P,Jtriv)
d (x) ∈ ZFr(P)(c)

can be characterised as the supercompact objects of the site (C o ZFr(P),KZFr(P)).
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Lemma IV.38. An element S ∈ ZFr(P)(c) is of the form ∃ fη
(P,Jtriv)
d (x) if and only if (c,S) is

supercompact, i.e. every KZFr(P)-cover of (c,S) contains a singleton subcover.

Proof. Firstly, if S is supercompact then, since (c,S) admits the KZFr(P)-cover{
(d, η(P,Jtriv)

d (x))
f−→ (c,S)

∣∣∣∣∣ ( f , x) ∈ S
}
,

S must be equal to ∃ fη
(P,Jtriv)
d (x) for some ( f , x) ∈ S.

The object (c,∃ fη
(P,Jtriv)
d (x)) is supercompact since if{

(ei,Ti)
gi−→ (c,∃ fη

(P,Jtriv)
d (x))

∣∣∣∣ i ∈ I
}

is a KZFr(P)-cover, then
⋃

i∈I ∃giTi = ∃ fη
(P,Jtriv)
d (x), and so ( f , x) ∈ ∃gi′Ti′ for some i′ ∈ I.

Therefore, ∃gi′Ti′ = ∃ fη
(P,Jtriv)
d (x) and so the singleton arrow{

(ei′ ,Ti′)
gi′−→ (c,∃ fη

(P,Jtriv)
d (x))

}
is a KZFr(P)-cover. □

In this subsection we study completions of doctrines obtained in an analogous fash-
ion by taking certain subdoctrines of the free geometric completion. We will formulate
a general theory for such completions obtained via subdoctrines, and demonstrate
that they are subgeometric in the sense of Definition IV.33, thus providing a broad
class of examples of subgeometric completions. Moreover, we show that the induced
2-monads are all lax-idempotent.

Among the examples of subgeometric completions we are able to obtain in this
way is the existential completion T∃ : PrimDoc → PrimDoc established in [119]. We
will also obtain a lax-idempotent free coherent completion for primary doctrines. Finally,
we will relate the existential and coherent completions thus obtained to the regular
and coherent completions of cartesian categories.

Compatible subcompletions. We first develop our general theory for completions
of doctrines obtained via subdoctrines of the free geometric completion. We call these
compatible subcompletions in analogy with the terminology ‘compatible properties’ used
in the topos-theoretic study of Stone-type dualities given in [19, §3]. Given a doctrine
Q : Cop → PreOrd, by a subdoctrine of Q we mean a doctrine Q′ : Cop → PreOrd, also
indexed over C, and a natural transformation Q′ ↪→ Q for which every component is
a subset inclusion Q′(c) ⊆ Q(c).

For this subsection, in every doctrinal site (P, J) we encounter, the topology J is
taken to be the trivial topology Jtriv. Therefore, we abbreviate our notation and write
ηP for η(P,Jtriv), µP for µ(P,Jtriv), etc.

Definition IV.39. Let A-Doc be a 2-full 2-subcategory of Docflat that contains the image
of the functor

A-Doc Docflat GeomDoc ⊆ Docflat,
ZFr

as well as the unit ηP : P → ZFr(P) for each A-doctrine P ∈ A-Doc. A choice of a
subdoctrine HP : TP ↪→ ZFr(P), for each A-doctrine P, is said to be A-compatible if the
following conditions are satisfied.
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(i) For each A-doctrine P : Cop → PreOrd, TP is a subdoctrine of ZFr(P) that contains
the image of the unit ηP, i.e. there is a factorisation

P TP ZFr(P).

ηP

εP HP

We also require that the factoring morphism εP : P → TP is a morphism of
A-doctrines.

(ii) The choice of subdoctrine is natural in the sense that, for each morphism
of A-doctrines (F, a) : P → Q, the induced morphism of geometric doctrines
ZFr(F, a) : ZFr(P)→ ZFr(Q) restricts to TP→ TQ, as in the diagram

P TP ZFr(P)

Q TQ ZFr(Q).

(F,a)

εP HP

ZFr(F,a)

εQ HQ

(IV.xv)

Moreover, we also require that the restriction TP → TQ is a morphism of A-
doctrines, and so we obtain an (1-)endofunctor T : A-Doc→ A-Doc.

(iii) For each P ∈ A-Doc, the subdoctrine HP : TP ↪→ ZFr(P) is ‘compatible’ with the
multiplication of the free geometric completion µP : ZFrZFr(P) → ZFr(P) in the
sense that the composite

TTP TZFr(P) ZFrZFr(P) ZFr(P)THP HZFr(P) µP

(IV.xvi)

factors through the subdoctrine HP : TP ↪→ ZFr(P), and this factorisation

νP : TTP TP

is a morphism of A-doctrines.

Examples IV.40. There are two basic examples to keep in mind for motivating our
development. In both cases, the 2-category A-Doc is taken to be the 2-category of
primary doctrines PrimDoc.

(i) The first example has been encountered already. For each primary doctrine P,
taking T∃P ↪→ ZFr(P) as the subdoctrine on supercompact elements is PrimDoc-
compatible. While not every morphism of geometric doctrines

(G, b) : ZFr(P) ZFr(Q)

sends a supercompact element S ∈ ZFr(P)(c) to a supercompact element bc(S)
of ZFr(Q)(G(c)), this is however true for morphisms of the form ZFr(F, a), where
(F, a) : P→ Q is a morphism of primary doctrines.

An element of TTP(c) is of the form

∃ZFrZFr(P)(g)η
ZFr(P)
e

(
∃ZFr(P)( f )η

P
d (x)

)
,
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for a composable pair of arrows d
f−→ e, e

g−→ c ∈ C and an element x ∈ P(d). One
can calculate that

µP
e

(
∃ZFrZFr(P)(g)η

ZFr(P)
e

(
∃ZFr(P)( f )η

P
d (x)

))
= ∃ZFr(P)(g◦ f )η

P
d (x).

Thus, µP restricts to a morphism νP : TTP→ TP. The other required conditions
on T∃ are easily checked.

(ii) Now consider taking TCohP to the be the subdoctrine of ZFr(P) on compact elements,
i.e. TCohP(c) are those elements S ∈ ZFr(P)(c) such that every KZFr(P)-cover of (c,S)
has a finite subcover. Checking that this choice of subdoctrine of ZFr(P) satisfies
the required conditions is analogous to the case for T∃.

The (1-)endofunctor T : A-Doc → A-Doc is evidently 2-functorial. Every 2-cell
α : (F, a) ⇒ (F′, a′) (i.e. a suitable natural transformation α : F ⇒ F′) between A-
doctrine morphisms (F, a), (F′, a′) : P⇒ Q yields a 2-cell

ZFr(P) ZFr(Q)

ZFr(F,a)

ZFr(F
′,a′)

α

since ZFr is 2-functorial. Therefore, α also defines a 2-cell between the restrictions to
the subdoctrines

TP TQ.

T(F,a)

T(F′,a′)

α

We note also that, since the triple (T, ε, ν) is a restriction of the 2-monad (ZFr, η, µ), the
monad equations for (T, ε, ν) follow automatically.

Lemma IV.41. The triple (T, ε, ν) is a 2-monad on A-Doc.

Definition IV.42. We call this 2-monad the compatible subcompletion.

Proposition IV.43. Every compatible subcompletion T : A-Doc→ A-Doc is subgeometric.

Proof. For each A-doctrine P, the morphism

TZFr(P) ZFrZFr(P) ZFr(P)HZFr(P) µP

is a natural way of endowing ZFr(P) with the structure of a T-algebra. The unit
condition, i.e. the commutativity of the triangle

ZFr(P) TZFr(P)

ZFrZFr(P)

ZFr(P),

εZFr(P)

HZFr(P)

µP
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is satisfied since
µP ◦HZFr(P) ◦ εZFr(P) = µP ◦ ηZFr(P) = idZFr(P).

The action property, i.e. that

µP ◦HZFr(P) ◦ T(µP ◦HZFr(P)) = µP ◦HZFr(P) ◦ νZFr(P),

follows from the commutativity of the diagram

TTZFr(P) TZFrZFr(P) TZFr(P)

ZFrZFrZFr(P) ZFrZFr(P)

TZFr(P) ZFrZFr(P) ZFr(P).

νZFr(P)

HZFrZFr(P)

HZFr(P)

THZFr(P)

µZFr(P)

µP

TµP

HZFr(P)

ZFrµ
P

µP

2

1

3 (IV.xvii)

The commutativity of the square 1 is assured since (ZFr, η, µ) is a 2-monad, while the
squares 2 and 3 commute by definition (see the equations (IV.xv) and (IV.xvi)).

We now seek to find a Grothendieck topology JT
P on CoTP satisfying the required

conditions of Definition IV.33. We take the obvious choice: C o TP is a subcategory of
C o ZFr(P) since TP is a subdoctrine of ZFr(P), and so we define JT

P as the restriction of
KZFr(P) to C o P. We check that the three conditions of Definition IV.33(ii) are satisfied.

(a) Recall that that the unit of the free geometric completion yields a dense mor-
phism of sites idC o ηP : (C o P, Jtriv) → (C o ZFr(P),KZFr(P)). The functor idC o ηP

factorises as

(C o P, Jtriv) (C o TP, JT
P) (C o ZFr(P),KZFr(P)).

idCoεP idCoHP

The right factor, idC o HP, is the inclusion of a dense subcategory, and hence
also a dense morphism of sites. Therefore, by [107, Corollary 11.6], idC o εP is a
morphism of sites, and so εP : (P, Jtriv)→ (TP, JT

P) is a morphism of doctrinal sites
as desired.

(b) Firstly, the functor µP defines a morphism of doctrinal sites

µP : (ZFrZFr(P),KZFrZFr(P)) (ZFr(P),KZFr(P))

Secondly, idC oHZFr(P) : (CoTZFr(P), JT
ZFr(P))→ (CoZFrZFr(P),KZFrZFr(P)) is the inclu-

sion of a dense subcategory, and therefore

HZFr(P) : (TZFr(P), JT
ZFr(P)) (ZFrZFr(P),KZFrZFr(P))

is also a morphism of doctrinal sites. Hence, the composite

µP ◦HZFr(P) : (TZFr(P), JT
ZFr(P)) (ZFr(P),KZFr(P))

defines a morphism of doctrinal sites as required.
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(c) Finally, we wish to show that Tθ : (TP, JT
P)→ (TQ, JT

Q) is a morphism of doctrinal
sites for each morphism of A-doctrines θ : P→ Q. By assumption, Tθ is already
flat by virtue of being a morphism of A-doctrines. That Tθ sends JT

P-covers to JT
Q

covers follows since ZFr(θ) : ZFr(P)→ ZFr(Q) sends KZFr(P)-covers to KZFr(Q)-covers.

Hence, all the conditions of Definition IV.33 are satisfied. □

An application of Proposition IV.37 now shows that every compatible subcomple-
tion is lax-idempotent. The two conditions of Proposition IV.37 are clearly satisfied.

(i) Each component η
(TP,JT

P )
c : TP(c)→ Z(TP, JT

P)(c) is injective – indeed it is isomorphic
to the inclusion HP

c : TP(c) ↪→ ZFr(P)(c) � Z(TP, JT
P)(c).

(ii) Secondly, for each A-doctrine P,

µP : (ZFrZFr(P), µZFr(P) ◦HZFrZFr(P)) (ZFr(P), µP ◦HZFr(P))

is a morphism of T-algebras by the commutativity of the right hand side of the
diagram (IV.xvii).

Corollary IV.44. Every compatible subcompletion (T, ε, ν) is lax-idempotent.

The regular and coherent completions. Let us revisit the examples of compatible
subcompletions given in Examples IV.40. As remarked in Lemma IV.38, we have
recovered the existential completion established in [119], the lax-idempotent 2-monad
T∃ : PrimDoc→ PrimDoc, as a compatible subcompletion.

The 2-category of algebras for the 2-monad T∃ is precisely the the 2-category ExDoc
of existential doctrines (see [119, Corollary 5.5]). In a similar fashion, we recognise the
2-category of algebras for the lax-idempotent 2-monad TCoh : PrimDoc → PrimDoc
as the 2-category CohDoc of coherent doctrines. Using the inherent 2-adjunction

τ-Alg C
τ

a

for a 2-monad (τ, e,m) on a 2-category C, we recover the following completions of
doctrines.

Corollary IV.45 (§5 [119]). (i) The 2-embedding ExDoc ↪→ PrimDoc possesses a lax-
idempotent left 2-adjoint.

(ii) The 2-embedding CohDoc ↪→ PrimDoc possesses a lax-idempotent left 2-adjoint.

The regular and coherent completions of cartesian categories. Following the exam-
ple of [83], we turn to using these completions of doctrines to describe completions of
categories. We have seen in Corollary IV.30 that the free geometric completion yields
the completion of a cartesian category to a geometric category. We deduce that, in a
similar manner, the subgeometric completions we have constructed in this subsection
yield other completions of cartesian categories.

As already noted in [119, §6], the existential completion of a primary doctrine
can be used to recover the regular completion of a cartesian category. For a cartesian
category C, Carboni describes in [27] the regular completion Reg(C) as follows:
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(i) the objects of Reg(C) are arrows d
f−→ c of C;

(ii) an arrow [g] : f1 → f2 of Reg(C) is an equivalence class of arrows d1
g−→ d2 such

that

e d1 c2

h

k

f2◦g

commutes, where (h, k) are the kernel pair of f1, i.e.

e d1

d1 c1

h

k
⌟

f1
f1

is a pullback. Two such arrows

d1 d2

g

g′

are equivalent, i.e. [g] = [g′], if

d1 d2 c2

g

g′

f2

commutes.

In [27, §5] it is shown that this defines the action on objects of a pseudo-adjoint
to the 2-embedding Reg ↪→ Cart of cartesian categories into regular categories. In
an analogous manner to Corollary IV.30, we deduce that Syn(T∃SubC) satisfies the
same universal property as Reg(C), and hence Syn(T∃SubC) ' Reg(C). Similarly, by
considering the category Syn(TCohSubC), for a cartesian category C, we obtain the
universal coherent completion of C.

Corollary IV.46. The 2-embedding Coh ↪→ Cart has a left pseudo-adjoint – the coherent
completion of a cartesian category.

IV.3.4 Pointwise subgeometric completions

In this final subsection, we revisit the free top completion as a subgeometric comple-
tion in light of Definition IV.33. Since the syntax of geometric logic is often represented
by the symbols { >, ∃, =, ∨, ∧ }, we ‘complete the set’, so to speak, by also briefly
sketching that the free join and free binary meet completions also constitute subgeomet-
ric completions. The completion with respect to the either of the symbols ∃ and =
is the previously discussed existential completion – for ∃, we freely add left adjoints
to product projections, while for = we freely add left adjoints to diagonals (both are
subgeometric, see Remark IV.32). In what follows, the conditions of Definition IV.33
are easily, but tediously, checked – and so we omit many of the details.

Since the completions we consider in this subsection are of a ‘pointwise’ nature,
we first state some easily deduced facts concerning such completions. Suppose that
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A-PreOrd is a 2-full 2-subcategory of PreOrd whose inclusion A-PreOrd ↪→ PreOrd
has a (strict) left 2-adjoint TA : PreOrd→ A-PreOrd. Equivalently, for each preorder P,
the completion TAP has the universal property that for any monotone map a : P→ Q
whose codomain lies in A-PreOrd, there is a unique morphism aA : TAP → Q of
A-PreOrd for which the triangle

P TAP

Q
a

ε

aA

commutes (where ε is the unit of the 2-adjunction). It is clearly deduced that the
functor TA extends to a (strict) 2-adjunction

[Cop,PreOrd] [Cop,A-PreOrd],
T′A

a

and hence also a (strict) 2-adjunction

Doc A-Doc,
T′′A

a

where A-Doc is the category of A-PreOrd-valued doctrines.

Free top completion. Let T> : Doc → Doc denote the free (preserved) top com-
pletion monad constructed in Section IV.1.1. Having preserved top elements, every
geometric doctrine L : Cop → Frmopen can naturally be turned into an algebra for the
monad T>. We have also already encountered the topology J>triv on the categoryCoP>,
where P is a doctrine P : Cop → PreOrd. That this choice of Grothendieck topology
satisfies the condition of Definition IV.33 is easily shown: for example, that the unit
(P, Jtriv) ↪→ (P>, J>triv) is a morphism of sites follows from Lemma IV.12. Thus, we can
apply Theorem IV.35 to deduce that T> is subgeometric, yielding a ‘top-down’ proof
of Proposition IV.13.

Free join completion. As previously mentioned, the 2-functor

ZEx : ExDoc GeomDoc

sends an existential doctrine P : Cop → MSLat to its ‘pointwise’ join completion
2(−)op ◦ P : Cop → Frmopen, i.e. ZEx(P)(c) is the poset of down-sets of P(c) ordered by
inclusion.

We could also conceive of taking the ‘pointwise’ join completion 2(−)op ◦ P of any
doctrine P ∈ Doc. Hence an element J ∈ 2(−)op ◦P(c) is a down-set of P(c). By the above
discussion, this yields a left adjoint T∨ to the inclusion of SupSLat-valued doctrines
into Doc, where SupSLat is the 2-category of sup-semilattices (i.e. posets with all
joins), their homomorphisms, and natural transformations between these. By the
universal property of T∨, for each geometric doctrine L ∈ GeomDoc there exists a
natural transformation id∨L : T∨L⇒ L for which (L, id∨L) is a T∨-algebra.
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For each doctrine P : Cop → Sets, the choice of the topology J∨P , where J∨P is the
Grothendieck topology on C o T∨P generated by covering families of the form (c, Ji)

idc−−→
c,

⋃
i∈I

Ji


∣∣∣∣∣∣∣ i ∈ I

 ,
can easily be shown to satisfy the conditions of Definition IV.33. Thus, there is a
natural isomorphism ZFr(P) � Z(T∨P, J∨P ) for each doctrine P by Theorem IV.35.

Free binary meet completion. Finally, we construct the free binary meet completion
for doctrines, and observe that this is also a subgeometric completion. We begin by
defining the free binary meet completion for preorders.

Definition IV.47. Let P be a preorder. Consider the set Pfin(P) \ ∅ of non-empty, finite
subsets of P. We order Pfin(P) \ ∅ by setting

{ x1, x2, ... , xn } ⩽ { y1, y2, ... , ym }

if and only if each yi is greater than some x j. We define P∧ as the poset obtained by
identifying two elements { x1, x2, ... , xn }, { y1, y2, ... , ym } of Pfin(P) \ ∅ if

{ x1, x2, ... , xn } ⩽ { y1, y2, ... , ym } and { y1, y2, ... , ym } ⩽ { x1, x2, ... , xn }.

We denote the equivalence class of { x1, x2, ... , xn } by ~ x1, x2, ... , xn �. Alternatively, P∧

can be described as the poset of non-empty, finitely generated up-sets of P ordered by
inclusion.

It is easily checked that, given two elements ~ x1, ... , xn �, ~ y1, ... , ym � of P∧, their
meet is given by

~ x1, ... , xn, y1, ... , ym �,

and thus the poset P∧ has all binary meets. The map ~− �P : P→ P∧ given by sending
x ∈ P to ~ x � ∈ P∧ is clearly monotone. Since every element ~ x1, ... , xn � ∈ P∧ is the
finite meet of the elements ~ xi � ∈ P∧, we obtain the desired universal property: for
each preorder P and any monotone map a : P → Q, where Q has binary meets, there
exists a unique monotone map a∧ : P∧ → Q that preserves binary meets such that the
triangle

P P∧

Q
a

~− �P

a∧

commutes.
Thus, by the discussion above, there exists a left 2-adjoint T∧ to the inclusion

of BMSLat-valued doctrines into Doc, where BMSLat is the 2-category of binary-
meet-semilattices, their homomorphisms, and natural transformations between these.
Evidently, there exists a natural transformation id∧L : T∧L ⇒ L, induced by the uni-
versal property of T∧, which yields a T∧ algebra (L, id∧L) for each geometric doctrine
L ∈ GeomDoc.
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We denote by J∧P the Grothendieck topology on C o T∧P generated by covering
families of the form{

(c, ~ y �) idc−−→ (c, ~ x1, x2, ... , xn �)
∣∣∣∣ y ∈ P(c), y ⩽ x1, x2, ... , xn

}
.

There are few obstacles to concluding that the choice of topology J∧P satisfies the
conditions of Definition IV.33. Hence we obtain by Theorem IV.35 that there is a
natural isomorphism

ZFr(P) � Z(T∧P, J∧P )

for every doctrine P.
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Chapter V

Sheaves on a groupoid

Topoi as generalised spaces. Locales and topological spaces are generalised, re-
spectively, by topoi and topoi with enough points1. But to what extent are spaces
generalised by topoi? The representation results of Joyal and Tierney [68] and Butz
and Moerdijk [17] express that, roughly speaking, a topos is a space whose points
can possess non-trivial isomorphisms. In this regard, topoi can be likened to orbifolds
from differential geometry.

Groupoids and their sheaves. The informal notion of a ‘space with isomorphisms
of points’ is captured by the notion of a topological or localic groupoid. A topolog-
ical/localic groupoid comes equipped with a natural notion of a topos of equivariant
sheaves, or simply the topos of sheaves on a groupoid, which simultaneously gen-
eralises the topos of sheaves on a space and the topos of continuous actions by a
topological group.

The representation results of [68] and [17] state that every topos (respectively,
every topos with enough points) is equivalent to a topos of sheaves on localic (resp.,
topological) groupoid. We will review these representation results in Chapter VI and
Chapter VII. But first, we recall in this chapter the definition of the topos of sheaves
on a localic/topological groupoid, as well as its pertinent properties that will facilitate
our later study.

Overview. We proceed as follows.

(A) For familiarity, we initially focus on the topological case. Section V.1 contains the
definition and examples of topoi of sheaves on topological groupoids. In Sec-
tion V.1.1, we study the behaviour of this topos when the action and topologies
on the constituent spaces are modified.

(B) Secondly, we briefly recount in Section V.2 how our definitions adapt when
topological groupoids are replaced by localic groupoids.

V.1 Sheaves on a topological groupoid
A topological groupoid is a groupoid internal to the category Top of topological spaces
and continuous maps. That is, a topological groupoid X consists of a diagram

1Garner suggests the name ionaid (singular ionad) for the latter in [41].
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X1 ×X0 X1 X1 X0,

pr2

m
pr1

i

t

s

e (V.i)

in Top such that the equations

s ◦ e = t ◦ e = idX0 ,
s ◦m = s ◦ pr1, t ◦m = t ◦ pr2,

m ◦ (idX1 ×X0 m) = m ◦ (m ×X0 idX1),
m ◦ (idX1 ×X0 e) = m ◦ (e ×X0 idX1),

expressing that (V.i) is an internal category (where s and t send an arrow to, respec-
tively, its source and target, e sends an object to its identity morphism and m sends a
pair of composable arrows to their composite), and

s ◦ i = t, t ◦ i = s,
m ◦ (idX1 ×X0 i) = e ◦ t,
m ◦ (i ×X0 idX1) = e ◦ s,

i ◦ i = idX1 ,

expressing that i sends an arrow to its inverse, are all satisfied. Equivalently, a topo-
logical groupoid is a (small) groupoid in the usual sense and a choice of topologies for
the set of objects and the set of arrows such that all the groupoid structure morphisms
(i.e. the displayed arrows in (V.i)) are continuous with respect to these topologies.

Since we will mostly be concerned with the ‘source’ and ‘target’ maps s and t, we
will often write X = (X1 ⇒ X0) to denote the topological groupoid. As s ◦ i = t, and i
is a homeomorphism, s is open if and only if t is open. This allows us to simplify the
definition of an open topological groupoid:

Definition V.1. A topological groupoid is said to be open if either s or t are open maps
(and hence both are).

We will often restrict our focus to open topological groupoids. Of particular
importance for us is the fact that in an open topological groupoid, the orbit t(s−1(U))
of an open U ⊆ X0, i.e. the closure of U under the action of X1, is still open. The
restriction to open topological groupoids is not prohibitive since every topological
groupoid is Morita equivalent to an open one, in the sense that for every topological
groupoidX, its topos of equivariant sheaves (defined below) is equivalent to the sheaves
on an open topological groupoid. This follows from [17].

Definition V.2. Given a topological groupoid X, we can construct the topos of equiv-
ariant sheaves Sh(X). This is a construction that generalises simultaneously both topoi
of sheaves on spaces and topoi of continuous group actions.

(i) Objects of Sh(X), called X-sheaves, consist of triples (Y, q, β) where q : Y → X0 is
a local homeomorphism and β is a continuous X1-action on Y, by which mean a
continuous map

β : Y ×X0 X1 Y,
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where Y ×X0 X1 is the pullback

Y ×X0 X1 Y

X1 X0,

⌟ q

s

satisfying the equations

β(β(y, g), h) = β(y,m(g, h)),
q(β(y, g)) = t(g),

β(y, e(q(y))) = y.

(ii) An arrow (Y, q, β)
f−→ (Y′, q′, β′) of Sh(X) consists of a continuous map f : Y→ Y′

such that the diagram

Y ×X0 X1 Y′ ×X0 X1

Y Y′

X0

f×X0 idX1

β β′

f

q q′

(V.ii)

commutes. The commutation of the bottom triangle of (V.ii) expresses that f
is a a morphism of sheaves over X0, while the commutation of the top square
expresses that f respects the respective X1-actions.

Examples V.3. That the topos of equivariant sheaves on a topological groupoid si-
multaneously generalises the topos of sheaves on a space and the topos of continuous
actions by a topological group is clear by the following examples.

(i) Let X be a topological space. The diagram

X X X
idX

idX

idX

idX

idX

idX

idX

is a topological groupoid whose topos of sheaves is the familiar topos of sheaves
on a space Sh(X).

(ii) Let (G, e,m, i) be a topological group. The diagram

G × G G 1

pr1

m
pr2

i

!

!

e

is a topological groupoid whose topos of sheaves is the topos BG of continuous
group actions by G on discrete sets.
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Descent data. The objects and morphisms of Sh(X) can be given a more compact
definition in terms of descent data (the reasons for the nomenclature will become
apparent in Section VI.2.1).

We first fix some notation. Recall that each continuous map U h−→ V induces a
geometric morphism Sh(h) : Sh(U) → Sh(V), whose inverse image part we write as
h∗. It sends a local homeomorphism q : W → V to its pullback along h

h∗(W) W

U V,

⌟
q

h

and a morphism

W′ W

V

g

of Sh(Y) to the induced map

h∗(W′) W′

h∗(W) W

U V.

h∗(g) g

⌟

h

A descent datum for X is a pair consisting of a local homeomorphism q : Y → X0

and a morphism

s∗(Y) t∗(Y)

X1

θ

such that e∗(θ) = idY and m∗(θ) = pr∗2(θ) ◦ pr∗1(θ). A morphism of descent data

(Y, θ)
f−→ (Y′, θ′) is a commuting triangle

Y Y′

X0

q

f

q′

(i.e. a morphism Y
f−→ Y′ in Sh(X0)) such that the square

s∗(Y) t∗(Y)

s∗(Y′) t∗(Y′)

s∗( f )

θ

t∗( f )

θ′
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commutes.
That the two definitions of sheaves on X are equivalent is a matter of unravelling

definitions. The notational difference arises because, for descent data, we keep track
of the arrow α ∈ X1 once it has been applied to a point y ∈ Y. Indeed, given a X1-action
β : Y ×X0 X1 → Y, the corresponding descent datum is the map θβ that sends the pair
(y, α) ∈ s∗(Y) to (β(y, α), α) ∈ t∗(Y), while given descent datum θ : s∗(Y) → t∗(Y) on Y,
corresponding to the X1-action βθ, is the composite

Y ×X0 X1 = s∗(Y) t∗(Y) Y.θ

For completeness, we explain the equivalence between X1-actions and descent data
in detail in Appendix B.

We will use actions and descent data interchangeably when discussing sheaves
on a groupoid since, as we will also observe in Chapter VI, it can often be more
convenient to work with one other over the other. For example, the following is most
succinctly demonstrated using descent data.

Lemma V.4. If X = (X1 ⇒ X0) is an open topological groupoid, for any X-sheaf (Y, q, β), the
X1-action

β : Y ×X0 X1 Y

is an open map.

Proof. By above (see also Appendix B), the action β is the composite

Y ×X0 X1 = s∗(Y) t∗(Y) Yθ

for some descent datum θ on Y. The first factor s∗(Y) θ−→ t∗(Y), being a morphism of
Sh(X1), is an open continuous map (see [63, Lemma C1.3.2]). The later factor is also
open since it is the pullback of the open map t in the square

t∗(Y) Y

X1 X0,

⌟

t

and open maps are stable under pullback. □

V.1.1 Forgetting topologies and actions

In this section we lay out the necessary facts regarding the sheaves on a topological
groupoid that will be used in Chapter VII. Let X = (X1 ⇒ X0) be a (small) groupoid,
which can also be considered as a topological groupoid where both X0 and X1 have
both been endowed with the discrete topology. We will write Xδδ = (Xδ

1 ⇒ Xδ
0) to

emphasise this fact. Let τ0 and τ1 be a topologies on X0 and X1 respectively such that
all the structure morphisms of X are continuous with respect to these topologies, i.e.
Xτ1
τ0 = (Xτ1

1 ⇒ Xτ0
0 ) is a topological groupoid.

Definitions V.5. (i) As above, let Sh(Xτ1
τ0) and Sh(Xδδ) denote the topoi of sheaves

on the topological groupoids Xτ1
τ0 = (Xτ1

1 ⇒ Xτ0
0 ) and Xδδ = (Xδ

1 ⇒ Xδ
0).
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(ii) By Sh(Xδτ0
) we denote the category whose objects are local homeomorphisms

q : Y→ Xτ0
0 equipped with a (not necessarily continuous) action β : Y×X0 X1 → Y,

satisfying the same equations as in Definition V.2(i). Arrows (Y, q, β)→ (Y′, q′, β′)
are continuous maps f : Y→ Y′ such that the diagram

Y ×X0 X1 Y′ ×X0 X1

Y Y′

X0

β

f×X0 idX1

β′

f

q q′

commutes, as in Definition V.2(ii).

Remark V.6. Note that Xδτ0
= (Xδ

1 ⇒ Xτ0
0 ) is not a topological groupoid (unless τ0 is

also the discrete topology). IfXδτ0
= (Xδ

1 ⇒ Xτ0
0 ) were a topological groupoid, then, for

each x ∈ X0, the singleton
{ x } = e−1({ idx })

would be an open subset of Xτ0
0 . Despite this, the category Sh(Xδτ0

) is still a topos, a
consequence of [92, Theorem 2.5] and Lemma V.16 below.

We note that the topoi Sh(Xδ
0) and Sh(Xδδ) can be written in a more familiar manner.

There are, of course, evident equivalences

Sh(Xδ
0) ' Sets/X0 ' SetsX0 , Sh(Xδδ) ' SetsX.

Section aims. The main focus of this section is to construct a commutative diagram
of topoi and geometric morphisms

Sh(Xδ
0) Sh(Xτ0

0 )

Sh(Xτ1
τ0)

Sh(Xδδ) Sh(Xδτ0
)

j

v

u

uδ

j′ w

(V.iii)

such that the following are satisfied:

(i) j and uδ are both localic surjections,

(ii) u is a localic surjection and, additionally, open if Xτ1
τ0 is an open topological

groupoid,

(iii) v is an open localic surjection,

(iv) j′ is a surjection,

(v) w is a hyperconnected geometric morphism,

and the left-hand square is a pushout of topoi.
To construct the diagram (V.iii), we will make repeated use of [63, Theorem B2.4.6]

to deduce that whenever a functor between topoi preserves finite limits and arbitrary
colimits, it is the inverse image part of a geometric morphism.
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Forgetting the action. We first note that the forgetful functors U : Sh(Xτ1
τ0)→ Sh(Xτ0

0 )
and Uδ : Sh(Xδτ0

) → Sh(Xτ0
0 ), which forget the Xτ1

1 -action (respectively, Xδ
1-action),

create all colimits and finite limits. This is deduced since a colimit or finite limit
in Sh(Xτ0

0 ) of spaces with an Xτ1
1 -action (resp., Xδ

1-action) can be given an obvious
Xτ1

1 -action (resp., Xδ
1-action) making it an object of Sh(Xτ1

τ0) (resp., Sh(Xδτ0
)).

Example V.7. We prove in more detail, as an example, that U : Sh(Xτ1
τ0) → Sh(Xτ0

0 )
preserves binary products, and remark that the other finite limits and arbitrary colimits
follow just as easily.

Let (Y, q, β), (Y′, q′, β′) be objects of Sh(Xτ1
τ0). The product of (Y, q) and (Y, q′) in the

topos Sh(Xτ0
0 ) is given by the pullback of spaces

Y ×X0 Y′ Y′

Y Xτ0 .

pr2

pr1
⌟

q′

q

Let (y, y′, α) be an element of Y ×X0 Y′ ×X0 Xτ1
1 , where Y ×X0 Y′ ×X0 Xτ1

1 is the pullback

Y ×X0 Y′ ×X0 Xτ1
1 Y ×X0 Y′

Xτ1
1 Xτ0 .

⌟

s

The definition B(y, y′, α) = (β(y, α), β′(y′, α)) yields a Xτ1
1 -action

B : Y ×X0 Y′ ×X0 Xτ1
1 Y ×X0 Y′.

The action B is continuous since β and β′ are both continuous and the necessary
equations on B are direct consequences of the equivalent equivalent equations for
(Y, q, β) and (Y′, q′, β′). Hence, the triple (Y ×X0 Y′, q ◦ pr1,B) is an object of Sh(Xτ1

τ0).

The projections Y ×X0 Y′
pr1−−→ Y and Y ×X0 Y′

pr2−−→ Y′ define morphisms in Sh(Xτ1
τ0)

since, by a simple diagram chase, both the diagrams

Y ×X0 Y′ ×X0 Xτ1
1 Y ×X0 Xτ1

1

Y ×X0 Y′ Y

Xτ0
0 ,

B

pr1×X0 idX1

β

pr1

q◦pr1
q

Y ×X0 Y′ ×X0 Xτ1
1 Y′ ×X0 Xτ1

1

Y ×X0 Y′ Y′

Xτ0
0 .

B

pr2×X0 idX1

β′

pr2

q◦pr1=q′◦pr2
q′

commute.
Finally, we can demonstrate that (Y×X0 Y′, q◦pr1,B) satisfies the universal property

of the product. Let (Z, p, γ) be a Xτ1
τ0-sheaf with morphisms f and g to (Y, q, β) and
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(Y′, q′, β′) respectively. Then there is a unique commuting continuous map Z h−→ Y×X0 Y′

induced by the pullback

Z

Y ×X0 Y′ Y′

Y Xτ0
0

h

g

f
⌟

q′

q

that sends z ∈ Z to ( f (z), g(z)) ∈ Y ×X0 Y′. Thus, (Y ×X0 Y′, q ◦ pr1,B) is the product of
(Y, q, β) and (Y′, q′, β′) in the category Sh(Xτ1

τ0) if h makes the diagram

Z ×X0 Xτ1
1 Y ×X0 Y′ ×X0 Xτ1

1

Z Y ×X0 Y′

Xτ0
0

γ

h×X0 idX1

B

h

p q◦pr1

commute. This is easily checked by another diagram chase, and so we have demon-
strated that U : Sh(Xτ1

τ0)→ Sh(Xτ0
0 ) preserves binary products.

Since U (respectively, Uδ) preserves finite limits and all colimits, by [63, Theorem
B2.4.6], it is the inverse image of a geometric morphism u : Sh(Xτ0

0 )→ Sh(Xτ1
τ0) (resp.,

uδ : Sh(Xτ0
0 )→ Sh(Xδτ0

)) between topoi.

Lemma V.8. The geometric morphisms u : Sh(Xτ0
0 )→ Sh(Xτ1

τ0) and uδ : Sh(Xτ0
0 )→ Sh(Xδτ0

)
are both localic surjections.

Proof. As U (respectively, Uδ) is clearly a faithful functor whose codomain Sh(Xτ0
0 ) is

a localic topos, u (resp., uδ) is a surjective localic geometric morphism. □

Lemma V.9 (Proposition 4.4 [92]). IfXτ1
τ0 is an open topological groupoid, then the geometric

morphism u : Sh(Xτ0
0 )→ Sh(Xτ1

τ0) is additionally open.

Remark V.10. The functors U and Uδ above reflect jointly epimorphic families and
monomorphisms. As shown in [79, Proposition II.6.6], a family of morphisms in
Sh(Xτ0

0 ) is jointly epimorphic if and only if they are jointly surjective, and hence so too
in Sh(Xτ1

τ0) and Sh(Xδτ0
). Also, a morphism in Sh(Xτ0

0 ) is a monomorphism if and only
if it is injective, and hence so too in Sh(Xτ1

τ0) and Sh(Xδτ0
).

Let V : Sh(Xδδ) → Sh(Xδ
0) denote the analogous functor that forgets the Xδ

1-action.
By an identical analysis to the above, we conclude the following.

Lemma V.11. The functor V is the inverse image functor of a geometric morphism

v : Sh(Xδ
0) Sh(Xδδ)

that is open, localic and surjective.
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Subsheaves. Given an Xτ1
τ0-sheaf (Y, q, β), the subobjects of (Y, q, β) are easy to de-

scribe. By Remark V.10, a morphism (Y, q, β)
f−→ (Y′, q′, β′) ofXτ1

τ0-sheaves is a monomor-

phism in Sh(Xτ1
τ0) if and only if Y

f−→ Y′ is a monomorphism in Sh(X0), i.e. f is the
inclusion of an open subspace. The requirement that f makes the diagram (V.ii)
commute is equivalent to the following.

Definition V.12. Given an Xτ1
τ0-sheaf (Y, q, β), a subspace Y′ ⊆ Y is said to be stable2 if

Y′ is closed under the X1-action β on Y, by which we mean that if y ∈ Y′ ⊆ Y then
β(y, α) ∈ Y′ ⊆ Y too, for any suitable α ∈ X1.

Lemma V.13. Therefore, the subobjects of a Xτ1
τ0-sheaf (Y, q, β) can be identified with the

Xτ1
τ0-sheaves (U, q ◦ i, β|U), where i : U ↪→ Y is the inclusion of an open and stable subspace.

Forgetting the topology on arrows. The topos Sh(Xτ1
τ0) is evidently a full subcategory

of Sh(Xδτ0
). Let W : Sh(Xτ1

τ0) → Sh(Xδτ0
) be the inclusion functor. Clearly, there is a

commuting triangle of functors

Sh(Xτ1
τ0) Sh(Xδτ0

)

Sh(Xτ0
0 ).

W

U Uδ

Hence, as U preserves finite limits and arbitrary colimits while Uδ reflects them, W
also preserves finite limits and arbitrary colimits. Therefore, W is the inverse image
of a geometric morphism w : Sh(Xδτ0

)→ Sh(Xτ1
τ0).

Proposition V.14. The geometric morphism w : Sh(Xδτ0
)→ Sh(Xτ1

τ0) is hyperconnected.

Proof. A hyperconnected geometric morphism is one whose inverse image functor
is full and faithful and whose image is closed under subobjects (see [63, Proposition
A4.6.6]). The functor W : Sh(Xτ1

τ0)→ Sh(Xδτ0
) is already full and faithful by definition.

Let (Y, q, β) be a Xδτ0
-space whose Xδ

1-action β becomes a continuous map

β : Y ×X0 Xτ1
1 Y

when X1 is endowed with the topology τ1. If Z is a subobject of Y in the topos Sh(Xδτ0
),

then Z is an open subspace of Y whose Xδ
1-action is the restriction of β to the subset

Z ×X0 X1 ⊆ Y ×X0 X1.

Since β|−1
Z×X0 X1

(U) = β−1(U) ∩ (Z ×X0 X1), for each open subset U ⊆ Z, and as β is
continuous for the topology on Y ×X0 Xτ1

1 , so too is β|Z×X0 X1 : Z ×X0 Xτ1
1 → Z. Thus, the

image of W is closed under subobjects. □

2Note that we are following the terminology of [5], [36], [37], where the term ‘stable’ was used to
reduce confusion with closed subspaces.
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Remark V.15. Let X = (X1 ⇒ X0) be a groupoid that becomes a topological groupoid
when X0 is endowed with the topology τ0 and X1 is endowed with τ1. The construction
of the hyperconnected morphism w : Sh(Xδτ0

) → Sh(Xτ1
τ0) relied only on the fact that

the discrete topology δ contains the topology τ1. Indeed, for any other topology τ′1 on
X1, containing τ1, such that

X
τ′1
τ0 =

(
Xτ′1

1 ⇒ Xτ0
0

)
is also a topological groupoid, then there is a hyperconnected geometric morphism

Sh
(
X
τ′1
τ0

)
Sh(Xτ1

τ0)

whose inverse image is the inclusion of Sh(Xτ1
τ0) into Sh

(
X
τ′1
τ0

)
.

Forgetting the topology on objects. The identity idX0 : Xδ
0 → Xτ0

0 is a surjective con-
tinuous map of topological spaces and so induces (see [79, §II.9 & §IX.4]) a surjective
localic geometric morphism

j : Sh(Xδ
0) Sh(Xτ0

0 ).

The inverse image of j is the functor J : Sh(Xτ0
0 ) → Sh(Xδ

0) that sends a local homeo-
morphism q : Y→ Xτ0

0 the pullback of q along idX0 : Xδ
0 → Xτ0

0 . In other words, J is the
functor that forgets the topology on Y. We denote J(Y) by Yδ.

There is a similar forgetful functor J′ : Sh(Xδτ0
) → Sh(Xδδ) that sends a Xδτ0

-space
(Y, q, β) to (Yδ, q, β). Clearly, there is a commutative square

Sh(Xδτ0
) Sh(Xτ0

0 )

Sh(Xδδ) Sh(Xδ
0).

Uδ

J′ J

V

As J◦Uδ preserves finite limits and arbitrary colimits and V reflects them, J′ preserves
finite limits and arbitrary colimits too. Therefore, J′ is the inverse image of a geometric
morphism j′ : Sh(Xδδ)→ Sh(Xδτ0

) which makes the square

Sh(Xδ
0) Sh(Xτ0

0 )

Sh(Xδδ) Sh(Xδτ0
)

j

v uδ

j′

commute. Moreover, since j, uδ and v are surjective geometric morphisms, so too is j′

(since surjective geometric morphisms are the left class in an orthogonal factorisation
system, see Theorem A4.2.10 [63]).

Lemma V.16. The square

Sh(Xδ
0) Sh(Xτ0

0 )

Sh(Xδδ) Sh(Xδτ0
)

j

v
⌟ uδ

j′
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is a (bi)pushout in the category Topos of Grothendieck topoi and geometric morphisms.

Proof. By [92, Theorem 2.5], the bipushout of the diagram

Sh(Xδ
0) Sh(Xτ0

0 )

Sh(Xδδ)

j

v

in Topos is computed as the bipullback (see [76, Example 15]) of the inverse image
functors

Sh(Xτ0
0 )

Sh(Xδδ) Sh(Xδ
0)

J

V

(V.iv)

in CAT, the category of (large) categories.
It is then easy to see that the commuting square

Sh(Xδτ0
) Sh(Xτ0

0 )

Sh(Xδδ) Sh(Xδ
0)

Uδ

J′ J

V

(V.v)

is said bipullback. Given a bicone F : A → Sh(Xτ0
0 ), G : A → Sh(Xδδ) of the cospan

(V.iv), i.e. J ◦ F � V ◦ G, there is a unique (up to isomorphism) functor such that the
diagram

A

Sh(Xδτ0
) Sh(Xτ0

0 )

Sh(Xδδ) Sh(Xδ
0).

F

G

Uδ

J′ J

V

commutes up to isomorphism. The functor A Sh(Xδτ0
) is constructed as follows.

(i) For an object a ∈ A, F(a) is a local homeomorphism Y→ Xτ0
0 . Since

Yδ = J ◦ F(a) � V ◦ G(a),

the set Yδ can be endowed with the (non-continuous) Xδ
1-action given by G(a),

thus defining Y→ Xτ0
0 as an object of Sh(Xδτ0

).

(ii) Each arrow g of A is sent by F to a continuous map f : Y → Y′ for which the
triangle

Y Y′

Xτ0
0

f
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commutes. Again using that f = V ◦ G(g) � J ◦ F(g), we deduce that f is also
equivariant with respect to the imposed Xδ

1-actions on Yδ and Y′δ. Thus, f also
defines an arrow of Sh(Xδτ0

).

It is clear by definition that the diagram (V.v) commutes up to natural isomorphism.
It remains to show that these natural isomorphisms also satisfy the universal

property required by the bipullback. However, we can elide these details since, as
the perceptive reader will notice, by applying the same reasoning as above, Sh(Xδτ0

) is
also the 1-pullback of the cospan (V.iv). By [67], we know that the bipullback and the
1-pullback are equivalent since the functor V : Sh(Xδδ)→ Sh(Xδ

0) is easily observed to
satisfy the invertible-path lifting property. If f is an Xδ

1-equivariant map of sets over Xδ
0

such that V( f ) has an inverse in Sh(Xδ
0), then this inverse must also be Xδ

1-equivariant,
and so defines an inverse for f in Sh(Xδδ). □

This completes the construction of the diagram (V.iii) and the demonstration of its
required properties.

V.2 Sheaves on a localic groupoid

The theory of sheaves on topological groupoids can be repeated for localic groupoids.

Definition V.17. A localic groupoid Y,

Y1 ×Y0 Y1 Y1 Y0,
m

i

t

s

e

is a groupoid internal to the category Loc. By replacing each instance of ‘topological
space’ in Definition V.2 with locale and each instance of ‘continuous map’ with locale
morphism, we obtain a topos Sh(Y), the topos of sheaves on Y.

Remark V.18. As explained in [92, §5.3], we can re-express equations in locale theory
in the more familiar notation of point-set topology, provided a ‘point’ y ∈ Y is taken
to mean a ‘generalised point’ of Y, i.e. an arbitrary locale morphism y : U → Y. To
translate a ‘point-set’ argument back to a concrete one, each instance of y ∈ Y should
be replaced by a generic locale morphism y : U → Y, and the notation f (y) for some
map f : Y→ X is translated as the composite f ◦ y : U→ Y→ X.

For example, given a Y-sheaf (Z, q, β), the point-set equation

∀z ∈ Z β(z, e(q(z))) = z

satisfied by (Z, q, β) expresses the commutativity of the triangle

Z Z ×Y0 Y1

Z,

(idZ,e◦q)

β
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where (idZ, e ◦ q) denotes the universally induced map

Z

Z ×Y0 Y1 Z

Y0 Y1 Y0.

q

(idZ,e◦q)

idZ

⌟ q

e s

Lemma V.8 and Lemma V.9 also apply to localic groupoids. That is, for each localic
groupoid Y, there is a surjective geometric morphism u : Sh(Y0) → Sh(Y) whose
inverse image is the functor that forgets the Y1-action on sheaves, and moreover u is
open if and only if Y is an open localic groupoid.

To conclude this chapter, we discuss obtaining localic groupoids from topological
groupoids and vice versa, and compare their topoi of sheaves.

From topological groupoids to localic groupoids. Since the functor O : Top→ Loc
that sends a topological space to its locale of opens does not, in general, preserve
limits, if X is a topological groupoid

X1 ×X0 X1 X1 X0,
m

i

t

s

e

there is no reason for O(X), i.e. the diagram of locales and locale morphisms

O(X1 ×X0 X1) O(X1) O(X0),
O(m)

O(i)

O(t)

O(s)

O(e)

to define a localic groupoid since O(X1 ×X0 X1) � O(X1) ×O(X0) O(X1).
However, whenO(X) does define a localic groupoid, the topoi Sh(X) and Sh(O(X))

are equivalent. This follows from the fact that, for a local homeomorphism between
locales q : W → V, if V is spatial then W is spatial too, and that local homeomorphisms
are stable under pullback (see [63, Lemma C1.3.2]). Thus, the topological X-sheaves
coincide with the localic O(X)-sheaves.

From localic groupoids to topological groupoids. Conversely, the functor

Pt : Loc Top

that sends a locale to its space of points (see [60, §II.1]), being a right adjoint, preserves
all limits. Thus, if Y is a localic groupoid

Y1 ×Y0 Y1 Y1 Y0,
m

i

t

s

e
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then Pt(Y) is a topological groupoid, where Pt(Y) denotes the diagram

Pt(Y1) ×Pt(Y0) Pt(Y1) � Pt(Y1 ×Y0 Y1) Pt(Y1) Pt(Y0).
Pt(m)

Pt(i)

Pt(t)

Pt(s)

Pt(e)

In contrast to the topoi Sh(X) ' Sh(O(X)) above, the topoi Sh(Y) and Sh(Pt(Y))
can be very different. For example, Y could be chosen as the localic groupoid

Y Y Y,
idY

idY

idY

idY

idY

where Y is a non-trivial locale without points (see Example V.19 for an example), in
which case Sh(Pt(Y)) is the trivial topos 0Topos and therefore

Sh(Y) ' Sh(Y) ; Sh(Pt(Y)).

However, if the locale of objects Y0, the locale of arrows Y1, and the locale of
composable arrows Y1 ×Y0 Y1 in Y are all spatial, then OPt(Y) � Y and so there is an
equivalence of topoi Sh(Y) ' Sh(OPt(Y)) ' Sh(Pt(Y)).

Example V.19 (Partial surjections fromN to X). Let X be an uncountable set, and let
TN⇁⇁X be the propositional geometric theory

(i) with a basic proposition [ f (n) = x], for each n ∈N and x ∈ X,

(ii) and the axioms, for every n ∈N and x, y ∈ X with x , y,

[ f (n) = x] ∧ [ f (n) = y] ` ⊥,
> `

∨
n∈N

[ f (n) = x].

A 2-valued model of TN⇁⇁X corresponds to a partial surjectionN⇁⇁ X, which cannot
exist as X is uncountable, and so there are no 2-valued models of TN⇁⇁X.

Nonetheless, the classifying locale ofTN⇁⇁X is non-trivial (see [63, Example C1.2.8]),
and thus is an example of a non-trivial locale without any points. Informally, this
expresses that, from a localic perspective, even uncountable sets are subquotients of
N. This will prove important in Chapter VI.



Chapter VI

A localic representing groupoid

Localic representation of predicate theories. Joyal and Tierney famously proved in
[68] that every topos E (and hence every geometric theory) is represented by a localic
groupoid Y, by which we mean that there is an equivalence E ' Sh(Y). This expresses
that the topos E can be thought of as a ‘space’, in the pointfree sense, equipped with
further ‘isomorphisms of the points’.

The original paper [68] presents a general method of constructing a representing
localic groupoid for a topos E from any open cover F ↠ E (see Definition VI.7). How-
ever, potentially because of the level of abstraction involved, there is some confusion
as to how to construct a representing localic groupoid in concrete cases [103], [109],
[117].

Our goals. The purpose of this chapter is twofold.

(A) We provide a review of the Joyal-Tierney construction in order to compare how
the theory for localic groupoids differs from the representation of topoi by topo-
logical groupoids discussed in Chapter VII. This is performed in Section VI.2.

(B) Our ultimate aim is to write down an explicit description of a representing
localic groupoid for the classifying topos ET of a geometric theory T. Since
every topos is the classifying topos of some theory, this provides a description
of a representing localic groupoid for any topos. Our description, provided in
Section VI.3, will prove familiar when we later recall the representing topological
groupoids studied in [5], [17], [36], [37].

This chapter is adapted from joint work with Graham Manuell [88].

VI.1 Reasoning using points

Prior to embarking on the a description of the Joyal-Tierney result, we remark that,
just as for locales (see [92, §5.3] or Remark V.18), we can also use generalised points
of topoi, i.e. arbitrary geometric morphisms f : E′ → E, in order to reason about them
as though they were spaces (see [123]) – though in this case we must also consider
morphisms of points since topoi exist at a higher categorical level than locales.

This is especially useful when combined with the theory of classifying topoi, since
we can define a geometric morphism g : ET → ET′ by describing how g acts on a

177
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(generalised) point F → ET and morphisms of these points. That is to say, we can
define g by describing how it transforms a T-model (in F ) into a T′-model and a
T-model homomorphism into a T′-model homomorphism.

For example, given a geometric theory T over a signature Σ with N sorts, the
associated localic geometric morphism

CπFT
: ET ' Sh(FT) SetsConN ' EN·O

deduced from Proposition III.42 sends a T-model in a topos F to the N objects of
its underlying sorts and a T-model homomorphism to the N underlying functions
between these objects.

This perspective lends itself well to the problem of determining the geometric
theory classified by certain (bi)limits of other classifying topoi, using the method
described in [123, Proposition 8.43].

Examples VI.1. Let us consider some examples of how to compute limits with this
approach.

(i) LetT andT′ be geometric theories. The data of an F -point of the product topos
ET × ET′ is a pair of geometric morphisms F → ET and F → ET′ , i.e. a pair
of a T-model and a T′-model in F . Thus, we conclude that the product topos
ET×ET′ classifies the theory given by a copy ofT and a copy ofT′ (over separate
sorts).

(ii) Let T1,T2 be localic expansions (see [22, §7.1] or Definition III.44) of a theory T3,
i.e. all three theories share the same sorts, but the theories T1 and T2 add new
symbols and new axioms to T3. Let eT1

T3
: ET1 → ET3 be the localic geometric

morphism induced by Corollary III.45. It is the geometric morphism that acts
on (generalised) points by sending aT1-model to itsT3-reduct, i.e. theT3-model
obtained when we forget the extra structure added by T1, and which sends a
T1-model homomorphism to its underlying homomorphism on the T3-reducts.
Similarly, the morphism eT2

T3
: ET2 → ET3 sends a T2-model to its T3-reduct.

An F -point of the (bi)pullback

ET1 ×ET3
ET2 ET2

ET1 ET3

⌟
eT2
T3

eT1
T3

consists of the data of a pair of F -points M : F → ET1 and N : F → ET2 and an
isomorphism

eT1
T3
◦M � eT2

T3
◦N.

Therefore, the (bi)pullback topos ET1 ×ET3
ET2 classifies the theory whose models

are a pair of a T1-model and a T2-model whose T3-reducts are isomorphic.

Remark VI.2. Some readers may wonder how our theory is impacted when we vary
the specific notion of 2-limit we consider. Ultimately, as classifying topoi are defined
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up to equivalence, this won’t be of importance. We will focus on comparing, for a
geometric theory T, the various notions of ‘pullback’ for the diagram

ET

ET ET.

idET
idET

Evidently, the 1-pullback is given simply by ET.
When calculating the bipullback as in Examples VI.1 above, we are implicitly

taking the iso-comma object of the cospan. This is the topos E that is universal with
respect to the data of projections r,u : E⇒ ET and an isomorphism

E ET

ET ET.

r

u

idET

idET�

As in Examples VI.1(ii), we recognise that E classifies the theory of T-model isomor-
phisms. We denote this theory by T�. An explicit axiomatisation of this theory is
given in Definition VI.14 below.

Subtle changes to the notion of 2-pullback we take can change the specific presen-
tation for the theory classified by the topos. For example, if we instead considered
the pseudo-pullback, i.e. the topos E′ that is universal with respect to the data

E′ ET

ET ET,idET

idET�
�

we see that E′ classifies the theory T�,� whose models are triples of T-models and a
pair of isomorphisms between these.

However, such care will not be necessary. Recall from [76, Example 15] that
although the topoi ET� and ET�,� are not isomorphic as categories, they are equivalent.
In fact, the iso-comma object ET� , the pseudo-pullback ET�,� and the the (1-)pullback
ET are all equivalent by an application of [67]. We sidestep these issues by only
working up to equivalence and referring to bipullbacks. Consequently, the theories
T, T� and T�,� are all Morita equivalent.

VI.2 Overview of the Joyal-Tierney theorem
We now give an overview of the Joyal-Tierney result from [68]. A description of the
representing localic groupoid of the classifying topos ET constructed via the Joyal-
Tierney method is provided in Section VI.3.1.

This section can be summarised as follows.

− In Section VI.2.1, we recall the theory of descent exposited in [68]. Given a
geometric morphism f : F → E, this is a way to study objects of E by equipping
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objects of F with additional data. This data forms a topos Desc f (F•). If the ge-
ometric morphism f : F ↠ E is an open surjection, then there is an equivalence
of topoi Desc f (F•) ' E.

− In Section VI.2.2 we note that Desc f (F•) is naturally represented by a localic
groupoid whenever F is a localic topos. Therefore, one can obtain a represen-
tation of E by a localic groupoid from an open surjection F ↠ Ewhose domain
is localic (called an open cover).

− Finally, in Section VI.2.3 we construct an open cover of a toposE from a geometric
theory classified by E, and hence conclude the Joyal-Tierney theorem that every
topos is the topos of sheaves on some localic groupoid.

VI.2.1 Descent theory

In order to prove their representation theorem, Joyal and Tierney developed in [68] a
descent theory for topoi. We will treat descent theory as a ‘black box’, recalling below
the necessary facts we will use in our exposition. For details, the reader is directed to
[68, §VIII] and [63, §B1.5 and §C5.1].

Let C be a cartesian 1-category. Recall that the pullback of an arrow c
f−→ d along

itself gives the kernel pair of f . This has the structure of an internal equivalence relation
in C. If f is a ‘good’ quotient map (in this case, a regular/effective epimorphism), then
it can be recovered from this equivalence relation (as the coequalizer of its kernel
pair). The situation in the 2-category of topoi is similar, but instead of an internal
equivalence relation, we obtain an internal groupoid.

A geometric morphism f : F → E between topoi induces an internal groupoid in
Topos as in the diagram

F ×E F ×E F F ×E F F E,
pr2,3

pr1,3

pr1,2

pr2

pr1

τ

∆ f

where τ : F ×E F → F ×E F is the twist map, ∆ : F → F ×E F is the diagonal, and
the remaining maps are the appropriate projections.

Definition VI.3. The category Desc f (F•) of descent data for f is defined as follows.

(i) The objects of Desc f (F•) are pairs (Y, θ) consisting of an object Y ∈ F and an
isomorphism θ : pr∗1Y ∼−→ pr∗2Y of F ×E F such that

∆∗(θ) = idX and pr∗1,3(θ) = pr∗2,3(θ) ◦ pr∗1,2(θ).

This is known as a descent datum on Y.

(ii) A morphism (Y, θ)
g−→ (Y′, θ′) in Desc f (F•) is a morphism Y

g−→ Y′ of F such that
the square

pr∗1Y pr∗2Y

pr∗1Y′ pr∗2Y′

θ

pr∗1(g) pr∗2(g)

θ′

commutes.
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The category Desc f (F•) is a topos, and there is a canonical functor c∗ : E → Desc f (F•)
that sends an object E ∈ E to the pair consisting of f ∗E and the canonical isomorphism
pr∗1 f ∗E � pr∗2 f ∗E (arising from the 2-cell of the bipullback).

In fact, Moerdijk shows in [92, §3] that the topos Desc f (F•) is obtained as the
colimit in the bicategory Topos of the diagram

F ×E F ×E F F ×E F F Desc f (F•),
pr2,3

pr1,3

pr1,2

pr2

pr1

τ

∆

and the canonical functor c∗ : E → Desc f (F•) is the inverse image part of the uni-
versally induced geometric morphism Desc f (F•) → E. This is analogous to how a
morphism in a 1-category factors through the coequalizer of its kernel pair.

The problem of descent involves discerning for which geometric morphisms
f : F → E the canonical functor c∗ : E → Desc f (F•) is an equivalence. Such geomet-
ric morphisms play the same role as regular epimorphisms did in our 1-categorical
analogy.

Definition VI.4. A geometric morphism f : F → E is called an effective descent mor-
phism if the canonical functor c∗ : E → Desc f (F•) is an equivalence.

Many examples of classes of effective descent morphisms are known, including
proper surjections (see [63, Definition C3.2.5 & Theorem C5.1.6]). We will focus solely on
open surjections, which were shown to be effective descent morphisms in [68, Theorem
VIII.2.1], since these are the class of effective descent morphisms used in [68].

VI.2.2 Descent data with a localic domain

When the domain topos of a geometric morphism f : F → E is localic, sayF ' Sh(X0),
the category of descent data Desc f (F•) is equivalent to the topos of sheaves on some
localic groupoid whose locale of objects is X0, as observed in [68, §VIII.3]. To see why
this is the case, we first recall two facts about localic geometric morphisms from.

(i) Localic geometric morphisms are stable under pullback (see [59, Proposition
2.1]).

(ii) If f : H ′ → H is a localic geometric morphism and H is a localic topos, then
the toposH ′ is also localic since localic geometric morphisms are closed under
composition (see [59, Lemma 1.1]).

Hence, if f : F → E is a geometric morphism whose domain F is a localic topos,
then the (bi)pullback

F ×E F F

F E

pr1

pr2
⌟

f

f
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is also a localic topos, as is the wide pullback F ×E F ×E F . Therefore, as the fully
faithful functor Sh : Loc→ Topos reflects limits, the descent diagram

F ×E F ×E F F ×E F F
pr2,3

pr1,3

pr1,2

τ

pr2

pr1

∆

is the image under Sh of a localic groupoid X

X1 ×X0 X1 X1 X0.

pr2

m
pr1

i

t

s

e (VI.i)

As F ' Sh(X0), an object of F is a local homeomorphism q : Y→ X0, and descent
datum is a morphism θ : s∗(Y) → t∗(Y) in Sh(X1) ' F ×E F such that idX0 = e∗(θ)
and m∗(θ) = π∗2(θ) ◦ π∗1(θ), i.e. the pair (Y, θ) is an object of Sh(X). Similarly, arrows
in Desc f (F•) correspond to arrows in Sh(X). Thus, there is an equivalence Sh(X) '
Desc f (F•) from which we obtain the following.

Theorem VI.5 (Theorem VIII.3.2 [68]). Let f : Sh(X0) → E be an effective descent mor-
phism. The topos E is equivalent to the topos of equivariant sheaves on the localic groupoid X
whose locale of objects is X0, and whose source and target maps s, t : X1 ⇒ X0 make the square

Sh(X1) Sh(X0)

Sh(X0) E

Sh(s)

Sh(t)
⌟

f

f

a (bi)pullback of topoi.

Remark VI.6. Recall from [92, Definition 7.2] that a localic groupoid is said to be étale
complete if the square

Sh(X1) Sh(X0)

Sh(X0) Sh(X)

Sh(s)

Sh(t)
⌟

u

u

is a bipullback of topoi. This expresses that for every generalised point x : U→ X0 and
every automorphism α : u ◦Sh(x) ∼=⇒ u ◦Sh(x), i.e. an automorphism of the composite

Sh(U) Sh(X0) Sh(X),
Sh(x) u

the automorphism is instantiated by a generalised point of X1. In other words, X1

contains as points ‘all possible automorphisms’ of points of X0.
Evidently, any representing localic groupoid of a topos constructed using the

method of Theorem VI.5 will be étale complete. Indeed, we also deduce from
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Theorem VI.5 that every localic groupoid for which u : Sh(X0) → Sh(X) is an ef-
fective descent morphism is Morita equivalent to its étale completion, as observed in
[92]. We will study a topological counterpart to the theory of étale complete localic
groupoids in Section VII.5.3.

Since open surjections are effective descent morphisms, this theorem applies in
particular to what we call open covers.

Definition VI.7. An open cover of the topos E is an open surjection F ↠ E whose
domain topos F is localic.

Remark VI.8. Recall that open geometric morphisms are stable under (bi)pullback
(see [58, Theorem 4.7] or [68, Proposition VII.1.3]). Hence, if Sh(X0) ↠ E is an open
cover, then the projections pr1 and pr2 in the (bi)pullback

Sh(X1) 'Sh(X0) ×E Sh(X0) Sh(X0)

Sh(X0) E,

pr1

pr2

⌟

are open too. Consequently, by [79, Proposition IX.7.2], the source and target maps
s, t : X1 ⇒ X0 of the induced localic groupoid X displayed in (VI.i) are open locale
morphisms. Thus, E has an open representing groupoid.

The same analysis holds for any other property of geometric morphisms that is
stable under pullback. For example, if an effective descent morphism Sh(X0) → E is
proper or connected and locally connected, then the resulting representing groupoid
for E is also proper or connected and locally connected (in the sense that the source
and target maps have these properties; see [63, Theorem C3.2.21 & Theorem C3.3.15]
for a demonstration of the pullback stability of these properties).

VI.2.3 Open covers via partial equivalence relations

We are halfway to showing that every topos can be represented as the topos of sheaves
on an open localic groupoid. The remaining task is to prove that every topos has an
open cover.

To find an open cover of a topos E, it suffices to find a localic geometric morphism
h : E → H and an open cover f : F ↠ H , since then in the (bi)pullback

F ×H E F

E H ,

g

k
⌟

f

h

(VI.ii)

the map k : F ×H E↠ E is an open surjective geometric morphism whose domain is
moreover a localic topos, as the compositeF ×H E

g−→ F → Sets is a localic morphism.
Hence, k : F ×H E↠ E is an open cover.

Such a pair of geometric morphisms can be found given a choice of theory classified
byE. Suppose the toposE is classifies a theoryTwith N sorts. Recall from Section III.4
that there is a localic geometric morphism CπFT

: E → EN·O which sends a T-model
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to the N underlying objects interpreting the sorts. This will play the role of h in the
square (VI.ii).

Remark VI.9. In fact, we can always choose N to be 1, since every geometric theoryT is
Morita equivalent to a single-sorted theory. This appears in [68] as Proposition VII.3.1,
but an entirely syntactic proof is given in [63, Lemma D1.4.13]. In summary, the idea
is to combine all the sorts of the theory into one, and introduce new unary relation
symbols, RX for each sort X, and axioms such that RX(x) expresses the statement “x
belongs to the sort X”.

We must now describe an open cover of EN·O to play the role of f in (VI.ii). As
prefigured in Example V.19, there is a sense in which ‘every set is a subquotient ofN’
and so we are motivated to consider partial equivalence relations on N. We denote
the classifying topos of partial equivalence relations on N copies ofN by EN·PQN . This
is the propositional theory whose basic propositions are [n ∼i m] for each n,m ∈ N,
and i ∈ N (meaning that n,m are identified in the ith partial equivalence relation on
N), and whose axioms are

[n ∼i m] ` [m ∼i n] (symmetry)
[n ∼i l] ∧ [l ∼i m] ` [n ∼i m] (transitivity)

for each n,m, l ∈ N and i ∈ N. Being a propositional theory, the classifying topos
EN·PQN is localic.

There is a geometric morphism Q : EN·PQN → EN·O that sends the N generic partial
equivalence relations onN to their corresponding subquotient objects. This geometric
morphism possesses many desirable properties: it is open and surjective, but also
connected and locally connected (see [63, Theorem C5.2.7]). Hence, we indeed have
an open cover of EN·O.

We now obtain an open cover PN[E]↠ E by taking the (bi)pullback

PN[E] EN·PQN

E EN·O

⌟
Q

Cπ
FT

Note that PN[E] is determined not only by E, but also by the localic geometric mor-
phism E → EN·O, and hence by a choice of N-sorted geometric theoryT classified by E
(by Proposition III.42). In Lemma VI.19, we describe a propositional theory classified
by the topos PN[E].

Finally, as every topos classifies some geometric theory, by applying Theorem VI.5
we arrive at the landmark result of Joyal and Tierney.

Theorem VI.10 (Theorem VIII.3.2 [68]). Every Grothendieck topos can be represented as
the topos of equivariant sheaves for a localic groupoid.

Remarks VI.11. (i) Since the geometric morphism Q above is open (and even con-
nected and locally connected), the representing localic groupoid is also open
(indeed, connected and locally connected; see Remark VI.8).
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(ii) A topos can have many non-equivalent open covers and therefore many non-
isomorphic representing localic groupoids. Nonetheless, these are all equivalent
in a suitable sense provided by [92, §7] (see also Section VIII.1).

The open cover PN[E] ↠ E we consider is slightly different to the one built
by Joyal and Tierney in [68, Theorem VII.3.1]. They instead use the open cover
ETQN ↠ EO>0 from classifying topos of total equivalence relations on N to the
classifying topos of inhabited objects. The reader is directed to [63, Remark
C5.2.8(c)] for more details. Other examples of open covers include the Diaconescu
cover, constructed in [33] (see also [63, Theorem C5.2.1] and [79, Theorem IX.9.1]).
See also Remark VI.23.

VI.3 The syntactic groupoid

LetT be a geometric theory. We give an explicit description of the representing localic
groupoid for the classifying topos ET via Theorem VI.10, which we call the syntactic
groupoid because of its obvious syntactic nature.

VI.3.1 Description of the syntactic groupoid

The syntactic groupoidGT is motivated by a desire to re-express the first-order theory
T in terms of simpler propositional theories. The models of this new propositional
theory should somehow represent the models of the original theory T, including the
objects being used to represent each sort. The question then is how to encode the sorts
of T using only propositional logic.

Sorts as partial equivalence relations. If we were to focus on a single set-based
model M, then we could include propositional variables in our language that express
that m~ ∈ RM for each relation R of the theory and each appropriate tuple m~ of elements
from M. More generally, we could imagine fixing some a suitably large set K and
cutting out the carriers for each model as subsets or subquotients of K. The issue is
that in general a geometric theory has unboundedly large models.

However, recall from Example V.19 that, although the topological space of partial
surjections from N to any set X might be trivial, the localic version is not. Hence,
there is a sense in which ‘every set is a subquotient of N’. This motivates replacing
the sorts in the theory T by partial equivalence relations onN, which describe these
subquotients. Recall that a partial equivalence relation is a symmetric transitive
relation and can be thought of as describing an equivalence relation on the subset of
elements which are related to themselves.

Definition VI.12. LetT be a theory over a signature Σwithout function symbols (ifT
involves function symbols, these can be removed by [63, Lemma D1.4.9]). We define
the propositional geometric theory P[T] over the signature P[Σ] as follows.

(i) For each sort X of Σ, we add a copy of the theory of partial equivalence relations
onN. Explicitly, we add, for each n,m ∈N, a basic proposition [n ∼X m] to P[Σ]
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and, for each n,m, l ∈N, and the sequents

[n ∼X m] ` [m ∼X n], (symmetry)

[n ∼X m] ∧ [m ∼X l] ` [n ∼X l] (transitivity)

to the axioms of P[T].

(ii) For each relation symbol R ⊆ X1 × · · · × Xk of Σ, and for each pair of tuples
n1, . . . , nk ∈N and m1, . . . ,mk ∈N, we add a proposition [(n1, . . . , nk) ∈ R] to P[Σ]
and the sequents

[(n1, . . . , nk) ∈ R] ∧ [n1 ∼X1
m1] ∧ · · · ∧ [nk ∼Xk

mk] ` [(m1, . . . ,mk) ∈ R],

and

[(n1, . . . , nk) ∈ R] ` [n1 ∼X1
n1] ∧ · · · ∧ [nk ∼Xk

nk]

as axioms to P[T].

(iii) For each axiom ϕ `x1:X1,...,xk:Xk ψ of T, we add an axiom

k∧
i=1

[ni ∼Xi
ni] ∧ ϕn1,...,nk ` ψn1,...,nk

for each n1, . . . , nk ∈N, where ϕn1,...,nk and ψn1,...,nk are obtained from ϕ and ψ by

a) replacing each free variable xi by a (fixed) natural number ni,
b) each quantifier ∃x : X χ(x, . . . ) by a join

∨
nx∈N χ(nx, . . . ),

c) each subformula of the form R(y1, . . . , yl) with [(y1, . . . , yl) ∈ R],
d) and each subformula of the form x =X y with [x ∼X y].

We denote the classifying locale of the propositional theory P[T] by GT0 .

Here we have simply translated the relations on the sorts to relations on N that
respect the partial equivalence relation. We have written the axioms of T in terms of
these with existential quantification over sorts being expressed using joins over the
natural numbers. Evidently, ifT is a propositional theory (i.e. there are no sorts), then
T and P[T] are the same theory.

Remark VI.13. Note that the generators [n ∼X m] can also be thought of as a as special
case of the proposition [(n,m) ∈ R], where R is given by the equality relation on X.

Encoding isomorphic copies. The points of the locale GT0 are given by represen-
tations of models of T as subquotients of N. Different subquotients of N might
correspond to isomorphic models, so these must be identified in the locale of isomor-
phisms of the syntactic groupoid.

We can define a geometric theory T� whose models are isomorphisms between
models of T, and then transform it into a propositional theory as we did for T in
Definition VI.12. The theory T� is precisely the theory classified by the iso-comma
object described in Remark VI.2.
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Definition VI.14. Given a geometric theory T over a signature Σ (where we again
assume that there are no function symbols), we constructT� as the following geometric
theory over the signature Σ�.

(i) For each sort X or relation symbol R of Σ, we add a pair of copies X1,X2 or R1,R2

to Σ� (where Ri is defined on the i-subscripted sorts).

(ii) For each axiom of ϕ `x~ ψ of T, we add a pair of sequents ϕ1 `x~1
ψ1 and ϕ2 `x~2 ψ2

to T�, where the formulae ϕi, ψi are obtained by replacing each variable of sort
X with a variable of sort Xi, and each relation symbol R with the relation symbol
Ri.

(iii) For each sort X in Σ, we add a relation symbol αX ⊆ X1 ×X2 to Σ� together with
the bidirectional sequent

(x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧ x =X1 x′ a`x:X1,y:X2 (x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧ y =X2 y′

along with the sequents

`y:X2 ∃x : X1 (x, y) ∈ αX,
`x:X1 ∃y : X2 (x, y) ∈ αX,

as axioms to T�, making α into the graph of a bijection1.

(iv) For each relation symbol R of Σ, we add to T� the bidirectional axiom

k∧
i=1

(xi, yi) ∈ αXi ∧ (x1, . . . , xk) ∈ R1 a`x1,...,xk,y1,...,yk

k∧
i=1

(xi, yi) ∈ αXi ∧ (y1, . . . , yk) ∈ R2

expressing that the bijection encoded by α is an isomorphism of Σ-structures.

We define the locale GT1 to be the classifying locale of a propositional geometric theory
P[T�] defined as in Definition VI.12.

Remark VI.15. Let T be a propositional geometric theory over a signature Σ. Condi-
tion (iv) from Definition VI.14 entails that the copies R1 and R2 of each basic proposition
R in Σ are equivalent. Thus, the theories T, P[T] and P[T�] are all equivalent.

Structural morphisms of the syntactic groupoid. The localic groupoid GT has GT0
as its locale of objects and GT1 as is locale of morphisms. We now describe the
structural morphisms of the groupoid GT. Recall that it is possible to define a frame
homomorphism, and hence a locale morphism, by specifying its action on generators.
In the case of GT0 and GT1 , this amounts to defining the action on the basic propositions
of the propositional theories P[T] and P[T�].

Definition VI.16. Let GT denote the localic groupoid

GT1 ×GT0
GT1 GT1 GT0

m

i

t

s

e

whose morphisms are defined as follows.
1For clarity we will often write α suggestively as though it were a function.



188 CHAPTER VI. A LOCALIC REPRESENTING GROUPOID

(i) The source map s : GT1 → GT0 is specified by frame homomorphism that acts on
generators by

[n ∼X m] 7→ [n ∼X1 m],
[(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R1].

(ii) Similarly, the target map t : GT1 → GT0 is specified by the action on generators

[n ∼X m] 7→ [n ∼X2 m],
[(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R2].

(iii) The identity map e : GT0 → GT1 is specified by

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R],

[αX(n) = m] 7→ [n ∼X m].

(iv) The inversion map i : GT1 → GT1 swaps the two copies of the sorts in the sense
that

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R2],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R1],

[αX(n) = m] 7→ [αX(m) = n].

(v) The composition map m : GT1 ×GT0
GT1 → GT1 is given as follows.

a) The domain of the composition map can be alternatively described as the
classifying locale of the propositional geometric theory P[T�,�], whereT�,�
is the geometric theory whose models are a triple of T-models and a pair
of isomorphisms between these (cf. Remark VI.2).

The theoryT�,� is constructed much likeT�, but there are three copies of
the theoryT instead of two and there are two relation symbols βX ⊆ X1×X2

and γX ⊆ X2 × X3 for each sort X, encoding two T-model isomorphisms,
instead of one relation symbol αX.

b) The map m itself is specified by the action

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R1],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R3],

[αX(n) = p] 7→
∨
m∈N

[βX(n) = m] ∧ [γX(m) = p],

i.e. the map m sends the pair of relations (βX, γX) to their relational com-
posite.

Remark VI.17. The setN is actually only the simplest possible choice of base set for
the above construction. All the properties we prove of the localic groupoid GT (other
than those discussed in Section VI.3.3) will still hold ifN is replaced with any infinite
set.
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VI.3.2 The syntactic groupoid is representing

We now prove that the localic groupoid GT described in Definition VI.16 is the rep-
resenting localic groupoid for the topos ET yielded by the Joyal-Tierney method
exposited in Section VI.2, that is we will prove that:

Theorem VI.18. For each geometric theory T, there is an equivalence of topoi

ET ' Sh
(
GT

)
.

We require one lemma before embarking on the proof of the theorem.

Lemma VI.19. For each geometric theory T with N sorts, the commutative square

EP[T] EN·PQN

ET EN·O

Q

Cπ
FT

is a (bi)pullback, i.e. PN[E] ' EP[T].

Proof. For simplicity, we will assume the theory T has a single sort, but this is easily
generalised. Recall that Q : EPQN → EO is the geometric morphism that acts on models
by sending a partial equivalence relation ∼ on N to the corresponding subquotient
N/∼. As described in Examples VI.1, it is easy to compute a theory T′ that the
bipullback topos ET ×EO EPQN classifies using the methods of [123, §4.5]. The theory
T′ can be taken to be the theory of pairs of a model M of T, a model ∼ of PQN and an
isomorphism M �N/∼.

It is now elementary to massage T′ into a more convenient, equivalent form by
transporting the T-model structure on M along the bijection M � N/ ∼ to give
relations defined in N/∼. Then, since the object M and its definable subobjects
are completely specified by relations on N/∼ and the isomorphism M � N/∼, the
isomorphism can safely be removed from the theory. The resulting theory is essentially
propositional. We can make it manifestly propositional by replacing a relation R on
N/∼ with its preimages under the quotient N ↠ N/∼ to give a subset UR ⊆ Nk,
which can then be described using the basic generators

[(n1, . . . , nk) ∈ UR]

for each (n1, . . . , nk) ∈ Nk. Thus, we have arrived at the theory P[T] described in
Definition VI.12. This theory now has no sorts and so it is manifestly propositional. □

Proof of Theorem VI.18. Again we assume that T has one sort for simplicity. By
Lemma VI.19, the open cover P[ET]↠ ET used to construct the representing groupoid
in Section VI.2.3 is the projection from the bipullback

Sh(GT0 ) ' EP[T] ' ET ×TO EPQN ET.
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By applying Theorem VI.5, we know thatET is represented by the localic groupoid
whose locale of objects is GT0 , the classifying locale of P[T], and whose source and
target maps s, t : Y⇒ GT0 are the locale morphisms for which the square

Sh(Y) EP[T]

EP[T] ET

Sh(s)

Sh(t)
⌟

is a bipullback of topoi. We must show that EP[T�] ' Sh(GT1 ) is this bipullback.
Let 2 ·O denote the theory of pairs of objects, which by Examples VI.1 is classified

by the product 2 ·O is classified by the product E2·O � EO ×EO. Similarly, the product
EPQN×EPQN classifies the theory 2 ·PQN of pairs of partial equivalence relations onN.
Recall also from Examples VI.1 and Remark VI.2 that the theory T� of isomorphisms
of T-models is classified by the bipullback

ET� ET

ET ET.

⌟

r

u
idET

idET

By the universal property ofEP[T], there are universally induced geometric morphisms
s, t : EP[T�] ⇒ EP[T] such that all the squares in the diagram

EP[T] EPQN

EP[T�] E2·PQN

ET EO

EP[T] EPQN

ET� E2·O

ET EO

r

s

t

u

⌟

⌟

⌟

commute up to canonical isomorphisms. Being induced by the maps r,u : ET� ⇒ ET,
which send a model a T�-model M � N to, respectively, M and N, we recognise
that the locale morphisms s, t : GT1 ⇒ GT0 corresponding to the geometric morphisms
s, t : EP[T�] ⇒ EP[T] are exactly the ones described in Definition VI.16. Note that
we are abusing notation and not differentiating between a locale morphism and its
corresponding geometric morphism between localic topoi.
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We now demonstrate that the square

EP[T�] EP[T]

EP[T] ET

s

t

is a bipullback of topoi. Firstly, we note that the square commutes up to isomorphism
since it can be rewritten as

EP[T�] EP[T]

ET� ET

EP[T] ET ET.idET

idET

r

u �
⌟

t

s

�

�

For any other (bi)cone

F EP[T]

EP[T] ET

f

g �

of the cospan, we will demonstrate that there is a diagram of topoi and geometric
morphisms

EP[T] EPQN

F

EP[T�] E2·PQN

ET EO

EP[T] EPQN

ET� E2·O

ET EO

⌟

⌟

⌟

g

f

where every square and triangle commutes up to canonical isomorphism.
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(i) The geometric morphismF ET� is induced by the universal property of ET�
as in the diagram

F EP[T]

ET� ET

EP[T] ET ET.idET

idET

r

u �
⌟

g

f

�

�

(ii) The geometric morphism F E2·PQN is induced by the universal property of
E2·PQN as in the diagram

EP[T] F EP[T]

E2·PQN

EPQN EPQN × EPQN EPQN

� �

f g

'

(iii) Finally, the geometric morphism F EP[T�] is induced by the universal prop-
erty of EP[T�] as in the diagram

F

EP[T�] E2·PQN

ET� E2·O.

�
⌟

�

�

Thus, the (bi)cone factorises canonically as

F

EP[T�] EP[T]

EP[T] ET.
t

s

�

f

g

�

�

We have elided the details that EP[T�] also satisfies the necessary universal property
on 2-cells to be the bipullback, but this can be demonstrated in a similar fashion since
the canonical morphism F EP[T�] was universally induced by a series of bilimits.

Finally, by demonstrating in an analogous manner that EP[T�,�] is equivalent to the
wide bipullback EP[T] ×ET EP[T] ×ET EP[T], we recognise that the composition map of
our groupoid is described as in Definition VI.16, thus completing the proof that the
localic groupoid GT represents ET. □
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Example VI.20. As remarked in Remark VI.15, when T is a propositional theory,
the theories T, P[T] and P[T�] are all equivalent, and therefore have isomorphic
classifying locales. Hence, the syntactic groupoid GT as described in Definition VI.16
is an example of a localic groupoid of the form Examples V.3(i) and so there is an
equivalence Sh(GT) ' Sh(GT0 ), i.e. the classifying topos for T is equivalent to the
topos of sheaves on the classifying locale of T, as we would expect.

VI.3.3 Countable theories and Forssell groupoids

Recall from Section V.2 that if the locale of objects GT0 , the locale of morphisms GT1 and
the locale of composable morphisms GT1 ×GT0

GT1 are spatial, then there is an equivalence
of topoi

ET ' Sh(GT) ' Sh(Pt(GT)),

where Pt(GT) is the corresponding topological groupoid. We can ensure these spa-
tiality conditions under certain countability restrictions on the theory.

Definition VI.21. A geometric theory is said to be countable if it has a countable
number of sorts, symbols and axioms.

Proposition VI.22. For a countable geometric theory T, the localic groupoid GT is spatial
and thus arises from a topological groupoid.

Proof. Note that if a theory T is countable, then the locale of objects GT0 and the locale
of morphisms GT1 of the representing localic groupoid are countably presented. A
countably presented locale is spatial (assuming the excluded middle, see [49, Corollary
3.14]). Moreover, since countably presented locales are closed under finite limits, the
domain of the composition map is also spatial, as required. □

When T is a countable geometric theory, the topological groupoid Pt(GT) thus
obtained is the same representing topological groupoid as constructed by Forssell
in [37]. The representation of classifying topoi by topological groupoids is studied
in Chapter VII, and Forssell groupoids, in particular, are discussed in Section VII.5.4.
While we further elucidate the connection between Pt(GT) and Forssell groupoids,
we adopt the as-yet unintroduced terminology and notation from Chapter VII.

The Forssell groupoid FG(N) (see [37, §3] or Definition VII.53) is the topological
groupoid

FG(N)1 ×FG(N)0 FG(N)1 FG(N)1 FG(N)0
m

t

s

i

e

constructed as follows.

(i) The space of N-indexed models FG(N)0 is the set of all N-indexed models of
T, i.e. those set-based models of T whose underlying sets of each sort are
subquotients of N. For a tuple n~ ∈ N, we denote by [n~] its equivalence class
in M. Since T is a countable theory, by [87, Theorem 6.2.4] (and the downward
Löwenheim-Skolem theorem if necessary), the set FG(N)0 is a conservative set
of models.
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We endow the set FG(N)0 with the logical topology for objects (see [37, Defini-
tion 3.1] or Definition VII.14), the topology generated by subsets of form

~n~ ∈ R �FG(N) =
{

M ∈ FG(N)0

∣∣∣ [n~] ∈ RM
}
,

where R is a relation ofT (including equality), RM is its interpretation in a model
M, and n~ is a tuple of natural numbers.

We immediately recognise the frame of opens O(FG(N)0) as the frame GT0
from Definition VI.12. Explicitly, we identify the basic open

~n~ ∈ R �FG(N) ⊆ FG(N)0

with the generator [n~ ∈ R] of GT0 .

(ii) The space of arrows FG(N)1 is the set of all isomorphisms between models in
FG(N)0 endowed with the logical topology for arrows (see [37, Definition 3.1] or
Definition VII.19), the topology generated by sets of the form��������� n~ ∈ R

m~ 7→ m~ ′

n~ ′ ∈ R′

���������
FG(N)

=


[n~] ∈ RM,

M α−→M′ ∈ FG(N)1 [m~ ] ∈M, [m~ ′] ∈M′,
α([m~ ]) = [m~ ′],

[n~ ′] ∈ R′M
′
.


Once again, we identify O(FG(N)1) with GT1 by identifying the basic open��������� n~ ∈ R

m~ 7→ m~ ′

n~ ′ ∈ R′

���������
FG(N)

⊆ FG(N)

with [n~ ∈ R1] ∧ [n~ ′ ∈ R′2] ∧∧
mi∈m~ [α(mi) = m′i] ∈ GT1 .

(iii) The maps m, t, e, s and i are defined in the obvious way.

Thus, when the theoryT is countable, the syntactic localic groupoidGT as constructed
in Definition VI.16 coincides with the topological groupoid FG(N) of N-indexed
models. Hence, we deduce by the equivalence

ET ' Sh(GT) ' Sh(FG(N))

the representation result in [37, Theorem 5.1] (see also Corollary VII.56) in the partic-
ular case where T is a countable theory.

Remark VI.23. For a countable theory T, the representing topological groupoid for
ET constructed by Butz and Moerdijk in [17] (see also Definitions VII.54) is not directly
comparable with the syntactic groupoid GT, instead deriving from one of the many
other open covers of ET. In summary, it is the groupoid obtained when, instead of
considering the theory PQN of partial equivalence relations on N as we did, one
takes the theory of partial equivalence relations onN where every equivalence class
is infinite – that is, the theory obtained by adding toPQN, for each n, l ∈N, the axiom

[n ∼ n] `
∨
{ [n ∼ m1] ∧ · · · ∧ [n ∼ ml] |mi ∈Nwith m1 < m2 < · · · < ml }

expressing that the equivalence class of n in the subquotient has at least l many
elements (and hence infinitely many).



Chapter VII

Topological representing groupoids

Topological representation for predicate theories. Logical theories can be ‘repre-
sented’ by topological structures. Let T be a propositional theory with a classifying
locale LT. We intuit that T is represented by a set of models X0, by which we mean that
LT is the frame of opens on some topological space whose points are X0, if and only if
the models X0 are jointly conservative.

In this chapter we demonstrate a first-order generalisation of this observation.
Propositional theories are replaced by predicate theories, classifying locales are re-
placed by classifying topoi, and topological spaces – inspired by the representation
results of Joyal and Tierney [68] and Butz and Moerdijk [17] – are replaced by open
topological groupoids. Thus, rather than representing the predicate theory as a topo-
logical space, we represent the theory by ‘a space where points have automorphisms’.

Therefore, we will say that a theory is represented by an open topological groupoid
if its topos of sheaves classifies the theory.

The classification result. The representation result of Butz and Moerdijk [17] ex-
presses that a geometric theory admits a representation by an open topological
groupoid if and only if the set-based models are a jointly conservative class of models.
Our classification result answers the next obvious question: which open topological
groupoids represent a given geometric theory? Informally, this question is equiva-
lent to asking: which groupoids of models ‘have enough information’ to recover the
theory?

The main result of this chapter is a characterisation of when a groupoid of models
of a (geometric) theory can be endowed with topologies to yield a representing open
topological groupoid.

We will observe that, unlike for propositional theories, it no longer suffices to
simply have a groupoid of jointly conservative models. Instead, a further, model-
theoretic condition, elimination of parameters, must be placed on the groupoid. Taken
together, these conditions yield the characterisation of representing groupoids. In
addition to admitting novel applications, our characterisation also subsumes the pre-
vious examples of representing groupoids found in the literature.

Representing groupoids for doctrinal sites. Recall that one of the intended appli-
cations of the geometric completion developed in Chapter IV is to replace an ad hoc
approach to the model theory for logical theories from diverse syntaxes with a sin-

195
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gle unified approach using geometric logic. Therefore, during this chapter, we will
assume that our theory is a geometric theory and argue in the familiar language of
geometric logic.

Thus, by characterising the possible representing groupoids of a geometric theory,
we have also characterised the possible representing groupoids of any predicate the-
ory with a classifying topos, since such a theory must be semantically equivalent to a
geometric one. In particular, this classification can be phrased in the language of doc-
trinal sites developed in Chapter III and Chapter IV to abstractly represent predicate
theories without prejudice as to the underlying syntax.

Relation to the previous literature. The previous literature on using groupoids to
represent topoi can be divided as to whether localic (i.e. pointfree) or topological
groupoids are used. Both approaches have markedly different flavours.

By Caramello’s topological Galois theory [21], a complete and atomic theory is rep-
resented by the topological group of automorphisms of a model if and only if that
model is ultrahomogeneous. This is in contrast to the localic Galois theory developed
by Joyal, Tierney and Dubuc ([68, Theorem VIII.3.1] and [34]), wherein it is shown
that a complete and atomic theory is represented by the localic automorphism group
of any model. We take this as evidence that while the disciplines of categorical logic
and classical model theory, in which ultrahomogeneous models play an important
role, are normally viewed as entirely distinct, this is not the case when we prioritise a
topological rather than localic viewpoint.

In a similar fashion, Blass and Ščedrov characterise Boolean coherent topoi in
[11] as those topoi that can be expressed as the coproduct of topoi of continuous
actions by coherent topological groups. Moreover, these groups can be taken as the
automorphism groups of ultrahomogeneous models for the theory classified by the
topos.

In Chapter VI, we reviewed the celebrated result of Joyal and Tierney [68] that every
topos is the topos of sheaves on some open localic groupoid. The parallel topological
result was given in [17], where Butz and Moerdijk show that every topos with enough
points is represented by an open topological groupoid. When a topos with enough
points is known to classify a theory T, Forssell’s thesis and subsequent papers with
Awodey [5], [36], [37] give an explicitly logical description of a representing open
topological groupoid. Namely, their results express that T is represented by the
groupoid of all K-indexed models, for a sufficiently large cardinal K (we shall call such
groupoids Forssell groupoids, see also Definition VII.53 and Section VI.3.3).

In summary, the relevant literature on the representation of topoi by localic and
topological groupoids can be divided as follows.

Localic representation Topological representation

Connected
localic groups [34], [68], topological groups [21],atomic topoi

Boolean coproduct of coherent
coherent topoi topological groups [11],

All topoi (with open localic open topological
enough points) groupoids [68], groupoids [5], [17], [36], [37].
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Our characterisation of the representing open topological groupoids recovers the
previous results for the right-hand column of the above table.

Overview. The chapter proceeds as follows.

(A) Section VII.1 is divided into four parts. In the former two, Section VII.1.1
and Section VII.1.2, we define indexings of sets of models and an extension of
the notion of a definable subset of a model to indexed groupoids of models.
This will allow us to express the statement of our classification theorem for
representing open topological groupoids, completed in Section VII.1.3. Finally,
the method we will follow in proving the classification result, completed in
Sections VII.2 to VII.4, is laid out in Section VII.1.4. Section VII.1.4 also includes
a brief discussion of the relation between our result and the descent theory of
Joyal and Tierney [68] recalled in Section VI.2.

(B) The proof of our classification result is contained in Sections VII.2 to VII.4. Given
a groupoid of modelsX = (X1 ⇒ X0) of our theory, the possible topologies with
which X0, respectively X1, can be endowed that lead to a representing open
topological groupoid are characterised in Section VII.2, resp., Section VII.3. The
final steps of the proof of the classification result are completed in Section VII.4.

(C) In Section VII.5, we present some applications of our characterisation, including
a demonstration that the other logical treatments of representing open topologi-
cal groupoids considered in the literature can be recovered via our classification
result.

(a) In Section VII.5.1, we recover the principal result of [21] that an atomic
theory is represented by the automorphism group of a single model if and
only if that model is conservative and ultrahomogeneous, as well as a
characterisation of Boolean topoi with enough points that is reminiscent of
[11].

(b) Section VII.5.2 concerns the representing groupoids of decidable theories.
(c) In Section VII.5.3 we show that every open representing model groupoid

is Morita equivalent to its étale completion.
(d) The representation results of Awodey, Butz, Forssell and Moerdijk [5],

[17], [37], including the case of Forssell groupoids, are recovered in Sec-
tion VII.5.4.

(e) Having described representing groupoids for a given theory, we answer
in Section VII.5.5 the converse problem by adapting the methods of [52,
Theorem 4.14] to describe a theory represented by a given groupoid of
indexed structures.

(D) As a demonstration, in Section VII.6 we give a worked example in further detail
of a representing groupoid for the theory of algebraic integers.

(E) Finally, Section VII.7 contains a translation of our classification result for geo-
metric theories into the language of doctrinal sites. Recall that these were used
in Part A to abstractly represent formal systems of predicate reasoning. Thereby,
we obtain a classification of the representing open topological groupoids of any
predicate theory with a classifying topos.
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VII.1 The classification theorem
In order to state the classification theorem for representing open topological groupoids,
we must first develop our terminology for indexed structures and definables. The former
notion is jointly inspired the signature of the diagram of a model (see [89, Definition
2.3.2]) and the enumerated models and indexed models studied in, respectively, [17]
and [5], [36], [37] (the connection with these works will be fully illustrated in Sec-
tion VII.5.4). Indexed structures capture the intuition of constructing models from
a list of parameter names. Meanwhile, the latter notion of definables extends the
standard notion of definable subset found in model theory (see [52, §3]). The two
properties that characterise representing open topological groupoids, ‘conservativ-
ity’ and ‘elimination of parameters’, are introduced in Section VII.1.3, in which we
also state the classification theorem. ‘Conservativity’ will be a familiar notion to the
logician, but we believe ‘elimination of parameters’ to be a novel addition.

VII.1.1 Indexed structures

Let Σ be a signature. Given a Σ-structure M, a standard model-theoretic construction
is to consider M as a structure over the expanded signature Σ ∪ { cn | n ∈ M }, the
signature of the diagram of M, where we have added a constant symbol for each
element of M. This allows us to express via formulae over the expanded signature
those subsets of M that are defined in relation to finite tuples of other elements of M.
We present a modification of this construction below.

Definition VII.1. Let Σ be a signature with N sorts, and let K = (Kk)k∈N be an N-tuple
of sets. We denote by Σ ∪ K the expanded signature obtained by adding, for each
m ∈ Kk, a constant symbol cm (of the kth sort) to Σ. We will call these added constant
symbols parameters.

A K-indexing of a Σ-structure M consists of:

(i) a sub-expansion of Σ ∪ K, that is the signature

Σ ∪
{

cm

∣∣∣ m ∈ K′k, k ∈ N
}

for a tuple K′ = (K′k)k∈N of subsets K′k ⊆ Kk,

(ii) and an interpretation of M as a structure over the signature

Σ ∪
{

cm

∣∣∣ m ∈ K′k, k ∈ N
}

such that, for each k ∈ N, the model M satisfies the sequent

> `x

∨
m∈K′k

x = cm.

In other words, we have interpreted in M some of the parameters introduced by K in
such a way that every element n ∈M is the interpretation of a parameter.

Our definition of K-indexed structure is equivalent to the homonymous notion
found in [5], [36], [37] that a Σ-structure is K-indexed if the interpretation of the kth
sort MAk is presented as a subquotient of Kk, i.e.
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(i) there is a partial surjection Kk ⇁⇁ MAk ,

(ii) or equivalently, there is a subset S ⊆ Kk and an equivalence relation ∼ on S such
that MAk = S/ ∼.

We will abuse notation and write m for both the parameter as an element of K and its
interpretation in an K-indexed structure M. We denote a choice of K-indexing of M
by K⇁⇁ M.

Definition VII.2. Let X = (X1 ⇒ X0) be a (small) groupoid of models of T over a
signature Σ. An K-indexing of X is a K-indexing K⇁⇁ M for each model M ∈ X0.

Note that an element n ∈ M can be the interpretation of multiple parameters, and
also that the models M ∈ X0 are allowed to share parameters, i.e. for M,N ∈ X0, the
same parameter m ∈ K can be interpreted in both M and N.

Examples VII.3. Every (small) groupoidX = (X1 ⇒ X0) of T-models admits multiple
indexings by various sets of parameters.

(i) Every model is trivially indexed by its own elements, and so X can be indexed
by the set

⋃
M∈X0

M.

(ii) Since X is a small groupoid, there is a sufficiently large cardinal K such that
every M ∈ X0 is of cardinality at most K, and thus there is a choice of partial
surjection K⇁⇁ M for each M ∈ X0.

VII.1.2 Definables

In this subsection, we generalise definable subsets of a single model to groupoids
of models, and show that this generalisation naturally carries the structure of an
equivariant sheaf over the groupoid of models in question (when endowed with the
discrete topologies).

Let M be a model of a theoryT. We use the notation ~ x~ : ϕ �M to denote the subset
defined by the formula in context { x~ : ϕ }, i.e.

~ x~ : ϕ �M = {n~ ∈M |M ⊨ ϕ(n~) }.

The notation ϕ(M) is also standard for definable subsets. We maintain reference to
the context since we wish to emphasise the difference between the same formula
interpreted in different contexts, for example

~ ∅ : > �M = 1 , ~ x : > �M

(assuming that M has more than one element).

Definitions VII.4. Let X = (X1 ⇒ X0) be a (small) groupoid of models of a theory T.

(i) The definable of a formula in context { x~ : ϕ }, which we denote by ~ x~ : ϕ �X, is
the coproduct ∐

M∈X0

~ x~ : ϕ �M.

Elements of ~ x~ : ϕ �X we denote as pairs 〈n~,M〉, where n~ ⊆M ∈ X0.
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(ii) Suppose the models M ∈ X0 are indexed by a set of parameters K. For a tuple m~
of parameters of K, we denote by ~ x~,m~ : ψ �X the definable with parameters

~ x~,m~ : ψ �X =
∐

M∈X0

{ 〈n~,M〉 | m~ ∈M and M ⊨ ψ(n~,m~ ) }.

Recall that our models may share parameters, and so the definable ~ x~,m~ : ψ �X
can have as elements

〈
n~,M

〉
,
〈
n~ ′,N

〉
, where M and N differ.

If m~ = ∅, we say that the definable ~ x~,m~ : ψ �X is definable without parameters. Note
that every definable with parameters ~ x~,m~ : ψ �X is equivalently a definable without
parameters over the expanded signature Σ ∪ K.

A definable ~ x~ : ϕ �X possesses an evident projection π~ x~:ϕ � to X0 which sends the
pair 〈n~,M〉 to the model M ∈ X0, as visually represented in the bundle diagram

M M′ . . . N
X0.

. . .

a~

a~′

...

a~′′

~ x~ : ϕ �M

b~

...

b~
′

~ x~ : ϕ �M′

c~

...

c~ ′

~ x~ : ϕ �N

Functoriality of definables. Note that the definable subset ~ x : > �M of a single
model M is just the interpretation of the sort of the variable x, which we will denote
by Mx. Similarly, ~ x~ : > �M is the set of all tuples with the same sort as x~, or the product
set

∏
xi∈x~M

xi , which we will denote by Mx~ . For every formula ϕ in context x~, there is
clearly an inclusion

~ x~ : ϕ �M ⊆ ~ x~ : > �M =Mx~ ,

and similarly there is an inclusion ~ x~ : ϕ �M ⊆ ~ x~ : ψ �M ifT proves the sequentϕ `x~ ψ.
Let σ : y~ → x~ be a relabelling of variables, i.e. a map where yi and σ(yi) have the

same sort for each yi ∈ y~ . The map σ induces universally an arrow

Mx~
∏
yi∈y~

Myi=My~

Mσ(yi) Myi .

σM

prσ(yi)
pryi

If T proves the sequent ϕ `y~ ψ[x~/σy~], i.e. if there is an arrow ( x~ , ϕ ) σ−→ ( y~ , ψ ) in the
category Conop

N o FT from Chapter III, then the map σM restricts to a function on the
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subsets
~ x~ : ϕ �M ~ y~ : ψ �M

Mx~ My~ .σM

We thus obtain a functor ~− �M : ConN o FT → Sets. In fact, under the equivalences

T-mod(Sets) ' Geom(Sets,ET) ' KFT-Flat(Conop
N o FT,Sets),

this is precisely the continuous flat functor corresponding to the T-model M in Sets.
Evidently, the pointwise coproduct

∐
M∈X0
~− �M behaves well with the projection

π~− � in that, for every arrow ( y~ , ϕ ) σ−→ ( x~ , ψ ) of Conop
N o FT, the diagram

~ x~ : ϕ �X ~ y~ : ψ �X

∐
M∈X0

Mx~
∐

M∈X0

My~

X0

π~ x~:ϕ � π~ y~ :ψ �

∐
M∈X0

σM

commutes. Thus, we obtain a functor

~− �X0 : Conop
N o FT Sets/X0 ' SetsX0 .

Actions on definables. The bundle π~ x~:ϕ � : ~ x~ : ϕ �X → X0 admits a canonical lifting
of the X1-action on X0. By this we mean there is a map

θ~ x~:ϕ � : ~ x~ : ϕ �X ×X0 X1 → ~ x~ : ϕ �X,

where ~ x~ : ϕ �X ×X0 X1 is the pullback

~ x~ : ϕ �X ×X0 X1 ~ x~ : ϕ �X

X1 X0,

⌟
π~ x~:ϕ �

s

satisfying the equations

θ~ x~:ϕ �(θ~ x~:ϕ �(〈m~ ,M〉, α), γ) = θ~ x~:ϕ �(m~ , γ ◦ α),

θ~ x~:ϕ �(〈m~ ,M〉, idM) = 〈m~ ,M〉,

i.e. (~ x~ : ϕ �X, π~ x~:ϕ �, θ~ x~:ϕ �) is a sheaf on the groupoid X = (X1 ⇒ X0), in the sense of
Definition V.2(i), when X1 and X0 are both endowed with the discrete topology.
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Given a T-model isomorphism M α−→M′ ∈ X1, we declare that

θ~ x~:ϕ �(〈a~,M〉, α) = 〈α(a~),M′〉,

where 〈a~,M〉 ∈ ~ x~ : ϕ �X. Since α is a morphism of T-models, it preserves the
interpretation of the formula ϕ, i.e. M′ ⊨ ϕ(α(a~)) too. Hence, θ~ x~:ϕ � is well-defined.
The action θ~ x~:ϕ � can be visualised as acting on the bundle π~ x~:ϕ � : ~ x~ : ϕ �X → X0 as
in the diagram

M M′ . . . N
X0.

. . .

a~

a~′

...

a~′′

~ x~ : ϕ �M

b~

α(a~)

...

b~
′

~ x~ : ϕ �M′

c~

...

c~ ′

~ x~ : ϕ �N

α

For each arrow ( y~ , ϕ ) σ−→ ( x~ , ψ ) of Conop
N o FT, it can be checked directly that the

induced map ~ σ �X : ~ x~ : ϕ �X → ~ y~ : ψ �X is equivariant with respect to the above
defined X1-actions, i.e. the square

~ x~ : ϕ �X ×X0 X1 ~ x~ : ϕ �

~ y~ : ψ � ×X0 X1 ~ y~ : ψ �

θ~ x~:ϕ �

~ σ �X ~ σ �X
θ~ y~ :ψ �

commutes. Thus, there is a functor ~− �X : Conop
N o FT → SetsX.

Orbits of definables. Note that every definable with parameters forms a subset of
a definable without parameters, e.g.

~ x~,m~ : ϕ �X ⊆ ~ x~ : ∃y~ ϕ �X, ~ x~ : > �X.

The X1-action θ~ x~:> � does not restrict to an X1-action on ~ x~,m~ : ϕ �X since the subset
may not be closed under the action, i.e. if 〈a~,M〉 ∈ ~ x~,m~ : ϕ � and there is an iso-
morphism of T-models M α−→ M′ ∈ X1, it does not follow that M′ ⊨ ϕ(α(a~),m~ ). This
is because α is an isomorphism only of the Σ-structure and need not preserve the
interpretation of any of the parameters we have added. Indeed, m~ might not even
be interpreted in M′. Of course, if m~ = ∅, then ~ x~ : ϕ � is closed under the X1-action
θ~ x~:> �, the restricted action being precisely θ~ x~:ϕ �.
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Definition VII.5. The orbit ~ x~,m~ : ψ �X of a definable with parameters ~ x~,m~ : ψ �X is
the closure under the isomorphisms contained in X1, explicitly

~ x~,m~ : ψ �X =
{
〈n~,N〉

∣∣∣∣∃M α−→ N ∈ X1 such that M ⊨ ψ(α−1(n~),m~ )
}
.

Equivalently, ~ x~,m~ : ψ �X defines the smallest stable subset of ~ x~ : > �X that contains
~ x~,m~ : ψ �X.

VII.1.3 Statement of the classification theorem

Having developed our terminology for the definables of a groupoid of T-models
indexed by K, we can now state the classification theorem.

Definitions VII.6. Let T be a geometric theory over a signature Σ and let X be a
(small) groupoid of models of T indexed by a set of parameters K.

(i) We say that X is conservative if X0 is a conservative set of models, i.e. for each
pair of geometric formulae over Σ in context x~, if ~ x~ : ϕ �X ⊆ ~ x~ : ψ �X, then T
proves the sequent ϕ `x~ ψ.

(ii) We say thatX eliminates parameters if the orbit of each definable with parameters
~ x~,m~ : ψ �X is definable without parameters, i.e. there exists a geometric formula
in context { x~ : ϕ } such that

~ x~,m~ : ψ �X = ~ x~ : ϕ �X.

Remarks VII.7. (i) Recall that a topos E has enough points if the points, i.e. the
geometric morphisms Sets → E, are jointly conservative – that is the inverse
image functors are jointly faithful. If E classifies a theory T, then E has enough
points if and only if the set-based models ofT are conservative. By [57, Corollary
7.17], if E has enough points, a small set of conservative models can always be
chosen. We will therefore mix our terminology and say that a theory has enough
points to mean there exists a conservative set of set-based models.

(ii) Our terminology ‘elimination of parameters’ is justified since, in the special case
of field theory, it is demonstrably the groupoid removing the parameters from
the defining polynomial of a solution set. As a simple example from traditional
Galois theory, the orbit of the definable with parameters ~ x = i �Q(i) = { i } under
the automorphisms of Q(i) that fix Q is definable without parameters, namely

~ x = i �Aut(Q(i)) = { i,−i } = ~ x2 = −1 �Aut(Q(i)).

Our terminology ‘elimination of parameters’ is also inspired by the parallel
model-theoretic study of Galois theory and the theory of elimination of imagi-
naries of Bruno Poizat [101, §2] that arises therein.

(iii) Let T be a geometric theory and let X = (X1 ⇒ X0) be a (small) groupoid of
models of T indexed by a set of parameters K. To check that the groupoid X
eliminates parameters, it suffices to show that, for each tuple of parameters m~ ,
there exists a formula in context { y~ : χ }without parameters such that

~ y~ = m~ �X = ~ y~ : χ �X
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since, for an arbitrary definable with parameters ~ x~,m~ : ψ �X, we have that

~ x~,m~ : ψ �X = ~ x~ : ∃y~ ψ[y~/m~ ] ∧ y~ = m~ �X,
= ~ x~ : ∃y~ ψ[y~/m~ ] ∧ χ �X.

(iv) Let T be a geometric theory over a signature Σ and let X be a groupoid of T-
models indexed by K. We note that the condition that X eliminates parameters
does not depend on the theory T, but only on the signature Σ. We will revisit
this observation in Remark VII.30.

(v) Let X be a conservative groupoid of T-models, indexed by a set of param-
eters K for which X eliminates parameters. Given a definable formula with
parameters ~ x~,m~ : ψ �X, we may wonder what restrictions can be made on the
formula ϕ which witnesses the elimination of parameters, i.e. a formula for
which ~ x~,m~ : ψ �X = ~ x~ : ϕ �X. We note that, since

~ x~,m~ : ψ �X ⊆ ~ x~,m~ : ψ �X ⊆ ~ x~ : ∃y~ ψ �X

and the groupoid X is conservative, T must prove the sequent ϕ `x~ ∃y~ ψ.
Similarly, if every instance of the parameters m~ in a model M ∈ X0 satisfies a
formula χ, then T also proves the sequent ϕ `x~ ∃y~ ψ ∧ χ. In particular, we have
that

ϕ `x~ ∃y~ ψ ∧
∧

mi=m j

yi = y j,

where the conjunction
∧

mi=m j
yi = y j ranges over the elements of the tuple m~

that are equal.

Theorem VII.8 (Classification of representing open topological groupoids for a geo-
metric theory). Let T be a geometric theory, and letX = (X1 ⇒ X0) be a (small) groupoid of
set-based models of T. The following are equivalent.

(i) There exist topologies on X0 and X1 making X an open topological groupoid such that
there is an equivalence of topoiSh(X) ' ET.

(ii) The groupoid X is conservative and there exists a set of parameters K and an indexing
of X by K for which X eliminates parameters.

Remark VII.9. Let T be a geometric theory and let X be a groupoid of models for T
satisfying the hypotheses of Theorem VII.8.

(i) In general, we can not a priori infer an indexing for whichX eliminates parame-
ters without knowledge of the topologies on X for which Sh(X) ' ET. In other
words, there does not exist a canonical indexingKcan ⇁⇁ Xwith the property that
there exist topologies makingX an open topological groupoid with Sh(X) ' ET
if and only if X eliminates parameters for the canonical indexing Kcan ⇁⇁ X.
This is because, as will become apparent in Section VII.2, a choice of indexing
for X yields a choice of topology on X0 and, vice versa, a choice of topology on
X0 yields a choice of indexing for X.
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(ii) IfX′ is another groupoid for which there is an equivalence of categoriesX ' X′,
then it is not necessarily true thatX′ can be endowed with topologies for which
Sh(X′) ' ET. This apparent defect arises because we are considering topological
categories. Indeed, if X′ and X were equivalent, or homeomorphic, as topological
categories, by which we mean that the functors F : X → X′ and G : X′ → X that
witness the equivalence also preserve the induced topological structure, then
there would be an equivalence of topoi Sh(X′) ' Sh(X) ' ET.

The proof of Theorem VII.8 is completed in Sections VII.2 to VII.4. Given a
geometric theory T, we will call a (small) groupoid X = (X1 ⇒ X0) of set-based
T-models, i.e. a small subcategory X ⊆ T-mod(Sets) in which every arrow has an
inverse, a model groupoid for T.

VII.1.4 Our method

We now lay out the method that we will follow in Sections VII.2 to VII.4 in order to
prove Theorem VII.8. Let X = (X1 ⇒ X0) be a groupoid and let

p : SetsX ' Sh(Xδδ) ET

be a geometric morphism. For each object x ∈ X0 ofX, the evaluation functor SetsX →
Sets,

[P : X→ Sets] 7→ P(x)

yields a geometric morphism evx : Sets→ SetsX, and hence a point

Sets SetsX ET
evx p

of the topos ET. Consequently, x ∈ X0 also yields a T-model M.
Similarly, every isomorphism x α−→ y of X1 yields an isomorphism of points

Sets SetsX ET
p

evx

evy

α

and thefore an isomorphism of T-models. Thus, the geometric morphism p cor-
responds to a model groupoid X ⊆ T-mod(Sets). Similarly, each model groupoid
X ⊆ T-mod(Sets) also yields a geometric morphism

p : SetsX ET.

Recalling that (Conop
N oFT,KFT) is a site of definition for ET, the continuous flat functor

Conop
N o FT SetsX
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corresponding to the geometric morphism p : SetsX → ET is precisely the functor
~− �X considered in Section VII.1.2.

We will denote the composite

Sh(Xδ
0) Sh(Xδδ) ETv p

by p0.

Definition VII.10. A factoring topology for objects is a topology τ0 on X0 such that the
geometric morphism p0 : Sh(Xδ

0)→ E factors as

Sh(Xδ
0) Sh(Xτ0

0 ) ET.
j

Given a factoring topology for objects τ0, recall that, by Lemma V.16, there exists
a unique (up to isomorphism) geometric morphism p′ such that

Sh(Xδ
0) Sh(Xτ0

0 )

Sh(Xδδ) Sh(Xδτ0
)

ET

j

v
⌟ uδ

j′

p

p′

commutes.

Definition VII.11. Given a factoring topology for objects τ0 on X0, a factoring topology
for arrows is a topology τ1 on X1 such that Xτ1

τ0 = (Xτ1
1 ⇒ Xτ0

0 ) is a topological groupoid
and p′ factors as

Sh(Xδτ0
) Sh(Xτ1

τ0) ET.w

Our method for proving Theorem VII.8 is broken down into four intermediate
steps as follows.

(A) In Section VII.2 we classify, for a geometric theory T and a set X0 of set-based
models, the possible factoring topologies for X0. We will show that, when the
models in X0 are indexed by some set of parameters K, the logical topology on
objects, introduced in [36], [37], is a factoring topology for X0 and that, up to a
choice of indexing for each M ∈ X0, every factoring topology for X0 contains a
logical topology on objects.

(B) Given a factoring topology on objects for X0, we classify in Section VII.3 the
factoring topologies on arrows for X1. We will show that a topology τ1 on X1

is a factoring topology for arrows if and only if τ1 contains the logical topology
for arrows, another topology utilised in [36], [37] (where we have assumed that
τ0 contains the logical topology for objects for some indexing of the models).
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(C) We demonstrate in Section VII.3.1 that, if X0 and X1 are endowed with the logical
topologies τ-log0 and τ-log1, and that the resulting topological groupoid is open,
then the factoring geometric morphism

Sh
(
X
τ-log1
τ-log0

)
ET (VII.i)

is localic.

(D) Finally in Section VII.4, we deduce Theorem VII.8 by studying the morphism
of internal locales induced by the localic geometric morphism (VII.i) using the
methods established in Chapter II.

Comparison with Joyal-Tierney descent. Before embarking on the main proof, we
elaborate further the connection between the representation of topoi using topological
groupoids and localic groupoids, as discussed in Chapter VI.

Let E be a topos. Let X0 be a set of points of E, i.e. X0 ⊆ Geom(Sets,E), and let τ0

be a factoring topology for objects on X0, i.e. there is a canonically induced geometric
morphism

Sh
(
Xτ0

0

)
E.

There are two groupoids that can naturally be associated with the pair (X0, τ0).

(i) Firstly, there is the concrete groupoid X = (X1 ⇒ X0) (i.e. a groupoid internal
to Sets) obtained by taking X1 as the set of all isomorphisms of the points X0

(which is always small).

(ii) Secondly, there is the localic groupoid Xloc = (Xloc
1 ⇒ Xloc

0 ), whose locale of
objects is the frame of opens O(Xτ0

0 ) and whose locale of arrows is the locale in
the (bi)pullback of topoi

Sh(Xloc
1 ) Sh(Xτ0

0 )

Sh(Xτ0
0 ) E.

⌟

Suppose that there exists a topology τ1 on X1 making Xτ1
τ0 = (Xτ1

1 ⇒ Xτ0
0 ) an open

topological groupoid for which there is an equivalence of topoi E ' Sh(Xτ1
τ0). Then,

by Lemma V.8 and Lemma V.9, the canonical geometric morphism

u : Sh
(
Xτ0

0

)
Sh(Xτ1

τ0) ' E.

is an open surjection, and so, by an application of the descent theory of Joyal and
Tierney [68] (see also Theorem VI.5), the topos E is also the topos of sheaves on the
localic groupoid Xloc.

The converse, however, is not true. In Example VII.40 we give a counterexample
consisting of a topos E and an open surjective point p : Sets→ E for which there is an
equivalence E ' BAut(p)loc (here Aut(p)loc denotes the localic automorphism group
of p) but where there is not an equivalence E ; BAut(p)τ1 for any topology τ1 on the
concrete automorphism group Aut(p).
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VII.2 Factoring topologies for objects
LetT be a geometric theory and X0 a set of set-based models ofT. We wish to classify
the possible factoring topologies for X0. We first note that there is a factorisation

Sh(Xδ
0)

Sh(Xτ0
0 ) ET ' Sh(Conop

N o FT,KFT)

p0j

if and only if there is a factorisation

Sh(Xδ
0)

Sh(Xτ0
0 ) Conop

N o FT.

J

p∗0◦`Con
op
N oFT

In the following proposition, we restrict to the special case where T is a single-
sorted theory for notational simplicity. However, a multi-sorted version is readily
deduced using the same ideas – a statement is given in Remark VII.13.

Proposition VII.12. Let T be a single-sorted geometric theory and let X0 be a set of models
of T. A topology τ0 on X0 is a factoring topology for objects if and only if

(i) there exists a topology T on ~ x : > �X =
∐

M∈X0
M such that the projection

π~ x:ϕ � : ~ x : > �T
X Xτ0

0

is a local homeomorphism,

(ii) and for each geometric formula in context { x~ : ϕ }, where the context x~ is of length n,
the subset ~ x~ : ϕ �X ⊆ ~ x~ : > �X is open in the product topology Tn on

~ x~ : > �X =
∐

M∈X0

Mn =

∐
M∈X0

M


n

.

Proof. Suppose τ0 is a factoring topology for objects, and let

k : Sh(Xτ0
0 ) ET

be the factoring geometric morphism. Hence, the map π~ x:ϕ � : ~ x : > �X → X0, being
the image p∗ ◦ `Conop

N oFT ( x : > ), must be a local homeomorphism for some topology T
on ~ x : > �X when X0 is endowed with the topology τ0.

As k∗ ◦ `Conop
1 oFT preserves finite limits we deduce that, for a context x~ of length n,

k∗ ◦ `Conop
1 oFT( x~ , > ) = k∗ ◦ `Conop

1 oFT(( x : > )n),

= (k∗ ◦ `Conop
1 oFT( x : > ))n,

=
[
π~ x~:> � : ~ x~ : > �Tn

X → Xτ0
0

]
.
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The functor k∗ also preserves subobjects. The subobjects of `Conop
N oFT( x~ , > ) are objects

of the form `Conop
1 oFT( x~ , ϕ ) by Section II.2 (cf. also [63, Lemma D1.4.4]). Hence, since

subobjects of ~ x~ : > �Tn

X are, in particular, open subsets, the subset ~ x~ : ϕ �X ⊆ ~ x~ : > �X
is open in Tn. This completes the ‘only if’ direction of the proof.

Conversely, suppose that:

(i) there is a topology T on ~ x : > �X such that the projectionπ~ x:ϕ � : ~ x : > �T
X → Xτ0

0
is a local homeomorphism,

(ii) and for each geometric formula in context { x~ : ϕ }, the subset ~ x~ : ϕ �X ⊆ ~ x~ :
> �X is open in the product topology Tn on ~ x~ : > �X.

Clearly, since finite products are computed in Sh(Xτ0
0 ) as wide pullbacks in Top,

π~ x~:> � : ~ x~ : > �Tn

X → Xτ0
0 is also a local homeomorphism, where Tn is the product

topology, for each natural number n. As the subset ~ x~ : ϕ �X ⊆ ~ x~ : > �X is open in
the product topology Tn, the composite

k∗ ◦ `Conop
1 oFT( x~ , ϕ ) =

[
π~ x~:ϕ � : ~ x~ : ϕ �X ⊆ ~ x~ : > �X → Xτ0

0

]
is also a local homeomorphism, when ~ x~ : ϕ �X is endowed with the subspace topol-
ogy.

Let ( x~ , ϕ ) σ−→ ( y~ , ψ ) be a morphism of Conop
1 o FT, where the contexts x~ and y~

have respective lengths n and m. Since the induced map

~ x~ : > �X =
∐

M∈X0

Mn
∐

M∈X0

Mm = ~ y~ : > �X

X0

~ σ �X

π~ x~:> � π~ y~ :> �

is obtained universally, it is automatically continuous when ~ x~ : > � and ~ y~ : > � are
endowed with their respective product topologies. Therefore, the restriction to the
subspaces

~ x~ : ϕ �X ~ y~ : ψ �X

~ x~ : > �X ~ y~ : > �X

X0

~ σ �X

π~ x~:> � π~ y~ :> �

is also a continuous map.
Thus, there exists a factorisation

Sh(Xδ
0)

Sh(Xτ0
0 ) Conop

1 o FT

J

p∗0◦`Con
op
N oFT

and so τ0 is a factoring topology. □
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Remark VII.13. In Proposition VII.12, we assumed the geometric theoryTwas single-
sorted for simplicity’s sake. However, the proof is readily adapted to the multi-sorted
case. We give the statement below.

Let T be an arbitrary geometric theory over a signature Σ, and let X0 be a set of
models of T. A topology τ0 on X0 is a factoring topology for objects if and only if

(i) for each sort X inΣ, there exists a topology Tx on ~ x : > �X such that the projection
π~ x:> � : ~ x : > �Tx

X
→ Xτ0

0 is a local homeomorphism, where x is a single variable
of sort X,

(ii) for each geometric formula in context { x~ : ϕ }, the subset ~ x~ : ϕ �X ⊆ ~ x~ : > �X is
open in the corresponding product topology Tx~ on ~ x~ : > �X.

The logical topology on objects. Given an indexing of each model in our set of
objects by some parameters, we now introduce a certain class of factoring topologies
for objects: the logical topologies for objects. This is an adaptation of the topology used in
the papers by Awodey and Forssell (see [37, Definition 3.1]), itself an adaptation of the
topology used by Butz and Moerdijk in [17, §2]. As we will see in Proposition VII.17,
a factoring topology for objects τ0 on X0 can, essentially, be chosen to contain a logical
topology.

Definition VII.14 (Definition 3.1 [37], Definition 1.2.1 [5]). LetT be a geometric theory
and let X0 be a set of T-models indexed by a set of parameters K. The logical topology
for objects τ-log0 on X0, for this indexing, is the topology generated by the basis whose
opens are sentences with parameters ~m~ : ϕ �X, i.e. those definables with parameters
~ x~,m~ : ϕ �X where x~ = ∅.

Remark VII.15. Let X0 be a set of indexed T-models as above. We note that, when
generating the logical topology for objects τ-log0 on X0, we can focus our attention on
only those opens ~m~ : ϕ �X where ϕ is an atomic formula (see [63, Definition D1.1.3]).
This is because any of the logical symbols { ∧,∨,∃ } used to construct a composite
geometric formula from atomic ones can be replaced by topological constructions:

(i) ~m~ : ϕ ∧ ψ �X = ~m~ : ϕ �X ∩ ~m~ : ψ �X,

(ii)
�

m~ :
∨

i∈I ϕi
�
X =

⋃
i∈I~m~ : ϕi �X,

(iii) ~m~ : ∃yϕ �X =
⋃

m~ ′∈K~m~ ,m~ ′ : ϕ �X.

Lemma VII.16. Let T be a single-sorted geometric theory. Each ‘logical topology for objects’
is a factoring topology for objects.

Proof. Let X0 be a set of models of T indexed by parameters K. By Proposition VII.12
and the multi-sorted version given in Remark VII.13, it suffices to show that, for each
singleton variable, there is a topology Tx on ~ x : > �X such that the projection

π~ x:> � : ~ x : > �X Xτ-log0
0

is a local homeomorphism, and for each geometric formula in context { x~ : ϕ } the
subset ~ x~ : ϕ �X ⊆ ~ x~ : > �X is open in the product topology Tx~ on ~ x~ : > �X.
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Let Tx be the topology on ~ x : > �X generated by the basic opens

~ x,m~ : ϕ �X = { 〈n,M〉 |M ⊨ ϕ(n,m~ )}.

For this topology, π~ x:> � is a local homeomorphism. Firstly, each element 〈n,M〉 of
~ x : > �X is contained in the basic open

~ x = m �X = { 〈m,M′〉 | m ∈M′ },

where m is a parameter indexing n. The image of ~ x = m �X under the map

π~ x:> � : ~ x : > �X Xτ-log0
0

is open, namely π~ x:> � (~ x = m �X) = ~m : > �X. Moreover, there is an evident local
section s : ~m : > �X → ~ x = m �X of π~ x:> � – the map that sends M ∈ X0, in which
the parameter m is realised, to the pair 〈n,M〉, where n realises the parameter m. It
remains to show that the local section s is continuous, but this is clear since

s−1
(
~ x = m �X ∩ ~ x,m~ ′ : ψ �X

)
=

{
M ∈ X0

∣∣∣ M ⊨ ψ(m,m~ ′)
}
,

= ~m,m~ ′ : ψ �X ⊆ ~m : > �X.

Hence, for the topology Tx on ~ x : > �X, the map π~ x:> � : ~ x : > �X → Xτ-log0
0 is a local

homeomorphism.
We claim that the product topology Tx~ on ~ x~ : > �X is the topology generated by the

basis whose opens are definables with parameters. Clearly, if the product topology Tx~

is, as claimed, generated by definables with parameters, then each definable without
parameters ~ x~ : ϕ �X ⊆ ~ x~ : > �X is an open subset as desired.

The inclusion of the product topology Tx~ in the topology generated by definables
with parameters is obtained by noting that∏

xi∈x~
~ xi,m~ i : ϕi �X =

{ 〈n~,M〉 ∣∣∣∀i M ⊨ ϕi(ni,m~ i)
}
,

=

 〈n~,M〉
∣∣∣∣∣∣∣ n~,m~ 1, ...m~ n ∈

������� y~, x~1, ... , x~n :
n∧

i=1

ϕi

�������
M

 ,
=

������� x~,m~ 1, ... ,m~ n :
n∧

i=1

ϕi

�������
X

.

For the reverse inclusion, we observe that, for each 〈n~,M〉 ∈ ~ x~,m~ : ϕ �X,

〈n~,M〉 ∈
∏
xi∈x~
~ xi : xi = m′i ∧ ϕ(m~ ′,m~ ) �X,

= ~ x~ : x~ = m~ ′ ∧ ϕ(m~ ′,m~ ) �X ⊆ ~ x~,m~ : ϕ �X,

where m~ ′ is a tuple of parameters indexing n~ ∈M. □
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Every factoring topology for objects contains the logical topology. As expressed
below, there is a sense in which the ‘logical topology for objects’ is essentially the only
factoring topology that need be considered.

Proposition VII.17. Let T be a geometric theory and let X0 be a set of models of T. A
topology τ0 on X0 is a factoring topology for objects if and only if there exists an indexing of
each M ∈ X0 by a set of parametersK such that τ0 contains the corresponding ‘logical topology
for objects’ τ-log0.

Proof. One direction is clear: if τ0 contains a ‘logical topology for objects’ τ-log0 then,
by Lemma VII.16, the geometric morphism p0 factors as

Sh(Xδ
0) Sh(Xτ0

0 ) Sh
(
Xτ-log0

0

)
ET.

When we assume instead that τ0 is a factoring topology for objects, then, in
particular, for each singleton context, the projection π~ x:> � : ~ x : > �X → Xτ0

0 is a local
homeomorphism for some choice of topology Tx on ~ x : > �X. In particular, every
element 〈n,M〉 of ~ x : > �X lies in the image of some local section s : U→ ~ x : > �X of
π~ x:> � whose domain and image are open We call such local sections open. Let K be
the set of parameters whose elements are open local sections of π~ x:> �. We can index
each M ∈ X0 by interpreting the parameter s : U→ ~ x : > �X by n ∈M if 〈n,M〉 lies in
the image s(U). Thus, the open s(U) ⊆ ~ x : > �X is the interpretation of the definable
with parameters ~ x = s �X, as in the diagram

M M′ . . . N
X0.

. . .

a

a′

...

a′′

~ x : > �M

b

b′

...

b′′

~ x : > �M′

c

...

c′

~ x : > �N

~ x = s �X

U

s

As the open local sections are jointly surjective, this does indeed define an indexing
of each M ∈ X0 by the parameters K.

It remains to show that τ0 contains the logical topology for this indexing. We note
that s(U) = ~ x = s �X is open in ~ x : > �X and therefore, by Proposition VII.12 (and its
reformulation in Remark VII.13), in the product topology on ~ x~ : > �X, for any tuple
of parameters s~ of the same sort as x~ and any formula in context { x~ : ϕ }, the subset

~ x~ : ϕ ∧ x~ = s~ �X = ~ x~ : ϕ �X ∩
∏
xi∈x~
~ xi = si �,

=
{ 〈

n~,M
〉 ∣∣∣ M ⊨ ϕ(s~), n~ = s~

}
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is open in the product topology on ~ x~ : > �X. Since the local homeomorphism

π~ x:> � : ~ x : > �X Xτ-log0
0

is, in particular, an open map, the image

π~ x~:> �(~ x~ : ϕ ∧ x~ = s~ �X) = ~ s~ : ϕ[s~/x~] �X

is open in τ0, i.e. τ0 contains the ‘logical topology for objects’ as desired. □

Remark VII.18. Let T be geometric theory over a signature Σ, let X0 be a set of
T-models, and let τ0 be a factoring topology for objects on X0.

(i) When we discover an indexing of X0 by the set of parametersK such that τ0 con-
tains the ‘logical topology for objects’ τ-log0 via the method of Proposition VII.17,
we note that we have also forced the chosen topology on ~ x~ : > �X to contain as
opens the definables with parameters ~ x~,m~ : ϕ �X.

(ii) IfT is an inhabited theory, meaning thatT proves the sequent> `∅ ∃x> (for each
sort of Σ), then each fibre of ~ x : > �X is non-empty. Thus, every open in τ0 is
of the form π~ x:> �(V) for some open V ⊆ ~ x : > �X. In particular, the sets of the
form

U = π~ x:> �(~ x = s �X) = ~ s : > �X,
for s : U → ~ x : > �X an open local section of π~ x:> �, form a basis for τ0. There-
fore, when each M ∈ X0 is indexed by the open local sections of π~ x:> � as in
Proposition VII.17, the induced logical topology τ-log0 contains τ0 too, and so
τ0 = τ-log0.

VII.3 Factoring topologies for arrows
Let T be a geometric theory, X = (X1 ⇒ X0) a model groupoid for T, and let τ0

be a factoring topology for objects on X0. We seek to classify the possible factoring
topologies for arrows on X1. As before, we first note that there is a factorisation

Sh(Xδτ0
)

Sh(Xτ1
τ0) ET

p′
w

if and only if there is a factorisation

Sh(Xδτ0
)

Sh(Xτ1
τ0) Conop

N o FT,

W

p′∗◦`
Con

op
N oFT

if and only if, for each object ( x~ , ϕ ) of Conop
N o FT, the Xδ

1-action on ~ x~ : ϕ �X is
continuous. In fact, it suffices to only check that, for each context x~, the action

θ~ x~:> � : ~ x~ : > �X ×X0 Xτ1
1 ~ x~ : > �X
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is continuous since then, for each formula in context { x~ : ϕ }, the restriction of θ~ x~:> �
to the subspace ~ x~ : ϕ �X ⊆ ~ x~ : > �X, i.e. the X1-action

θ~ x~:ϕ � : ~ x~ : ϕ �X ×X0 Xτ1
1 ~ x~ : ϕ �X,

is continuous as well.

Logical topology for arrows. We define the logical topology for arrows, another
variation on a topology utilised in [5], [17], [36], [37]. Much like the logical topology
for objects, we will observe in Proposition VII.22 that the logical topology for arrows
plays a special role among all factoring topologies for arrows.

Definition VII.19 (Definition 3.1 [37], Definition 1.2.1 [5]). Let X = (X1 ⇒ X0) be a
model groupoid for a geometric theory T indexed by the set of parameters K. The
logical topology for arrows is the topology on X1 generated by basic opens of the form����������

a~ : ϕ
b~ 7→ c~
d~ : ψ

����������
X

=

 M α−→ N ∈ X1

∣∣∣∣∣∣∣∣∣
M ⊨ ϕ(a~),

N ⊨ α(b~) = c~,
N ⊨ ψ(d~)

 ,
where { x~ : ϕ }, { y~ : ψ } are formulae, and a~, b~, c~, d~ are tuples of parameters in K.

Lemma VII.20. The groupoid Xτ-log1
τ-log0

,

Xτ-log1
1 ×X0 Xτ-log1

1 Xτ-log1
1 Xτ-log0

0 ,

π2

m
π1

i

t

s

e

is a topological groupoid, i.e. the maps s, t, etc., are continuous.

Proof. For each basic open subset of Xτ-log0
0 and Xτ-log1

1 , we have that

s−1(~m~ : ϕ �X) =

�������� m~ : ϕ
∅ 7→ ∅
∅ : >

��������
X

,

e−1


����������

a~ : ϕ
b~ 7→ c~
d~ : ψ

����������
X

 = ~ a~ : ϕ �X ∩ ~ d~ : ψ �X ∩ ~ b~ = c~ �X,

and m−1


����������

a~ : ϕ
b~ 7→ c~
d~ : ψ

����������
X

 =
⋃
e~ ∈ K

��������� a~ : ϕ
b~ 7→ e~
∅ : >

���������
X

×X0

��������� ∅ : >
e~ 7→ c~
d~ : ψ

���������
X

.

The continuity of the other arrows is just as easily checked. □

We are now able to recognise the logical topology for arrows as a factoring topology
for arrows. Below, we explore the special role the logical topology plays among all
factoring topologies.
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Lemma VII.21 (Lemma 2.3.4.3 [36]). When X0 is endowed with the logical topology on
objects τ-log0, then the logical topology on arrows τ-log1 is a factoring topology for arrows.

Proof. By the above discussion, it suffices to check that the X1-action θ~ x~:> � is contin-
uous for each context x~, i.e. we must show that, for each definable with parameters
~ x~,m~ : ϕ �X,

θ−1
~ x~:> �

(
~ x~,m~ : ϕ �X

)
=

{
(〈n~,M〉, α)

∣∣∣∣ M α−→ N ∈ X1, N ⊨ ϕ(α(n~),m~ )
}

is an open subset of ~ x~ : > �X ×X0 Xτ-log0
1 . This is easily demonstrated. For each

(〈n~,M〉, α) ∈ θ−1
~ x~:> �

(
~ x~,m~ : ϕ �X

)
, we note that

(〈n~,M〉, α) ∈ ~ x~,m~ ′ : ϕ �X ×X0

�������� ∅ : >
m~ ′ 7→ m~
∅ : >

��������
X

⊆ θ−1
~ x~:> �

(
~ x~,m~ : ϕ �X

)
,

where m~ ′ is a tuple of parameters indexing α−1(m~ ). □

Proposition VII.22. Let T be a geometric theory, X = (X1 ⇒ X0) a model groupoid for T,
and let τ0 be a factoring topology for objects and τ1 a factoring topology for arrows. If τ0

contains the logical topology for objects when X is indexed by a set of parameters K, then τ1

contains the logical topology on arrows.

Proof. We note that����������
a~ : ϕ

b~ 7→ c~
d~ : ψ

����������
X

= s−1(~ a~ : ϕ �X) ∩

��������� ∅ : >
b~ 7→ c~
∅ : >

���������
X

∩ t−1(~ d~ : ψ �X).

As s, t are continuous maps and ~ a~ : ϕ �X, ~ d~ : ψ �X are open in Xτ0
0 , we deduce that

s−1(~ a~ : ϕ �X), t−1(~ d~ : ψ �X) ⊆ Xτ1
1

are open. Thus, it suffices to show that τ1 contains the subset��������� ∅ : >
b~ 7→ c~
∅ : >

���������
X

=
{

M α−→ N ∈ X1

∣∣∣∣ M ⊨ α(b~) = c~
}
.

By Remark VII.18, we may assume that the topology Tx~ on ~ x~ : > �X, for which
π~ x~:> � : ~ x~ : > �Tx~

X
→ Xτ0

0 is a local homeomorphism, contains as opens the definables
with parameters ~ x~,m~ : ϕ �X.

Since θ~ x~:> � is continuous, the subset

θ−1
~ x~:> �(~ x = c~ �X) ∩

(
~ x~ = b~ �X ×X0 X1

)
= { (〈n~,M〉, α) | n~ = b~, α(n~) = c~ }

is open in ~ x~ : > �X ×X0 Xτ1
1 . The projection pr2 in the pullback square

~ x~ : > �X ×X0 Xτ1
1 ~ x~ : > �X

Xτ1
1 Xτ0

0

pr2
⌟

π~ x~:> �

s
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is an open map since the local homeomorphism π~ x~:> � : ~ x~ : > �X → Xτ0
0 is an open

map too, and open maps are stable under pullback. Therefore,

pr2

(
θ−1
~ x~:> �(~ x = c~ �X) ∩

(
~ x~ = b~ �X ×X0 X1

))
=

��������� ∅ : >
b~ 7→ c~
∅ : >

���������
X

is an open subset of Xτ1
1 , and thus τ1 contains the logical topology on arrows. □

VII.3.1 Characterising the logical topology for arrows

Let T be a geometric theory and let X = (X1 ⇒ X0) a model groupoid for T indexed
by K. By Lemma VII.21 and Proposition VII.22, for any open factoring topology on
arrows τ1, when X0 is endowed with the logical topology for objects τ-log0, there is a
factorisation of the geometric morphism

p′ : Sh
(
Xδτ-log0

)
ET

as

Sh
(
Xδτ-log0

)
Sh

(
Xτ1
τ-log0

)
Sh

(
X
τ-log1
τ-log0

)
ET.

Moreover, by Proposition V.14 and Remark V.15, the factoring geometric morphisms

Sh
(
Xδτ-log0

)
Sh

(
Xτ1
τ-log0

)
and Sh

(
Xτ1
τ-log0

)
Sh

(
X
τ-log1
τ-log0

)
are both hyperconnected morphisms. We may therefore wonder whether the the
factorisation

Sh
(
Xδτ-log0

)
Sh

(
X
τ-log1
τ-log0

)
ET. (VII.ii)

is the hyperconnected-localic factorisation of the geometric morphism p′.
We answer affirmatively under the condition that

X
τ-log1
τ-log0

=
(
Xτ-log1

1 ⇒ Xτ-log0
0

)
is an open topological groupoid. In general, there is no reason forXτ-log1

τ-log0
to be an open

topological groupoid, though the groupoid eliminating imaginaries is a sufficient
condition, as observed in Lemma VII.28.

The proof that (VII.ii) is the hyperconnected-localic factorisation is essentially
contained in Lemmas 2.3.4.10-13 of [36], which deal with the specific case of Forssell
groupoids (which we will study in more detail in Section VII.5.4). We sketch some of
the details of the proof to assure the reader that the only required assumption is that
X
τ-log1
τ-log0

is an open topological groupoid.

Lemma VII.23 (Lemma 2.3.4.10 [36]). Let (Y, β, q) be anXτ-log1
τ-log0

-sheaf. For each y ∈ Y, there

exists a basic open ~m~ : ξ �X of Xτ-log0
0 with an open local section f : ~m~ : ξ �X → Y of q such

that
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(i) the point y is in the image of f ,

(ii) for any M ∈ ~m~ : ξ �X and an isomorphism M α−→ N ∈ X1, if α(m~ ) = m~ (and so
N ∈ ~m~ : ξ �), then

β
(

f (M), α
)
= f (N).

Recall that the subobjects of a Xτ-log1
τ-log0

-sheaf (Y, q, β) are given precisely by the open

subsets of Y that are stable under the action of β. If Xτ-log1
τ-log0

is an open topological

groupoid then, by Lemma V.4, the Xτ-log1
1 -action θ~ x~:> � is an open map. Therefore, we

have that
~ x~,m~ : ϕ �X = θ~ x~:> �(~ x~,m~ : ϕ �X ×X0 X1) ⊆ ~ x~ : > �X,

the orbit of a definable with parameters ~ x~,m~ : ϕ �X, is an open, stable subset and
hence a subobject of ~ x~ : > �.

Proposition VII.24 (Lemmas 2.3.4.11-13 [36]). If

X
τ-log1
τ-log0

=
(
Xτ-log1

1 ⇒ Xτ-log0
0

)
is an open topological groupoid, the factoring geometric morphism

plog : Sh
(
X
τ-log1
τ-log0

)
ET

is localic.

We sketch the proof to Proposition VII.24. To show that p is localic, it suffices to

show that the subobjects of ~ x~ : > �X form a generating set of Sh
(
X
τ-log1
τ-log0

)
. Given an

object (Y, q, β) of Sh
(
X
τ-log1
τ-log0

)
and a point y of Y, by Lemma VII.23, there exists a basic

open ~m~ : ξ �X of Xτ-log0
0 with a local section f : ~m~ : ξ �X → Y of q such that

(i) the point y is in the image of f ,

(ii) for any M ∈ ~m~ : ξ �X and an isomorphism M α−→ N ∈ X1, if α(m~ ) = m~ then

β
(

f (M), α
)
= f (N).

Let x~ be a context with the same type as m~ . Evidently, there is a local section
g : ~m~ : ξ �X → ~ x~ : > �X of π~ x~:> � : ~ x~ : > �X → X0 that sends M ∈ ~m~ : ξ �X to 〈m~ ,M〉.
The image of g is thus the open subset ~ x~ : x~ = m~ ∧ ξ �X ⊆ ~ x~ : > �X. Hence, there is a
commuting diagram of continuous maps

~ x~ : > �X ~ x~ : x~ = m~ ∧ ξ �X Y

~ x~ : x~ = m~ ∧ ξ �X

~m~ : ξ �X.
g f
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The remainder of the proof of Proposition VII.24 consists of constructing a continu-
ous map h : ~ x~ = m~ ∧ ξ �X → Y which completes the above diagram and moreover
constitutes a morphism of Xτ-log1

τ-log0
-sheaves.

As each element of ~ x~ = m~ ∧ ξ �X is of the form 〈α(m~ ),N〉 where M α−→ N is a T-
model isomorphism in X1 and M ∈ ~m~ : ξ �, we take the obvious definition and set
h(〈α(m~ ),N〉) = β( f (M), α).

It must first be checked that this is well-defined, and here we use the fact that X
is a groupoid. Given a second isomorphism M

γ−→ N such that 〈α(m~ ),N〉 = 〈γ(m~ ),N〉,
then γ−1 ◦ α is an automorphism of M, contained in X1, such that γ−1 ◦ α(m~ ) = m~ .
Hence, by hypothesis, β( f (M), γ−1 ◦ α) = f (M), and so

β( f (M), γ) = β(β( f (M), γ−1 ◦ α), γ) = β( f (M), α).

It remains to show that h is continuous and that h is a morphism of Xτ-log1
τ-log0

-sheaves.
For these details, the reader is directed to [36].

Thus, for each object (Y, q, β) of Sh
(
X
τ-log1
τ-log0

)
, the arrows of Sh

(
X
τ-log1
τ-log0

)
whose do-

mains are subobjects of ~ x~ : > �X are jointly surjective and therefore the geometric
morphism

plog : Sh
(
X
τ-log1
τ-log0

)
ET

is localic.

Corollary VII.25. If Xτ-log1
τ-log0

is an open topological groupoid, the geometric morphism

plog : Sh
(
X
τ-log1
τ-log0

)
ET

is the localic part of the hyperconnected-localic factorisation of

p′ : Sh
(
Xδτ-log0

)
ET

Proof. There is a commutative triangle

Sh
(
Xδτ-log0

)
Sh

(
X
τ-log1
τ-log0

)

ET,

w

p′
plog

where w is hyperconnected by Proposition V.14 and plog is localic by Proposition VII.24.
□
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VII.4 The proof of the classification theorem
We are now in a position to combine the results of Section VII.2 and Section VII.3 to
obtain the classification theorem stated in Theorem VII.8. We separate the different
steps of the proof to show clearly the interaction between the two conditions: conser-
vativity and elimination of parameters. Conservativity, unsurprisingly, is equivalent
to the induced geometric morphism being a geometric surjection. Conversely, elimi-
nation of parameters is equivalent the induced geometric morphism being a geometric
embedding. Finally, we also give a sense in which the logical topologies are the only
topologies that need be considered.

Lemma VII.26. Let T be a geometric theory and let X = (X1 ⇒ X0) be a model groupoid
for X. Given a pair of factoring topologies τ0 on X0 and τ1 on X1, the factoring geometric
morphism

Sh
(
Xτ1
τ0

)
ET

is a geometric surjection if and only if X0 is a conservative set of models for T.

Proof. Recall that there is commutative diagram of geometric morphisms

SetsX0 ' Sh(Xδ
0) Sh(Xτ0

0 ) Sh
(
Xτ1
τ0

)
ET

p0

j u

where the top horizontal composite u ◦ j is a geometric surjection. Recall also that X0

is a conservative set of models for T if and only if the geometric morphism p0 is a
surjection.

Thus, using the fact that geometric surjections are the left class in an orthogonal
factorisation system – namely, the (surjection, inclusion)-factorisation (see [63, §A4.2]),
and are therefore closed under composites and have the right cancellation property (if
f ◦ g and g are surjections, then so is f ), we conclude that Sh

(
Xτ1
τ0

)
→ ET is a geometric

surjection if and only if X0 is a conservative set of models for T. □

From a representing groupoid to elimination of parameters. We now continue
with the proof for one implication of Theorem VII.8. We first show that an open
representing model groupoid can be given an indexing by parameters for which the
groupoid is conservative and eliminates parameters.

Proposition VII.27. LetT be a geometric theory, and letX = (X1 ⇒ X0) be a model groupoid
for T. If X is an open representing groupoid, i.e. there exist topologies on X0 and X1 making
X an open topological groupoid such that Sh(X) ' ET, then there exist a set of parameters K
and an indexing of X by K for which X is conservative and eliminates parameters.

Proof. We apply Proposition VII.17 and Remark VII.18 to deduce that there exists an
indexing ofX by parameters K and that we can assure that the space ~ x~ : ϕ �X, i.e. the
image of ( x~ , > ) under the functor

Conop
N o FT Sh(ConN o FT,KFT) ' ET ' Sh(X),

`
Con

op
N oFT



220 CHAPTER VII. TOPOLOGICAL REPRESENTING GROUPOIDS

contains as open subsets the definables with parameters.
SinceX is an open groupoid, the orbit of each open subset of the form ~ x~,m~ : ψ �X

is still an open subset of ~ x~ : > �X. Therefore, being a stable open, ~ x~,m~ : ψ �X
defines a subobject of ~ x~ : > �X. Under the equivalence ET ' Sh(X), the subobjects of
`Conop

N oFT( x~ , > ) and ~ x~ : > �Xmust also be identified. Hence, recalling from Section II.2
(cf. [63, Lemma D1.4.4(iv)] as well) that the subobjects of `Conop

N oFT( x~ , > ) are formulae
in the context x~, we deduce that there exists a formula ϕ such that

~ x~,m~ : ψ �X = ~ x~ : ϕ �X.

Therefore, the groupoid X, as indexed by K, eliminates parameters.
Finally, since an equivalence of topoi is, in particular, a surjection, we can apply

Lemma VII.26 to deduce that X is also conservative. □

From elimination of parameters to a representing groupoid. We now prove the con-
verse statement of Theorem VII.8 that an indexed model groupoid that is conservative
and eliminates parameters yields an open representing groupoid. Unsurprisingly, the
topologies we consider are the logical topologies studied in Sections VII.2 to VII.3. We
first demonstrate that the condition that the model groupoid eliminates parameters is
equivalent to the induced geometric morphism being an inclusion of a subtopos.

Lemma VII.28. Let X = (X1 ⇒ X0) be a model groupoid for T indexed by parameters K. If
X eliminates parameters, then, when both X1 and X0 are endowed with the logical topologies,
X
τ-log1
τ-log0

becomes an open topological groupoid.

Proof. We have already seen thatXτ-log1
τ-log0

is a topological groupoid in Lemma VII.20, so

it remains to show that either of the continuous maps s, t : Xτ-log1
1 ⇒ Xτ-log0

0 are open
too. We will show that t is open.

It suffices to show that the image of each basic open of Xτ-log1
1 is open in Xτ-log0

0 .
Suppose that

N ∈ t


����������

a~ : ϕ
b~ 7→ c~
d~ : ψ

����������
X

 .
Then there is some isomorphism M α−→ N of X1 such that M ⊨ ϕ(a~) and α(b~) = c~, in
addition to N ⊨ ψ(d~). Therefore,

〈c~,N〉 ∈
�

x~, a~ : b~ = x~ ∧ ϕ
�
X
.

SinceX eliminates parameters, there is some formula χwithout parameters such that�
x~, a~ : b~ = x~ ∧ ϕ

�
X
= ~ x~ : χ �X.

We thus conclude that N is contained in the open subset
�

c~, d~ : χ ∧ ψ
�
X

of Xτ-log0
0 .

Given any other N′ ∈ ~ c~, d~ : χ ∧ ψ �X, we have that

〈c~,N′〉 ∈ ~ x~ : χ �X =
�

x~, a~ : b~ = x~ ∧ ϕ
�
X
.
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Thus, there exists another isomorphism M′ γ−→ N′ of X1 such that M′ ⊨ ϕ(a~) and
γ(b~) = c~. Hence, we have that

N,N′ ∈
�

c~, d~ : χ ∧ ψ
�
X
⊆ t


����������

a~ : ϕ
b~ 7→ c~
d~ : ψ

����������
X

 ,
and thus the topological groupoid Xτ-log1

τ-log0
is open. □

Proposition VII.29. LetT be a geometric theory, and letX = (X1 ⇒ X0) be a model groupoid
for T indexed by parameters K. The factoring geometric morphism plog is an inclusion of a
subtopos

plog : Sh
(
X
τ-log1
τ-log0

)
ET

if and only if X eliminates parameters.

Proof. The first step is to deduce that, under either hypothesis, the geometric mor-
phism plog is a localic geometric morphism. This is clear if plog is an inclusion of a
subtopos since every inclusion is localic (see [63, Examples A4.6.2(a)]). Conversely,
if Xτ-log1

τ-log0
eliminates parameters then, by Lemma VII.28, Xτ-log1

τ-log0
is an open topological

groupoid. Thus, by applying Proposition VII.24, the factoring geometric morphism

plog : Sh
(
X
τ-log1
τ-log0

)
ET

is a localic geometric morphism.
Recall that ET is the topos of internal sheaves on the internal locale FT of SetsConN ,

and thus there is localic geometric morphism CπFT
: ET ' Sh(FT) → SetsConN . Since

localic geometric morphisms are closed under composition (see [59, Lemma 1.1]),
Sh(Xτ-log1

τ-log0
) is also localic over SetsConN . Indeed, by Proposition VII.24, it is the topos

of sheaves on the internal locale

Sub
Sh

(
X
τ-log1
τ-log0

)(~− : > �X) : ConN Frmopen.

Hence, the localic geometric morphism plog in Section VII.4 is induced by a mor-
phism of internal locales by Proposition II.23, namely the internal locale morphism
whose component at a context x~ is given by the frame homomorphism

~− �Xx~ : FT(x~)→ Sub
Sh

(
X
τ-log1
τ-log0

)(~ x~ : > �X),

ϕ 7→ ~ x~ : ϕ �X.

By Theorem II.34, the geometric morphism plog induced by the internal locale mor-
phism ~− �X is an inclusion if and only if ~− �X is an internal sublocale embedding,
i.e. ~− �Xx~ is surjective for each context x~.
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Recall that a subobject of ~ x~ : > �X is an open subset U that is stable under the
action θ~ x~:> �. As the opens of the form ~ x~,m~ : ψ �X form a basis for the topology on
~ x~ : > �X, every stable open subset U is of the form

U =
⋃
i∈I
~ x~,m~ i : ψi �X.

Therefore, the stable opens of the form ~ x~,m~ : ψ �X form a basis for the frame of
subobjects

Sub
Sh

(
X
τ-log1
τ-log0

)(~ x~ : > �X)

and so ~− �Xx~ is surjective if and only if every basic subobject ~ x~,m~ : ψ �X is in the
image of ~− �Xx~ . This is precisely the condition that X eliminates parameters, from
which we deduce the result. □

Remark VII.30. LetT be a geometric theory over a signatureΣ, and letX = (X1 ⇒ X0)
be a model groupoid forT indexed by parametersK. As remarked in Remarks VII.7(iv),
the condition thatX eliminates parameters depends only on the signature of the theory
T. This can be retroactively justified topos-theoretically in light of Proposition VII.29
by equating those indexed model groupoids that eliminate parameters with those
indexed model groupoids for which plog is an inclusion.

Let EΣ denote the empty theory over the signature Σ. As T is a quotient theory
of EΣ, the theory T is classified by a subtopos ET ↣ EEΣ (see [22, §3]), and so,
by Proposition VII.29, X eliminates parameters if andonly if there are inclusions of
subtopoi

Sh
(
X
τ-log1
τ-log0

)
ET EEΣ ,

whence we deduce thatX eliminating parameters depended only on the signature Σ.

Since a geometric morphism is an equivalence of topoi if and only if it is both a
surjection and an inclusion (see [63, Corollary A4.2.11]), we deduce the following:

Corollary VII.31. LetX = (X1 ⇒ X0) be a model groupoid for a geometric theory T, and let
X be indexed by a set of parameters K. The geometric morphism plog is an equivalence of topoi

Sh
(
X
τ-log1
τ-log0

)
' ET

if and only if X is conservative and eliminates parameters.

Combining both Proposition VII.27 and Corollary VII.31 completes the proof of
Theorem VII.8. Moreover, we can also use the results to deduce the sense in which
the logical topologies are, essentially, the only topologies that need be considered for
model groupoids.

Corollary VII.32. Let T be a geometric theory, and let X = (X1 ⇒ X0) be a model groupoid
for T. If there exist topologies on X0 and X1 makingX an open topological groupoid such that
Sh(X) ' ET, then there is an indexing of X by a set of parameters K such that

Sh
(
X
τ-log1
τ-log0

)
' ET ' Sh(X).
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VII.5 Applications
In this section we present some applications of Theorem VII.8, divided as follows.

− The first two sections justify our use of indexings of models, i.e. presenting mod-
els as a subquotient of a set of parameters. Section VII.5.1 is devoted to the study
of atomic theories. These are the only theories whose models of a representing
groupoid may be indexed by disjoint sets of parameters. We will recover the
logical ‘topological Galois theory’ result of [21] that the automorphism group of
a single model represents an atomic theory if and only if the model is conser-
vative and ultrahomogeneous. We also give a characterisation of Boolean topoi
with enough points reminiscent of the characterisation established in [11].

− In Section VII.5.2, we demonstrate that, instead of subquotients, we can present
the models in a representing groupoid as subsets of a set of parameters only in
the case when the theory has decidable equality. We also generate examples of
representing groupoids for decidable theories.

− We demonstrate in Section VII.5.3 that every representing model groupoid is
Morita equivalent to its étale completion, i.e. the model groupoid with the same
objects and all possible isomorphisms between these constituent models, par-
alleling the analogous result for localic groupoids (see [92, §7]). We also show
that the étale completion of a representing model groupoid can be calculated as
a topological closure in the fashion of [52, §4].

− We recover in Section VII.5.4 the representation theorems given by Butz and
Moerdijk in [17] and by Awodey and Forssell in [5], [37] by demonstrating
that the considered groupoids fall within a general framework of ‘maximal
groupoids’.

− Finally, having studied how to generate a representing groupoid of indexed
models for any theory, we answer the converse direction and describe a theory
which is represented by a given groupoid of indexed structures. This extends
the techniques developed in [52, Theorem 4.14] for subgroups of the topological
permutation group on a set.

VII.5.1 Atomic theories

In this section we will study those model groupoids of a theory that eliminate param-
eters when their constituent models are indexed by disjoint sets of parameters. We
will observe in Proposition VII.35 that this requires the theory to be atomic.

We revisit Caramello’s ‘topological Galois theory’ and demonstrate that the results
of [21] concerning atomic theories can be recovered via the classification theorem.
We also give a characterisation of Boolean topoi with enough points in a manner
reminiscent to [11].

Definition VII.33 (Proposition D3.4.13 [63]). A geometric theory T is atomic if one of
the following equivalent conditions is satisfied:

(i) for each context x~, FT(x~) is generated by its atoms,

(ii) the classifying topos ET of T is atomic (see §C3.5 [63]).
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If T is known to possess enough points, by [20, Theorem 3.16] we can add a further
equivalent condition to the above list:

(iii) every (model-theoretic) type ofT is isolated, also known as principal and complete,
i.e. for each model M of T and tuple n~ ∈ M, there is a formula χn~ , the minimal
formula of n~ , such that

a) for any other tuple n~ ′ of the same sort as n~ in another model N of T,
then N ⊨ χn~(n~ ′) if and only if n~ and n~ ′ satisfy the same formulae – i.e.
tpM(n~) = 〈χn~〉, read as χn~ isolates the type of n~ (see [89, §4.1]);

b) for all formulae ϕ in context x~, either T proves the sequent χm~ `x~ ϕ or T
proves χm~ ∧ ϕ `x~ ⊥ – equivalently, given a pair of tuples in two models, if
tpM(n~) ⊆ tpN(n~ ′) then tpM(n~) = tpN(n~ ′).

Recall also from [63, Corollary C3.5.2] that, under the assumption that T has
enough points, the properties that T is an atomic geometric theory and that T is a
Boolean geometric theory (i.e. the classifying topos ET is Boolean) coincide.

Examples VII.34. (i) The terminology minimal formula is derived from the analogy
with minimal polynomials. We define the theory of algebraically closed fields
of finite characteristic which are algebraic over their prime subfield ACFalg

fin as
the theory for which, in addition to the usual axioms of an algebraically closed
field, we also include as axioms the sequents

> `∅
∨

p prime

1 + 1 · · · + 1︸        ︷︷        ︸
p times

= 0,

> `x

∨
q∈Z[x]

q(x),

in which the former expresses that the characteristic is finite while the latter
expresses that the field is algebraic over its prime subfield.

This is an atomic theory with enough points. For each single element a in
an algebraically closed field F algebraic over its prime subfield, the minimal
formula of a is precisely the conjunction of the minimal polynomial of a with
the formula > `∅ 1 + 1 · · · + 1 = 0 expressing the characteristic of the field. For a
tuple a~ = (a1, . . . , an) of F, the minimal formula of a~ is the formula

n∧
i=1

qi(x1, . . . , xi) ∧ 1 + 1 · · · + 1︸        ︷︷        ︸
p times

= 0,

where p is the characteristic of the field F, and qi(a1, . . . ai−1, xi) denotes the
minimal polynomial of the element ai over the field extension F(a1, . . . , ai−1) (cf.
Proposition VII.65).

(ii) The theory D∞ of infinite decidable objects is also an atomic theory. It is the
single-sorted theory with one binary relation , and the axioms

x = y ∧ x , y `x,y ⊥,
> `x,y x = y ∨ x , y,
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and, for each n ∈N, the axiom

> `x ∃y1, . . . , yn

∧
i⩽n

x , yi ∧
∧

i< j⩽n

yi , y j.

The minimal formula of a tuple n~ in a model is the formula∧
ni=n j

xi = x j ∧
∧
ni,n j

xi , x j.

In a similar fashion, we can deduce that the theory of dense linear orders without
endpointsDLO∞, the theory of atomless Boolean algebras, and the theory of the Rado
graph are all also atomic theories. A formal proof that these theories are atomic can
be found in [18], [21].

Proposition VII.35. Let X be model groupoid for T that is conservative and eliminates
parameters for an indexing such that the set of parameters used to index each model M ∈ X0

are mutually disjoint. Then T is an atomic theory.

Proof. As each M ∈ X0 is disjointly indexed from every other N ∈ X0, the space Xτ-log0
0

is discrete. Hence, by [63, Lemma C3.5.3], Sh(Xτ-log0
0 ) is an atomic topos. Recall from

Lemma V.8 that there is an open surjective geometric morphism

Sh(Xτ-log0
0 ) Sh

(
X
τ-log1
τ-log0

)
' ET,

and thus by applying, [63, Lemma C3.5.1] we obtain, the desired result. □

We now turn to the theory of [21] and consider the groupoid consisting of the
automorphism group of a single model. We note that for this groupoid there is
essentially only one indexing, the trivial indexing from Examples VII.3(i), since a
parameter can be conflated with the element of the model it indexes. Thus, we will
assume that the automorphism group is trivially indexed. We will show that, if T
is an atomic theory with enough points, then the automorphism group of a single
model eliminates parameters if and only if that model is ultrahomogeneous. Thus,
we deduce the principal result of [21].

Elimination of parameters implies ultrahomogeneity. We first observe that elim-
ination of parameters by the automorphism group of a single model implies ul-
trahomogeneity. Recall that the model M is ultrahomogeneous if each finite partial
isomorphism

m~ n~

M M

∼

can be extended to a total isomorphism M α−→M.

Lemma VII.36. If M is a model of an arbitrary geometric theory T such that the group
Aut(M) eliminates parameters, then M is ultrahomogeneous.
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Proof. For a fixed tuple m~ ∈ M, by hypothesis there is a formula without parameters
such that

~ x~ = m~ �Aut(M) = ~ x~ : ϕ �Aut(M).

If there is a partial isomorphism m~ ∼−→ n~ , then m~ ,n~ ∈ ~ x~ : ϕ �Aut(M). Therefore, n~ is an
element of ~ x~ : x~ = m~ �Aut(M), and so there exists an automorphism M α−→ M such that
α(m~ ) = n~ . □

Ultrahomogeneity and atomicity imply elimination of parameters. We now give
the opposite implication that, under the assumption that T is atomic, if a model is
ultrahomogeneous then its automorphism group eliminates parameters. Thus, by
combining Lemma VII.36 above and Lemma VII.37 below, we recover the principal
result of [21].

Lemma VII.37. Let T be an atomic geometric theory with enough points. If M is a ultraho-
mogeneous model, then Aut(M) eliminates parameters.

Proof. We claim that, for each tuple m~ ∈M,

~ x~ = m~ �Aut(M) = ~ x~ : χm~ �Aut(M),

where χm~ is the minimal formula of m~ . Since M ⊨ χm~ (m~ ) by definition, one inclusion

~ x~ = m~ �Aut(M) ⊆ ~ x~ : χm~ �Aut(M)

is immediate by Remarks VII.7(v).
For the converse, if m~ ′ ∈ ~ x~ : χm~ �Aut(M), then m~ ,m~ ′ have the same type and so

there is a partial isomorphism m~ ∼−→ m~ ′. As M is ultrahomogeneous, this extends to a
total automorphism α : M → M for which α(m~ ) = m~ ′. Hence, we obtain the converse
inclusion

~ x~ : χm~ �Aut(M) ⊆ ~ x~ = m~ �Aut(M).

By Remarks VII.7(iii), this suffices to demonstrate that Aut(M) eliminates parameters.
□

Corollary VII.38 (Theorem 3.1 [21]). Let T be an atomic theory and let M be a model of T.
There is an equivalence of topoi

ET ' BAut(M)

if and only if M is a conservative and ultrahomogeneous model. Here, the group Aut(M) has
been topologised with the Krull topology (also called the pointwise convergence topology). It
is the coarsest topology making Aut(M) a topological group for which the subsets{

M α−→M
∣∣∣∣α(n~) = n~

}
,

for every finite tuple n~ ∈M, form a basis of open neighbourhoods of the identity.

Examples VII.39 (§5 [21]). We revisit some of the examples of atomic theories from
Examples VII.34 and describe conservative ultrahomogeneous models for them.
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(a) Any infinite set, in particular N, is a conservative ultrahomogeneous model
for the theory D∞ of infinite decidable objects. Therefore, D∞ is classified by
BAut(N), the Schanuel topos.

(b) The rationals Q, with their usual ordering, is a conservative and ultrahomoge-
neous model for the theoryDLO∞. Its classifying topos is BAut(Q).

(c) Let R denote the Rado graph. It is a conservative and ultrahomogeneous model
for its namesake theory, which is therefore classified by BAut(R).

Recall from [20, Theorem 3.16] that if an atomic theoryT is also complete, by which
we mean that any model is conservative (or equivalently, by [20, Proposition 3.9], for
every sentence ϕ, either T proves > ` ϕ or T proves ϕ ` ⊥), then the theory T is also
countably categorical, i.e. any two countable models of T are isomorphic. Therefore, it
suffices in Corollary VII.38 to take M as the unique countable model of the theory –
if this exists – since this will automatically also be an ultrahomogeneous model (see
[52, §10.1]).

Example VII.40. Let T be an atomic theory and let M be a conservative model of T.
In order to assure the reader that ultrahomogeneity is a non-trivial requirement on
M, despite the hefty conditions placed on T by being an atomic theory, we briefly
describe a conservative model for DLO∞ which is not ultrahomogeneous. Let R
denote the real numbers with the usual ordering, and let R + R denote the model
whose underlying set is

{ 1 } ×R ∪ { 2 } ×R
given the lexicographic ordering. This is a conservative model of the theory of dense
linear orders without endpoints (since this is a complete theory). However, it is not
ultrahomogeneous.

We note that, for any r ∈ R, the partial isomorphism (1, r) 7→ (2, r), as visualised in
the diagram

( ) + ( ),
(1, r) (2, r)

cannot be extended to a total automorphism of R + R. If there did exist such a total
automorphism of R +R, then the subset

{ 1 } × (−∞, r) ⊆ R +R,

being the down-segment of (1, r), would necessarily be mapped isomorphically to the
subset

{ 1 } ×R ∪ { 2 } × (−∞, r) ⊆ R +R,
the down-segment of (2, r). However, the interval (−∞, r) � { 1 } × (−∞, r) is Dedekind-
complete, meaning that every subset of (−∞, r) with an upper bound has a least upper
bound, while { 1 } × R ∪ { 2 } × (−∞, r) is not Dedekind-complete, namely the subset
{ 1 } ×R ⊆ { 1 } ×R ∪ { 2 } × (−∞, r) does not have a least upper bound.

This one model therefore serves as a counterexample to several natural questions
arising from the study of representing groupoids for topoi.
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(i) Recall from [68] and [34] that a connected atomic topos is represented by the
localic automorphism group of any of its points. This is because any point of
a connected atomic topos is an open surjection (see [68, Proposition VII.4.1]).
Being a complete atomic theory, the classifying topos for the theoryDLO∞ is a
connected atomic topos. Thus, the theory is represented by the localic group of
automorphisms Aut(R+R)loc but not by the topological group of automorphisms
of R +R (see [21] or Corollary VII.38 above).

The discrepancy occurs because Aut(R + R)loc, the localic automorphism
group constructed in [34, Proposition 4.7], is not spatial. The underlying lo-
cale Aut(R + R)loc of the localic automorphism group can be described as the
classifying locale for the following geometric propositional theory.

a) For each pair of elements x, y ∈ R +R, we add a pair of basic propositions
[α(x) = y] and [x < y].

b) For every pair x, y ∈ R + R with x < y, we add the sequent > ` [x < y] as
an axiom to the propositional theory, and for every quadruple of elements
x, x′, y, y′ ∈ R + R where x , x′ and y , y′, we also add to our axioms the
sequents

[α(x) = y] ∧ [α(x′) = y] ` ⊥,
[α(x) = y] ∧ [α(x) = y′] ` ⊥

and

> `
∨

x∈R+R
[α(x) = y],

> `
∨

y∈R+R
[α(x) = y],

expressing that the symbol α encodes a bijection from R + R to itself.
Additionally, we include the bidirectional sequent

[α(x) = y] ∧ [α(x′) = y′] ∧ [x < x′] a` [α(x) = y] ∧ [α(x′) = y′] ∧ [y < y′],

as an axiom, expressing that α encodes an automorphism of R + R as a
linear order.

We note the similarities between this propositional theory, for which the locale
Aut(R + R)loc is its classifying locale, and the propositional theory P[T�] from
Section VI.3.1, for which GT1 is its classifying locale.

A point α : 2 → Aut(R + R)loc of this locale evidently corresponds to an
automorphism of the modelR+R. We therefore deduce, by the above analysis,
that the non-trivial open of Aut(R+R)loc corresponding to the basic proposition
[(1, r) 7→ (2, r)] is evaluated by α−1 as

α−1 ([(1, r) 7→ (2, r)]) = ⊥.

Hence, Aut(R +R)loc is not a spatial locale.
In summary, we have that

EDLO∞ ' BAut(R +R)loc ; BPt(Aut(R +R)loc) ' BAut(R +R).
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It is then natural to wonder: if notDLO∞, what theory is classified by the topos
BAut(R+R)? Such a theory is described in Example VII.61 as an application of
the techniques exposited in Section VII.5.5.

(ii) Let T′ be a theory of presheaf type, i.e. the classifying topos of T′ is a presheaf
topos. By [22, §6.1.1], this presheaf topos can be chosen to be the topos

Setsf.p.T-mod(Sets)op
,

where f.p.T-mod(Sets) denotes the category of finitely presented models (see [22,
Definition 6.1.11]). We will say, in accordance with [18, Definition 2.3(a)], that
a model M′ of T′ is homogeneous with respect to the finitely presented models, or
f.p.-homogeneous for short, if for every pair of finitely presented models N,N′

and homomorphisms f : N → M′ and g : N → N′ of T′-models, there exists a
homomorphism of T′-models h such that the triangle

N M′

N′

f

g
h

commutes. Every ultrahomogeneous model is f.p.-homogeneous (see [18, Re-
mark 2.4(a)]).

The theory of linear orders is a theory of presheaf type by [79, §VIII.8], and
the finitely presented linear orders are simply the finite linear orders. Moreover,
the dense linear orders without endpoints are precisely those linear orders that
are f.p.-homogeneous (see [21, Remark 3.8(a)]). Thus, R +R is an example of a
f.p.-homogeneous model that is not ultrahomogeneous.

Boolean topoi with enough points. Extending Corollary VII.38, we can use the
classification theorem to characterise Boolean topoi with enough points in a manner
reminiscent of [11]. Recall that a topos with enough points is Boolean if and only if it
is atomic.

We first require one lemma on the quotient theories of a theory classified by a
Boolean topos. Recall from Definition III.48 that a quotient theory T′ of T is a theory
over the same signature whose axioms include the axioms of T.

Lemma VII.41. If T is a geometric theory whose classifying topos is Boolean, then every
quotient theory of T is determined by the addition of a single extra sentence > `∅ ϕ as an
axiom.

Proof. There are two ways to see this: one topos-theoretic, and one syntactic. We
include both, though of course they are merely translations of one another.

A quotient theory T′ of T is classified by a subtopos of ET. Every subtopos of a
Boolean topos is open by Corollary 3.5 [58]. Therefore, being an open subtopos of ET,
ET′ corresponds to a subterminal in ET, i.e. a sentence { ∅ : ϕ }.

Alternatively, if ET is a Boolean topos, then we recall from [63, §D3.4] that every
formula of infinitary first order logic (i.e. including negation¬, implication→, universal
quantification∀, and infinitary conjunction

∧
) isT-provably equivalent to a geometric
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formula. This is equivalent to requiring that the doctrine FT : ConN → Frmopen associ-
ated to the theory factors through complete Boolean algebras CBool. We are therefore
free to manipulate geometric sequents as though they existed in infinitary first order
logic. Hence, we easily see that any quotient theory T′ = T ∪

{
ϕi `x~i ψi

∣∣∣ i ∈ I
}

of T is
equivalent to the theory

T′ ≡s T ∪
{> `∅ ∀x~i ϕi → ψi

∣∣∣ i ∈ I
} ≡s T ∪

> `∅ ∧
i∈I
∀x~i ϕi → ψi

 ,
i.e. the quotient of T by a single sentence. □

Corollary VII.42. A topos E with enough points is Boolean if and only if there is a set of
topological groups {Gx | x ∈ X0 } such that

E '
∐
x∈X0

BGx.

Proof. Firstly, we recognise that a topos of the form
∐

x∈X0
BGx is really just the topos

of sheaves for the topological groupoid

G =

∐
x∈X0

Gx ⇒
∐
x∈X0

1 � Xδ
0

 .
This topological groupoid is, of course, automatically open. We could call groupoids
of this form the bouquet groupoids since, when written out diagrammatically, they
appear as a collection of ‘flowers’ – the group elements g ∈ Gx being the ‘petals’, e.g.

Gx . . . Gy.

. . . . . .

By Proposition VII.35, if there is an equivalence E ' ∐
x∈X0

BGx for some set of topo-
logical groups {Gx | x ∈ X0 }, then E is Boolean.

For the converse direction, let T be a geometric theory classified by the topos E.
By the hypotheses, T is an atomic theory with enough points. We can therefore find
a conservative set of models X0 for T. In fact we can choose each model M ∈ X0 to
be ultrahomogeneous since, via a standard result in model theory, every model is an
elementary substructure of a ultrahomogeneous model (see [52, §10.2]). Moreover,
we can evidently choose the models M ∈ X0 to be pairwise elementarily inequivalent
(i.e. no two models satisfy all the same sentences) and also pairwise disjoint. There-
fore, by Lemma VII.37 we deduce that each automorphism group Aut(M) eliminates
parameters.

Thus, when given the trivial indexing, the model groupoid∐
M∈X0

Aut(M),
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obtained by taking as objects the models M ∈ X0 and as arrows all automorphisms,
also eliminates parameters.

To see this, we first note that for each definable with parameters

~ x~,m~ : ψ �∐M∈X0
Aut(M),

the parameters m~ are only instantiated in one model M ∈ X0 (since the models of X0

were chosen to be pairwise disjoint). Therefore, since there are no arrows between
distinct models of our groupoid, (modulo a transparent abuse of notation) we have
that

~ x~,m~ : ψ �∐
M∈X0

Aut(M) = ~ x~,m~ : ψ �Aut(M).

Let ϕ be a formula without parameters such that

~ x~,m~ : ψ �Aut(M) = ~ x~ : ϕ �Aut(M).

We are not quite done since ~ x~ : ϕ �Aut(M) , ~ x~ : ϕ �∐M∈X0
Aut(M). Instead, we must

find a formula that isolates those realisations of ϕ in M from those in other models
M′ ∈ X0. This is achieved by Lemma VII.41. Let TM denote the theory of the model M,
i.e. the set of geometric sequents

TM =
{
χ `x~ ξ

∣∣∣ ~ x~ : χ �M ⊆ ~ x~ : ξ �M
}
.

This is evidently a quotient theory ofT. Thus, by Lemma VII.41, there exists a sentence
ξM such that M is the only model in X0 which satisfies ξM – since the models of X0

were chosen to be pairwise elementarily inequivalent. Therefore, we have that

~ x~,m~ : ψ �∐
M∈X0

Aut(M) = ~ x~ : ϕ ∧ ξM �∐M∈X0
Aut(M)

as required. Thus,
∐

M∈X0
Aut(M) is a conservative model groupoid for T that elimi-

nates parameters and so, by Proposition VII.29, we conclude thatE '∐
M∈X0

BAut(M),
once each automorphism group has been suitably topologised. □

Example VII.43 (Proposition 2.4 [25]). We return to the theory ACFalg
fin defined in

Examples VII.34(i). Being an atomic theory with enough points, by Corollary VII.42
we know it can be presented as a coproduct of topoi of actions by topological groups.
Indeed, the theory is classified by the topos∐

p prime

BAut
(
Z/〈p〉

)
,

where Z/〈p〉 is the algebraic closure of Z/〈p〉, and Aut
(
Z/〈p〉

)
has been topologised

with the usual Krull topology. This is precisely [25, Proposition 2.4].

The principal result of [11] classifies Boolean coherent topoi. As coherent topoi
automatically have enough points, the result can be obtained from Corollary VII.42
by discerning when the topos

∐
x∈X0

BGx is coherent. This occurs when X0 is a finite
set and each Gx is a coherent topological group. We refer to [11] for the details.
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VII.5.2 Decidable theories

We saw in Proposition VII.35 that we cannot, in general, require that the models in
a representing model groupoid be disjointly indexed. In this subsection, we demon-
strate further that nor can we remove the requirement that multiple parameters may
index the same element of a model, i.e. that each model is presented as a subquotient
of its set of parameters rather than a subset. We will observe that this is possible only
if the theory is decidable.

Definition VII.44. A geometric theoryT over a signatureΣ is decidable if, for each pair
of free variables x, x′ of the same sort of Σ, there is a formula in context x, x′, which
we suggestively denote as x , x′, such that T proves the sequents

x = x′ ∧ x , x′ `x,x′ ⊥, > `x,x′ x = x′ ∨ x , x′.

Let X = (X1 ⇒ X0) be a model groupoid for a geometric theory T. Consider the
trivial indexing ofX, described in Examples VII.3(i), with parameters as the elements
of the constituent models

⋃
M∈X0

M. For this indexing, each element n ∈ M ∈ X0 is
indexed by precisely one parameter.

It is not hard to see that, up to isomorphism, this is the unique indexing of Xwith
this property. Suppose thatX is indexed by a set of parametersK in such a way that, for
each n ∈M ∈ X0, there is a unique parameter m ∈ K that indexes n. This is equivalent
to presenting each model M ∈ X0 as a subset of the set of parameters, rather than a
subquotient. By replacing the underlying set of M with the corresponding subset of
parameters, we have now trivially indexed X (we have ignored the fact that our set
of parameters may include some unused parameters).

Proposition VII.45. Let X = (X1 ⇒ X0) be a conservative model groupoid for a theory T.
If, whenX is given the trivial indexing,X eliminates parameters, thenT is a decidable theory.

Proof. We must show that, for each pair of free variables x, x′ of the same sort, the
formula x = x′ has a complement in FT(x, x′). As X is conservative and eliminates
parameters it is a representing model groupoid by Theorem VII.8, and so by the
isomorphism

FT(x, x′) � Sub
Sh

(
X
τ-log1
τ-log0

)(~ x, x′ : > �X),

finding a complement for the formula x = x′ is equivalent to showing that ~ x = x′ �X
has a complement.

We claim that this complement, which we denote by ~ x , x′ �X, is given by⋃
m,m′∈⋃M∈X0

M
m,m′

~ x = m ∧ x′ = m′ �X.

We must first show that ~ x , x′ �X does indeed define a subobject, i.e. a stable open
subset, of ~ x, x′ : > �X. The subset ~ x , x′ �X is the union of opens, and therefore open
itself. Now suppose we are given an element 〈n,n′,M〉 ∈ ~ x , x′ �X. By the definition,
n , n′ and so α(n) , α(n′) for any isomorphism M α−→ N. Therefore, 〈α(n,n′),N〉 is also
an element of ~ x , x′ �X. Thus, ~ x , x′ �X is a stable open as desired.
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It is now not hard to conclude that ~ x , x′ �X is a complement to ~ x = x′ �X. Given
〈n,n′,M〉 ∈ ~ x, x′ : > �X, either n = n′ or n , n′, yielding

~ x = x′ �X ∪ ~ x , x′ �X = ~ x, x′ : > �X.

It is similarly easy to conclude that ~ x = x′ �X ∩ ~ x , x′ �X = ∅. □

Since not every geometric theory is decidable, we cannot in general require that
each element of a model groupoid is indexed by a unique parameter. Even when our
theory is decidable, we must allow for the models of our groupoid to share elements,
i.e. parameters.

Examples of representing groupoids for decidable theories. Finally, we present a
useful result from which it is possible to easily generate representing groupoids for
many theories. Note that the only theories that can be represented by the groupoids
generated using the below method must also be decidable. This can be seen by an
application of Proposition VII.45.

Proposition VII.46. Let T be geometric theory over a signature Σ. Suppose that a conser-
vative set of models for T can be found as substructures of an ultrahomogeneous Σ-structure
U whose theory Th(U) (i.e. the theory over Σ whose axioms are all sequents satisfied by U)
is atomic, and moreover the minimal formula χn~ of any tuple of elements n~ ∈ U is quantifier
free. Then the model groupoid SubT(U) of T,

(i) whose objects are the substructures of U that are models of T,

(ii) and whose arrows are all isomorphisms between these,

is a representing model groupoid for T, i.e. there is an indexing of SubT(U) such that

ET ' Sh
(
SubT(U)τ-log1

τ-log0

)
.

Proof. By hypothesis, the model groupoid SubT(U) is conservative. It remains to show
that the the groupoid SubT(U) has an indexing by a set of parameters for which the
groupoid eliminates parameters. The indexing set we use are the elements of the
Σ-structure U. The indexing of a model M ∈ SubT(U) is determined by the inclusion
M ⊆ U of M as a substructure of U.

Since U is an ultrahomogeneous model of the atomic theory Th(U), we have that,
by Lemma VII.37, for each tuple m~ ∈ U,

~ x~ = m~ �Aut(U) = ~ x~ : χm~ �Aut(U),

where χm~ is the minimal formula of m~ ∈ U.
We claim that

~ x~ = m~ �SubT(U) = ~ x~ : χm~ �SubT(U).

Since χm~ is a quantifier free formula, M ⊨ χm~ (m~ ) for any T-model M ⊆ U that contains
m~ . Thus, the first inclusion

~ x~ = m~ �SubT(U) ⊆ ~ x~ : χm~ �SubT(U)
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follows from Remarks VII.7(v). Conversely, given another witness n~ of χm~ in a T-
model N ⊆ U, there exists, by the ultrahomogeneity of U, an automorphism α of U
that sends m~ to n~ . We have that α−1(N),N ⊆ U constitute a pair of T-models, and

α|α−1(N) : α−1(N)→ N

is an isomorphism of Σ-structures that sends m~ ∈ α−1(N) to n~ ∈ N. Therefore, we have
that

〈
n~,N

〉 ∈ ~ x~ = m~ �SubT(U), completing the reverse inclusion. □

Examples VII.47. We apply Proposition VII.46 to give a pair of simple examples of
model groupoids for decidable theories.

(i) (§2.4.1 [5]) The theory of decidable objects is the single-sorted theory with one
binary predicate , and the axioms

x = x′ ∧ x , x′ `x,x′ ⊥, > `x,x′ x = x′ ∨ x , x′.

As observed in Examples VII.39(a), the natural numbers is an ultrahomogeneous
model of the theory of decidable objects. The theory ofN is the theory of infinite
decidable objectsD∞ from Examples VII.34(ii), an atomic theory whose minimal
formulae are quantifier free.

Moreover, the subsets ofN are a conservative set of models for the theory of
decidable objects. Hence, by an application of Proposition VII.46, the theory of
decidable objects is classified by

Sh
(
Sub(N)τ-log1

τ-log0

)
.

(ii) Let K be a field. We denote byT(−/K) the theory of algebraic extensions of K. This is
the single-sorted theory over the signature consisting of the standard signature
of a ring with an additional constant symbol for each element of K. The axioms
of T(−/K) consist of the following:

a) the standard axioms of a field and an axiom > ` ϕ(k~) for each sentence ϕ
with constants k~ ∈ K satisfied by K, ensuring that each model of T(−/K) is a
field extension of K,

b) and the sequent
> `x

∨
q∈K[x]

q(x) = 0,

expressing that any model is an algebraic extension of K.

The algebraic closure K of K is an ultrahomogeneous structure whose theory is
atomic and whose minimal formulae are quantifier free (cf. Examples VII.34(i)).
Hence, by an application of Proposition VII.46, the theory T(−/K) is classified by
the topos

Sh
(
Sub

(
K
)τ-log1

τ-log0

)
,

where Sub
(
K
)

is the groupoid of intermediate extensions of K, and all isomor-
phisms between these.

By Proposition VII.45, the theoryT(−/K) is decidable. Indeed, we can identify
the complement of the equality predicate as the formula ∃y y · (x − x′) = 1.
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VII.5.3 Étale complete groupoids

We now study the behaviour of a representing model groupoid when we expand its
set of arrows, inspired by the consequence of the descent theory of Joyal and Tierney
that every open localic groupoid is Morita equivalent to its étale completion (see [92,
Definition 7.2] and Remark VI.6 above). Here we study the equivalent topological
definition.

Definitions VII.48 (cf. Definition 7.2 [92]). Let T be a geometric theory and let
X = (X1 ⇒ X0) be a model groupoid for T.

(i) The groupoid X is said to be étale complete if every T-model isomorphism be-
tween models M,N ∈ X0 is instantiated in X1.

(ii) We denote by X̂ the étale completion of X. This is the model groupoid X̂ whose
set of objects is the same set of models X0 as for X, but whose arrows are all
T-model isomorphisms between models M,N ∈ X0.

So far in Section VII.5.2 and Section VII.5.1, the only specific examples of repre-
senting groupoids we have considered have all been étale complete model groupoids.
Our classification given in Theorem VII.8 is powerful enough to also recognise a rep-
resenting model groupoid even when it is not étale complete. We give an example of
a representing model groupoid that is étale incomplete in Example VII.49. However,
we will observe that, just as is the case for localic groupoids, every open topological
groupoid is Morita equivalent to its étale completion, by which we mean that their
topoi of equivariant sheaves are equivalent.

Example VII.49. Let T be an atomic theory and M a ultrahomogeneous and conser-
vative model of T. We note that we do not require all the automorphisms of M in
order to extend every possible partial isomorphism of finite substructures. Therefore,
by taking a certain subgroup of Aut(M), we would still be able to use the ultrahomo-
geneity property that was so crucial in proving that Aut(M) eliminates imaginaries in
Lemma VII.37. We manufacture such an example below.

We once again consider the theory DLO∞. Recall from Examples VII.39 that this
theory is represented by the automorphism group Aut(Q). We will show that we
can take a (topologically dense) subgroup X of Aut(Q) which does not contain all
automorphisms, and yet X eliminates parameters and hence is a representing group.

We note that, for any rational number r ∈ Q, the map p 7→ p+r is an automorphism
of Q. We will say that an automorphism α : Q→ Q is boundedly additive if, apart from
a bounded interval, it is given by addition. Explicitly, α is boundedly additive if there
are bounded (closed) intervals [q1, r1] ⊆ Q and [q2, r2] ⊆ Q such that:

(i) firstly, α maps [q1, r1] to [q2, r2],

(ii) on the interval (−∞, q1), α acts by p 7→ p + q2 − q1,

(iii) and on the interval (r1,∞), α acts by p 7→ p + r2 − r1.

The identity is clearly boundedly additive, and if α and γ are boundedly additive,
then by choosing a sufficiently large interval we can ensure that their composite α◦γ is
boundedly additive too. LetX denote the subgroup of Aut(Q) of boundedly additive
automorphisms.
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We claim that for any tuple q~1 ∈ Q, we have that

~ y~ = q~1 �X = ~ y~ : χq~1
�X,

where χq~1
is the minimal formula of q~1, and thus that X eliminates parameters. We

automatically have one inclusion

~ y~ = q~1 �X ⊆ ~ y~ : χq~1
�X.

For the converse, we must show that for any other tuple q~2 ∈ Q with the same order
type as q~1, there is a boundedly additive automorphism α : Q → Q that maps q~1
onto q~2. This is straightforward. Let q1 and r1 denote, respectively, the least and
greatest elements of q~1, and similarly define q2, r2 for q~2. Using the standard back-
and-forth methods one uses to show that Q is ultrahomogeneous (see [52, §3.2]), we
can construct an order isomorphism [q1, r1] � [q2, r2] that maps q~1 onto q~2. It is now
clear that this can be extended to a total and boundedly additive automorphism of
Q. Thus, X is an automorphism subgroup on a conservative model that eliminates
parameters, and hence a representing group of the theory.

The subgroupX is not the whole group Aut(Q). An example of an automorphism
of Q that is not boundedly additive can be constructed out of one which is. Firstly
we note that Q is order isomorphic to countably many copies of itself given the
lexicographic ordering since, given some irrational a,

Q �
⋃
n∈Z

(a + n, a + n + 1) �
∐
ω0

Q.

Letα be a boundedly additive automorphism whose non-additive part [q1, r1] � [q2, r2]
is truly non-additive (the automorphism α could be, for example, the total automor-
phism induced by the partial isomorphism 1 < 2 < 4 7→ 1 < 3 < 4). An automorphism
of Qwhich is not boundedly additive is now obtained via the composite

Q �
∐
ω0

Q
∐
ω0

Q � Q.
∐
ω0
α

Proposition VII.50. Let X = (X1 ⇒ X0) be a model groupoid for a geometric theory T,
indexed by a set of parameters K, that is conservative and eliminates parameters. For any
other model groupoid X′ = (X′1 ⇒ X′0) such that X0 = X′0 and X1 ⊆ X′1, i.e. X is a surjective
on objects subgroupoid of X′, then X′ is also a conservative model groupoid that eliminates
parameters when the models M ∈ X0 = X′0 are given the same indexing by K.

Proof. We first note that, since X and X′ contain as objects the same models given the
same indexing by the parameters K, for a formula ψ and a tuple of parameters m~ , we
have that ~ x~,m~ : ψ �X = ~ x~,m~ : ψ �X′ . We also conclude that X′ is conservative since
X is.

Let ~ x~,m~ : ψ �X be a definable with parameters. Since X eliminates parameters,
there is a formula ϕ such that

~ x~,m~ : ψ �X = ~ x~ : ϕ �X.
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We claim that ~ x~,m~ : ψ �X′ = ~ x~ : ϕ �X′ too. One inclusion is immediate since

~ x~ : ϕ �X′ = ~ x~ : ϕ �X = ~ x~,m~ : ψ �X ⊆ ~ x~,m~ : ψ �X′ .

For the converse inclusion, for each element
〈
n~,N

〉 ∈ ~ x~,m~ : ψ �X′ , there exists some
model M and n~ ′ such that M ⊨ ψ(n~ ′,m~ ) and a T-model isomorphism M α−→ N ∈ X′1
such that α(n~ ′) = n~ . Hence, M ⊨ ϕ(n~ ′) since〈

n~ ′,M
〉
∈ ~ x~,m~ : ψ �X ⊆ ~ x~,m~ : ψ �X = ~ x~ : ϕ �X,

and so N ⊨ ϕ(n~) too. □

Hence, we are immediately able to deduce the following:

Corollary VII.51. If X = (X1 ⇒ X0) is a representing model groupoid for T, then X is
Morita equivalent to its étale completion, i.e. there exists an indexing of the models M ∈ X0

such that
Sh

(
X
τ-log1
τ-log0

)
' Sh

(
X̂
τ-log1
τ-log0

)
.

The étale completion as the topological closure. The étale completion of a model
groupoid can be calculated entirely topologically via an adaptation of [52, Theorem
4.14]. Therein, it is demonstrated that, for a subgroup G ⊆ Sym(A) of the permutation
group on a set A, the following are equivalent.

(i) The subgroup G ⊆ Sym(A) is a closed set, when Sym(A) is endowed with the
Krull topology (also called the pointwise convergence topology).

(ii) The group G is the automorphism group of the set A when equipped with a
Σ-structure, for some single-sorted signature Σ.

We present how this result can be adapted to calculate the étale completion.
Let X = (X1 ⇒ X0) be a model groupoid for a geometric theory T over a signature

Σ with an indexing K ⇁⇁ X by a set of parameters K. For each pair M,N ∈ X0, we
define the hom-space HomX(M,N) as the subspace

HomX(M,N) = s−1(M) ∩ t−1(N) ⊆ Xτ-log1
1 .

Equivalently, HomX(M,N) is the set of isomorphisms M α−→ N ∈ X1 endowed with the
topology generated by the basis�

b~ 7→ c~
�
X(M,N)

=
{

M α−→ N
∣∣∣∣α(b~) = c~

}
,

for each pair of tuples of parameters b~, c~ ∈ K.
If we were to forget that the models M and N had Σ-structure, we could still

construct a hom-space Iso[M,N] of all isomorphisms between the underlying sets
interpreting the sorts of M,N. The space Iso[M,N] is endowed with the analogous
topology generated by the basis�

b~ 7→ c~
�

Iso[M,N]
=

{
M α−→ N

∣∣∣∣α(b~) = c~
}
,

for each pair of tuples of parameters b~, c~ ∈ K. Evidently, HomX(M,N) can be embedded
as a subspace into Iso[M,N].
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Proposition VII.52 (Theorem 4.14 [52]). Suppose that X eliminates parameters. For each
pair M,N ∈ X0, the hom-space HomX̂(M,N) in the étale completion X̂ is the topological
closure of the subspace

HomX(M,N) ⊆ Iso[M,N].

Proof. We must show that a point M α−→ N ∈ Iso[M,N] is an accumulation point of
HomX(M,N) if and only if it is an isomorphism of M and N as Σ-structures.

First, suppose that α preserves Σ-structure, and let
�

b~ 7→ c~
�

Iso[M,N]
be any basic

open neighbourhood of α. Since X eliminates parameters, there exists a formula χ
over Σ such that �

x~ = b~
�
X
= ~ x~ : χ �X = ~ x~ : χ �X̂.

The isomorphism α preserves the interpretation of χ, and so

α(b~) = c~ ∈ ~ x~ : χ �X̂ =
�

x~ = b~
�
X
.

Therefore, there exists an isomorphism

M
γ−→ N ∈ HomX(M,N) ⊆ Iso[M,N]

such that γ ∈ ~ b~ 7→ c~ �Iso[M,N]. Hence, α is an accumulation point of HomX(M,N).
Conversely, if α is an accumulation point of HomX(M,N), then for each tuple

of parameters m~ ∈ K, there is an isomorphism of Σ-structures M
γ−→ N such that

α(m~ ) = γ(m~ ). Thus, since every tuple of elements of M is the interpretation of some
tuple of parameters, α preserves the Σ-structure. □

VII.5.4 Maximal groupoids

We now turn to the topological groupoids considered in the works of Awodey, Butz,
Forssell and Moerdijk [5], [17], [37] and demonstrate that these too fall within our
general framework. Let X be a model groupoid for a geometric theory T indexed
by a set of parameters K. Recall from Remarks VII.7(v) that if X is conservative
and eliminates parameters, then for every tuple of parameters m~ ∈ K, the formula in
context  x~ :

∧
mi=m j

xi = x j


can be thought of as a ‘universal upper bound’ for elimination of parameters in that
we always have an inclusion

~ x~ = m~ �X ⊆
�������� x~ :

∧
mi=m j

xi = x j

��������
X

.

The particular model groupoidsX considered in [5], [17], [37] can be considered to be
maximal in the sense that this inclusion is an equality

~ x~ = m~ �X =

�������� x~ :
∧

mi=m j

xi = x j

��������
X

.
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As observed in Section VI.3.3, the topological groupoids considered in [5], [17], [37]
are also closely related to the original Joyal-Tierney representation result [68, Theorem
VIII.3.2] recalled in Section VI.2.

We briefly motivate the use of what we will call Forssell groupoids. If we were
to equate open representing groupoids of a theory T with those model groupoids
from which all other models can be reconstructed, then intuitively the groupoid
of all models contains ‘sufficient information’. However, since a theory can have
unboundedly many models, this is not a small groupoid. We might imagine that it
suffices to restrict to the groupoid of all models of some sufficiently large cardinality.
That this is the case is demonstrated in [5], [36], [37].

Definition VII.53 (§1.2 [5], §3.1 [37]). Let T be a geometric theory and let K be an
infinite set. The Forssell groupoid FG(K) is the étale complete groupoid of all models
whose underlying sets are subquotients ofK, i.e. the groupoid of allK-indexed models.

If T is a geometric theory whose K-indexed models are conservative, then the
groupoid FG(K) is an open representing groupoid. Thus, by the classification in
Theorem VII.8, we know that there exists an indexing ofFG(K) for which the groupoid
eliminates parameters. Given the construction of FG(K), we would expect this to be
the already present indexing by K. Indeed, that FG(K) eliminates parameters for this
indexing was shown in [37, Lemma 3.4] (see also Corollary VII.56 below).

A similar idea is pursued in the work of Butz and Moerdijk [17] through the use
of enumerated models.

Definitions VII.54 (§2 [17]). Let T be a geometric theory and let K be an infinite set.

(i) A T-model M is said to be K-enumerated if it is K-indexed and each element
n ∈M is indexed by infinitely many parameters.

(ii) The Butz-Moerdijk groupoidBM(K) is the étale-complete groupoid whose objects
are all K-enumerated models.

We will show that both the Forssell groupoids of all K-indexed models studied in
[5], [36], [37] and the Butz-Moerdijk groupoids of all K-enumerated models of [17] fall
within our framework via the following consequence of Theorem VII.8.

Proposition VII.55. Let X be an étale complete model groupoid for T with an indexing by a
set of parameters K satisfying the following properties.

(i) The indexing set K is infinite.

(ii) The set of models X0 is closed under finite re-indexing – by which we mean that for
each M ∈ X0 with an indexing K⇁⇁ M, then for any injective endomorphism K↣ K
whose image is cofinite, X0 also contains an isomorphic model M′ �M whose indexing
is given by the composite K↣ K ⇁⇁ M � M′, i.e. we can change finitely many of the
parameters for any model M ∈ X0.

(iii) The set of models X0 is closed under further indexing – by which we mean that for
each model M ∈ X0 with an indexing K ⇁⇁ M, and each tuple of parameters m~ not in
the domain of K⇁⇁ M, X0 also contains the isomorphic model M′ �M whose indexing
is given by any extension of K⇁⇁ M � M′ to include m~ in the domain, i.e. we can add
any unused parameters to the indexing of a model M ∈ X0.
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Then the model groupoid X eliminates parameters.

Proof. By Remarks VII.7(iii), it suffices to show that, for each tuple of parameters
m~ ∈ K, ~ x~ = m~ �X is definable without parameters. We claim that, for each tuple of
parameters m~ ∈ K,

~ x~ = m~ �X =

�������� x~ :
∧

mi=m j

xi = x j

��������
X

,

where the (finite) conjunction
∧

mi=m j
xi = x j ranges over the elements mi,m j ∈ m~ that

are equal. As observed in Remarks VII.7(v), there is an evident inclusion

~ x~ = m~ �X ⊆
�������� x~ :

∧
mi=m j

xi = x j

��������
X

,

so it remains to demonstrate the reverse inclusion.
Given an element 〈

n~,M
〉 ∈ �������� x~ :

∧
mi=m j

xi = x j

��������
X

for which m~ does not appear in the indexing K⇁⇁ M, we can use the hypothesis (iii)
to deduce the existence of an model M′ ∈ X0 such that M � M′ and that the tuple
n~ ′ ∈M′ is indexed by the parameters m~ , where n~ ′ ∈M′ and n~ ∈M are identified under
the isomorphism M �M′. Thus, since X is étale complete, we obtain that〈

n~,M
〉 ∈ ~ x~ = m~ �X

as required.
It remains to consider the case where the tuple m~ is not disjoint from the domain of

the indexing K⇁⇁ M of the model. Since our indexing set is infinite by (i), there exists
some injective endomorphism K↣ K whose image is cofinite and does not contain
the tuple m~ . Thus, by hypothesis (ii), X0 contains an isomorphic model M′ � M in
whose indexing the tuple of parameters m~ does not appear. Thus, as above we can
apply (iii) to deduce that n~ is the image of a tuple of elements indexed by m~ in some
model M′′ ∈ X0 under an isomorphism M′′ �M′ �M, completing the proof. □

Corollary VII.56 (Theorem 1.4.8 [5], Theorem 5.1 [37], [17]). Let T be a geometric theory
and let K be an infinite set.

(i) The K-indexed models of T are conservative if and only if, by endowing FG(K) with
the logical topologies we obtain a representing groupoid

Sh
(
FG(K)τ-log1

τ-log0

)
' ET.

(ii) The K-enumerated models of T are conservative if and only if, by endowing BM(K)
with the logical topologies we obtain a representing groupoid

Sh
(
BM(K)τ-log1

τ-log0

)
' ET.
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Proof. The proof is simply to recognise that Forssell groupoids and Butz-Moerdijk
groupoids satisfy the conditions of Proposition VII.55.

We expand the details for Butz-Moerdijk groupoids. By hypothesis, K is infinite,
and by construction BM(K) is closed under further indexing. Since the set of param-
eters that index each n ∈ M ∈ BM(K) is infinite, we can change finitely many of the
parameters and still end up with a K-enumerated model, and soBM(K) is also closed
under finite re-indexing. □

Using Proposition VII.55, we can easily deduce that other similar indexed model
groupoids are representing, such as the groupoid of all K-finitely indexed models of
a theory T – i.e. those models that are K-indexed and whose equivalence class of
each n ∈ M is finite. Also using maximal groupoids, we are able to deduce a useful
construction for positing the existence of representing model groupoids with certain
structures present in the objects.

Corollary VII.57. Let T be a geometric theory and let W be a set of T-models.

(i) If W is a conservative set of models, then there exists a representing model groupoid
X = (X1 ⇒ X0) for T for which every model M ∈ X0 is isomorphic to some M′ ∈W.

(ii) If the theory T has enough points, then there exists a representing model groupoid
X = (X1 ⇒ X0) for T such that X0 contains W.

Proof. First, suppose that W is a conservative set of models for T. Let K be an infinite
indexing set for W, and let X = (X1 ⇒ X0) be the étale complete model groupoid of
all K-indexed models of T that are isomorphic to some model contained in W. By
construction, X is a conservative groupoid, and X also eliminates parameters since it
satisfies the hypotheses of Proposition VII.55.

Now suppose instead that the theoryT has enough points. By [57, Corollary 7.17],
we can expand W to a set W′ ⊇ W of conservative models for T. We can now apply
the above construction to W′. □

VII.5.5 A theory classified by an indexed groupoid

Let T be a geometric theory over a signature Σ with enough set-based models. The
methods of Section VII.5.4 ensure that we can always find a groupoid of Σ-structures,
with an indexing by parameters K, for which the resulting open topological groupoid
is a representing groupoid for the theory T.

In this section, we consider the converse problem: given a groupoid X of Σ-

structures with an indexingK⇁⇁ X, what is a theory classified by the topos Sh
(
X
τ-log1
τ-log0

)
of sheaves on the resulting topological groupoid? It arises that, in general, we cannot
choose a theory over the same signatureΣ. Instead, we must choose a localic extension.
This extends the correspondence between localic extensions and closed subgroups of
the permutation group found in [52, Theorem 4.14] and discussed in Section VII.5.3.

Definition VII.58. Let Σ be a signature, and let X be a groupoid of Σ-structures with
an indexing K ⇁⇁ X (i.e. X is an indexed model groupoid for EΣ, the empty theory
over the signature Σ). We denote by ΣK→X the relational extension of the signature Σ
which adds, for each tuple of parameters m~ ∈ K, a relation symbol Rm~ of the same sort
as m~ .
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The groupoid of Σ-structuresX = (X1 ⇒ X0) is automatically a groupoid of ΣK→X-
structures. For eachΣ-structure M ∈ X0, we interpret Rm~ as the subset ~ x~ = m~ �X∩Mm~ .
The subset

~ x~ : Rm~ �X = ~ x~ = m~ �X ⊆
∐

M∈X0

Mm~

is, by definition, stable, and thus every isomorphism M α−→ N ∈ X1 preserves the
interpretation of the relation Rm~ . Hence, α is also an isomorphism of ΣK→X-structures.

Definition VII.59. Let X be a groupoid of Σ-structures with an indexing K⇁⇁ X. We
denote by TK⇁⇁X the theory of the indexed groupoid. It is the theory over the signature
ΣK→X whose axioms are precisely those sequents ϕ `x~ ψ overΣK→X which are satisfied
in all structures M ∈ X0 (once each M ∈ X0 is interpreted as a ΣK⇁⇁X-structure).

Corollary VII.60. Let K ⇁⇁ X be an indexed groupoid of Σ-structures. There is an equiva-
lence of topoi

Sh
(
X
τ-log1
τ-log0

)
' ETK⇁⇁X .

Proof. By the definition of the theoryTK⇁⇁X, the groupoidX is a conservative groupoid
forTK⇁⇁X. Next, by the construction of the signature ΣK⇁⇁X, the groupoidX eliminates
parameters as a groupoid ofΣK⇁⇁X-structures. Explicitly, for each tuple of parameters,
we have that

~ x~ = m~ �X = ~ x~ : Rm~ �X.

Thus, by Theorem VII.8, the topos Sh
(
X
τ-log1
τ-log0

)
classifies the theory TK⇁⇁X. □

Example VII.61 (The theory of a generic Dedekind section). Let X be a groupoid of
Σ-structures with an indexing K ⇁⇁ X. While the signature ΣK⇁⇁X constructed in
Definition VII.58 ensures that X eliminates parameters over the signature ΣK⇁⇁X, we
may however wish to refrain from adding too many symbols to our signature.

Evidently, we do not need to add a new relation symbol Rm~ for every tuple of
parameters m~ ∈ K, but only those for which the orbit ~ x~ = m~ �X is not definable
without parameters. By making astute choices about how to expand the signature,
we can minimise the number of new symbols we must add.

Recall from Example VII.40 that R+R is a model for the theoryDLO∞ that is not
ultrahomogeneous, and consequently the automorphism group Aut(R +R) does not
eliminate parameters. We describe a theory classified by the topos BAut(R+R) using
the above techniques.

For i = 1, 2, the automorphism group Aut(R + R) acts transitively on the subset
{ i } ×R ⊆ R +R, i.e. for any r ∈ R,

~ x = (i, r) �Aut(R+R) = { i } ×R ⊆ R +R,

and so we are motivated to consider the localic extension of the theory of dense linear
orders without endpoints by the addition of a pair of unary relation symbols U1 and
U2, where these symbols are interpreted in the model R +R as the subsets

~U1(x) �R+R = { 1 } ×R,
and ~U2(x) �R+R = { 2 } ×R.
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The automorphism group Aut(R + R) eliminates parameters over this expanded
signature. Namely, we have that ~ x~ = m~ �Aut(R+R) is given by��������������� x~ :

∧
mi,m j∈m~ ,

mi=m j

xi = x j ∧
∧

mi,m j∈m~ ,
mi<m j

xi < x j ∧
∧

mi∈m~ ,
mi∈{ 1 }×R

U(xi) ∧
∧

m j∈m~ ,
m j∈{ 2 }×R

U(x j)

���������������
Aut(R+R)

.

Thus, in a manner similar to Corollary VII.60, we deduce that the topos BAut(R+R)
classifies the localic expansion of DLO∞ by two unary predicates whose axioms are
those sequents satisfied in the model R+R, which we denote by TR+R. The sequents

U1(x) ∧U2(x) `x ⊥, x < y `x,y U1(x) ∨U2(y),
> `∅ ∃x U1(x), > `∅ ∃y U2(y),

U1(x) ∧ y < x `x,y U1(y), U2(y) ∧ y < x `x,y U2(y),
U1(x) `x ∃y U1(y) ∧ x < y, U2(y) `y ∃x U2(x) ∧ x < y

(in addition to those for a dense linear order without endpoints) suffice to generate
this theory.

The theory TR+R can be likened to a theory of Dedekind sections for an arbitrary
dense linear order without endpoints1. Indeed, the rationals Q can be made into a
model of TR+R with the interpretations

~U1(x) �Q = (−∞, a) and ~U2(x) �Q = (a,∞)

for any irrational a. Of course, not every automorphism of Q as a linear order
will preserve the further U1 and U2 structure. In contrast, R does not admit an
interpretation as a TR+R-model.

VII.6 The theory of algebraic integers
We have seen in Section VII.5.1 that the examples of representing groups and groupoids
considered in [11] and [21] can be subsumed by the classification result Theorem VII.8.
Similarly, in Section VII.5.4 we showed that the ‘maximal’ representing groupoids con-
structed in [5], [17], [36], [37] also fall within the scope of Theorem VII.8. Examples of
representing groupoids that do not directly originate via the methods exposited in the
surrounding literature have been given in Examples VII.47(ii) and Example VII.49.

As a worked example, in this section we study in further detail another represent-
ing groupoid that does not arise from the previous approaches found in the literature.
The theory we consider is the theory of algebraic integers.

1In [123, §3.5], Vickers describes, as a localic expansion of the theory of dense linear orders without
endpoints, a theory of Dedekind sections on the rationals. Tacitly, an interpretation of the rationals is
fixed by introducing a constant symbol cq for each rational q ∈ Q and axioms

(i) > ` cp < cq, for each pair of rationals p, q with p < q,

(ii) and > `x
∨

q∈Q x = cq.

Consequently, there are no non-trivial isomorphisms of models.
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The theory of algebraic integers. For each prime p, the monic minimal polynomial
of each element of the field Z/〈p〉 has integer coefficients. In this sense, the algebraic
numbers and algebraic integers modulo p coincide, and the fieldZ/〈p〉 is a model for
a theory of algebraic integers. Along with the standard ring of algebraic integers Z,
these rings can be axiomatised as follows.

Definition VII.62. We denote by AI the (geometric) theory of algebraic integers. It is
the single-sorted theory over the signature of rings whose axioms are the following:

(i) the standard axioms of a commutative ring,

(ii) the sequent
x · y = 0 `x,y x = 0 ∨ y = 0,

expressing that any model is an integral domain,

(iii) the sequent

> `x

∨
q∈Z[x]monic

q(x),

where Z[x]monic denotes the set of monic polynomials with integer coefficients,
expressing that every element is in the integral closure of the prime subring,

(iv) and for each n ∈N, the sequent

> `xn−1,...,x0 ∃y yn + xn−1yn−1 + · · · + x0,

expressing that the model is algebraically closed with respect to monic polyno-
mials.

Lemma VII.63. Every model ofAI is either isomorphic to Z or to Z/〈p〉 for some prime p.

Proof. A model R of AI is an integral domain, and it is isomorphic to Z or Z/〈p〉
for some prime p depending on the characteristic of R. We will show that if R has
characteristic 0, then R � Z. The proof in the case where R has finite characteristic is
almost identical.

Since R is an integral domain, we can form its field of fractions Frac(R) as well as
the algebraic closure Frac(R) of this field. Subsequently, there exist isomorphic copies
of Z,Z,Q and Q inside Frac(R) along with the inclusions of rings

R Frac(R)

Z Q Frac(R).

Z Q

Viewed as subrings of Frac(R), the condition that R is algebraic over its prime subring
ensures that R ⊆ Z, while the condition that R is algebraically closed with respect to
monic polynomials ensures the converse inclusion. □
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SinceAI is not an atomic theory (for example, there is no single geometric formula
that is provably equivalent to the infinite conjunction

∧
p prime p , 0), the classifying

topos EAI cannot be equivalent to a topos of sheaves on a simple disjoint coproduct of
automorphism groups as in Corollary VII.42. Instead, we must search further afield
for a representing groupoid.

We note as well that the standard ring of algebraic integers Z plays a special role
amongst all models of the theory AI. It is not a conservative model – this is clear
since Z satisfies the sequent

1 + 1 + · · · + 1︸           ︷︷           ︸
p times

= 0 ` ⊥,

but AI has a model of cardinality p. However, Z does have the property that Z
satisfies a (geometric) sentence ϕ if and only if T proves the sequent > ` ϕ. For this
reason, we will say that Z is sentence-complete. Below, we construct a representing
groupoid forAI where the fact that Z is a sentence-complete model can be captured
topologically, as seen in Corollary VII.67.

A representing groupoid for the theory of algebraic integers. Let a ∈ Z be an
algebraic integer, and let qa be its minimal polynomial. For any ring homomorphism
f : Z → Z/〈p〉, the image f (a) is also a root of the polynomial qa. However, over
Z/〈p〉, the polynomial qa may no longer be irreducible. Suppose that qa factors into
irreducible polynomials as q1

aq2
a . . . qk

a overZ/〈p〉. Then f (a) ∈ Z/〈p〉 has as its minimal
polynomial qi

a for some i.
Assuming the axiom of choice, there exists a maximal ideal M ofZwhich contains

both the prime p and qi
a(a). Taking the quotient ring yields a field Z/M which is

moreover an algebraic closure for its prime subfieldZ/〈p〉. Hence, by the uniqueness
of algebraic closures, we deduce the existence of a surjective ring homomorphism

πM : Z Z/M � Z/〈p〉

with the property that πM(a) has minimal polynomial qi
a.

Definition VII.64. LetAI = (AI1 ⇒ AI0) denote the étale complete model groupoid
forAIwhose underlying set of objectsAI0 is constructed as follows:

(i) AI0 contains one copy of the model Z;

(ii) we add, for each prime p and each maximal ideal M ⊆ Z containing p, a copy of
the model Z/〈p〉.

That is,AI is the groupoid

Aut
(
Z

)
+

∐
p prime

ConGrpd
({

M ⊆ Z a maximal
ideal containing p

}
,Aut

(
Z/〈p〉

))
,

where we use the notation ConGrpd(Y,G), for a set Y and a group G, to denote the
(unique) connected groupoid whose objects are Y and ConGrpd(Y,G)(y, y′) = G, for
each pair y, y′ ∈ Y.
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We endowAIwith the indexing whose set of parameters are the algebraic integers
Z. The model Z is given the trivial indexing of itself by its own elements. Mean-
while, the indexing of the model Z/〈p〉 corresponding to the maximal ideal M ⊆ Z is
determined by the surjective frame homomorphism

πM : Z Z/M � Z/〈p〉

To make this indexing explicit, we will not abuse notation (as we have done in the
rest of this chapter) and instead denote the interpretation of the parameter a ∈ Z in a
copy of Z/〈p〉 by πM(a).

Proposition VII.65. The groupoidAI ofAI-models, with the indicated indexingZ⇁⇁ AI,
is conservative and eliminates parameters. Therefore, there is an equivalence of topoi

EAI ' Sh
(
AIτ-log1

τ-log0

)
.

Proof. By Lemma VII.63, the set of objects AI0 is a conservative set of models. By
Remarks VII.7(iii), to show that AI eliminates parameters it suffices to demonstrate
that, for each tuple of parameters a~ ∈ Z, the orbit ~ x~ = a~ �AI is definable without
parameters. We claim that

~ x~ = a~ �AI = ~ x~ : qa1(x1) = 0 ∧ qa2(x1, x2) = 0 ∧ · · · ∧ qan(x1, . . . , xn) = 0 �AI,

where qai(a1, . . . , ai−1, xi) is a minimal polynomial of ai ∈ a~ over the ring extension
Z[a1, . . . , ai−1].

By definition, the tuple a~ ∈ Z satisfies the formula

Z ⊨ qa1(a1) = 0 ∧ qa2(a1, a2) = 0 ∧ · · · ∧ qan(a1, . . . , an) = 0.

Moreover, since the interpretation of the parameters a~ in any other modelZ/〈p〉 ∈ AI0

is determined by a ring homomorphism πM : Z↠ Z/〈p〉, we conclude that

Z/〈p〉 ⊨ πM(qa1(a1)) = 0 ∧ · · · ∧ πM(qan(a1, . . . , an)) = 0,
⊨ qa1(πM(a1)) = 0 ∧ · · · ∧ qan(πM(a1), . . . , πM(an)) = 0.

Consequently, there is an inclusion

~ x~ = a~ �AI ⊆ ~ x~ = a~ �AI ⊆ ~ x~ : qa1(x1) = 0 ∧ · · · ∧ qan(x1, . . . , xn) = 0 �AI.

We turn to the converse inclusion. Since the automorphism group Aut
(
Z

)
acts

transitively on the set of solutions to an irreducible polynomial, we have that

~ x~ : qa1(x1) = 0 ∧ · · · ∧ qan(x1, . . . , xn) = 0 �AI ∩Z ⊆ ~ x~ = a~ �Aut(Z),

= ~ x~ = a~ �AI ∩Z.

Now let w~ ∈ Z/〈p〉 be a tuple for which

Z/〈p〉 ⊨ qa1(w1) = 0 ∧ qa2(w1,w2) = 0 ∧ · · · ∧ qan(w1, . . . ,wn) = 0,
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and let qwi(x1, . . . , xi) be a minimal polynomial of wi overZ/〈p〉[w1, . . . ,wi−1]. By Zorn’s
lemma, we can extend the non-trivial ideal on Z generated by the set{

p, qw1(a1), . . . , qwn(a1, . . . , an)
}

to a maximal ideal M ⊆ Z. Hence, there is an isomorphic copy of Z/M � Z/〈p〉 in
AI0 in which πM(ai) is a root of the irreducible polynomial qwi(πM(a1), . . . , πM(ai−1), x).
Thus, there exists an isomorphism Z/M � Z/〈p〉 sending πM(a~) to w~ , completing the
proof of the converse inclusion

~ x~ : qa1(x1) = 0 ∧ · · · ∧ qan(x1, . . . , xn) = 0 �AI ⊆ ~ x~ = a~ �AI.

□

Properties of the space of objects. We now describe the space of objects AIτ-log0
0

in more detail. Eventually, we will observe that AIτ-log0
0 can be described, up to

homeomorphism, in entirely topological terms. Recall that a basic open ofAIτ-log0
0 is

given by the interpretation of a sentence with parameters ~m~ : ϕ �AI ⊆ AI0. Recall
also from Remark VII.15 that it suffices to consider only the atomic sentences with
parameters, which in the case of rings amounts to formulae of the form q(a~) = 0, for
some tuple of parameters a~ and a polynomial q.

We first note that the subset ofAI0 consisting only of models of the formZ/〈p〉 is
an open subset in τ-log0. Namely, it is the subset

~ p = 0 �AI �
{

M ⊆ Z
∣∣∣ p ∈M, M a maximal ideal

}
⊆ AI0.

Lemma VII.66. For each prime p, the subspace�
p = 0

�
AI �

{
M ⊆ Z

∣∣∣ p ∈M, M a maximal ideal
}

ofAIτ-log0
0 is homeomorphic to the Cantor space 2N.

Proof. We first remark that the Cantor space 2N is homeomorphic to any uncountable
closed subspace of itself (this is a consequence of Brouwer’s characterisation of the
Cantor space). Thus, it suffices to show that ~ p = 0 �AI, an uncountable space, is
homeomorphic to a closed subspace of 2N.

There is an evident inclusion of sets�
p = 0

�
AI �

{
M ⊆ Z

∣∣∣ p ∈M, M a maximal ideal
}
⊆ 2Z � 2N.

We must first show that the induced topology on
�

p = 0
�
AI as a subspace ofAIτ-log0

0

is the same as that induced as a subspace of 2Z. The topology on 2Z is generated by
the basic opens {M | a ∈M } and {M | a <M }, for each algebraic integer a ∈ Z.

Under the bijection ~ p = 0 �AI �
{

M
∣∣∣ p ∈M

}
, the subset {M | a ∈M } corresponds

to the open
~ a = 0 �AI ∩ ~ p = 0 �AI.
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To show that {M | a <M } is also open, we note that if a < M, then πM(a) is a non-zero
element of the field Z/M � Z/〈p〉 and hence invertible. Thus, under the bijection
~ p = 0 �AI �

{
M

∣∣∣ p ∈M
}
, we have that

~∃y a · y = 1 �AI ∩ ~ p = 0 �AI � {M | a < a } .

Hence, the topology on ~ p = 0 �AI induced as a subspace ofAIτ-log0
0 contains that as

induced as a subspace of 2Z. For the reverse inclusion of topologies, by Remark VII.15
it suffices to note that

~ q(a~) = 0 �AI ∩ ~ p = 0 �AI �
{

M
∣∣∣ q(a~) ∈M

}
.

Thus, ~ p = 0 �AI is a subspace of 2Z.
It remains to show that ~ p = 0 �AI is a closed subset of 2Z. It is straightforward

to demonstrate that the complement 2Z \ ~ p = 0 �AI is open once we recall that, in
Z, the maximal ideals are precisely the non-zero prime ideals. If P fails any of the
conditions to be a prime ideal containing p, it easy to find an open neighbourhood
of P that is contained entirely in the complement 2Z \ ~ p = 0 �AI. As an example, if
P ⊆ Z contains the product a · b but neither a nor b, i.e. P is not prime, then{

P ⊆ Z
∣∣∣ a · b ∈ P

}
∩

{
P ⊆ Z

∣∣∣ a < P
}
∩

{
P ⊆ Z

∣∣∣ b < P
}

is such an open neighbourhood of P. Thus, ~ p = 0 �AI ⊆ 2Z is closed, from which the
result follows. □

Next, we deduce that the point Z ∈ AI0 is a universal accumulation point of AI0,
by which we mean that Z is an accumulation point of every subset S ⊆ AI0 \ {Z },
or rather: the only open containing Z is the whole space. This is because if Z is
contained in a basic open ~ q(a~) = 0 �AI, i.e. Z ⊨ q(a~) = 0, then Z/〈p〉 ⊨ q(πM(a~)) for
each maximal ideal M of Z containing p. Hence, each copy of Z/〈p〉 ∈ AI0 is also
contained in the open ~ q(a~) = 0 �AI, and thus ~ q(a~) = 0 �AI = AI0. As a consequence,
we deduce that:

Corollary VII.67. The algebraic integersZ are a ‘sentence-complete’ model of the theoryAI.

Combining the above, we are able to give an entirely topological description of the
spaceAIτ-log0

0 devoid of any mention of algebraic structures from which it derives.

Corollary VII.68. The space of objects AIτ-log0
0 is obtained by the addition of a universal

accumulation point to the coproduct of countably many copies of the Cantor space.

VII.7 Representing groupoids for doctrines
While conservative sets of models are commonly considered in other fragments of
logic, we have defined elimination of parameters only for model groupoids of geo-
metric theories. The reader may rightly wonder how our theory of elimination of
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parameters generalises beyond geometric logic, and thus how to apply our classifica-
tion of representing open topological groupoids to theories of from other fragments
of logic, e.g. classical logic.

Recall that, irrespective of the underlying syntax, the classifying topos of a theory
(or indeed a doctrinal site) also classifies a geometric theory to which we can apply the
classification result of Theorem VII.8. The purpose of Part A was to identify a suitable
choice of such a geometric theory/doctrine – the geometric completion. The properties
of conservativity and elimination of parameters identified in Theorem VII.8, defined
on the geometric completion, can be translated back into properties on the original
theory (respectively, doctrine).

This section contains that calculation. Hence, we will obtain a classification of the
representing open topological groupoids of any formal system of predicate reasoning,
as represented by a doctrinal site. We outline the necessary adjustments that must be
made to the method pursued in Sections VII.2 to VII.4 (since we no longer assume
that our geometric doctrine is fibred over a category of contexts ConN) before giving
the statement of the classification result for doctrinal sites in Theorem VII.72.

Indexed models of a doctrine. Recall that a (set-based) model M of a doctrinal site
(P, J) is a morphism of doctrinal sites (P, J) → (P ,KP), which we suggestively write
as being composed of the pair consisting of

(i) a flat functor M : C → Sets,

(ii) and a pseudo-natural transformation ~− �M : P⇒P◦Mop for which the induced
functor

M o ~− �M : (C o P, J) (Sets oP ,KP)

is a morphism of sites.

By the universal property of the geometric completion, the pseudo-natural transfor-
mation ~− �M can be uniquely extended to a natural transformation

P Z(P, J)

P

η(P,J)

~− �M

that yields a morphism of geometric doctrines Z(P, J)→P . We will not differentiate
between the pseudo-natural transformation ~− �M : P⇒P ◦Mop and its extension to
the geometric completion Z(P, J).

Just as in Definition VII.1, we can define a notion of indexing for the models of a
doctrinal site.

Definition VII.69. Let M be a model of the doctrinal site (P, J). An indexing of M
consists of

(i) a covariant presheaf of parameters K : C → Sets,
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(ii) and, for each object c ∈ C, a partial surjection Kc ⇁⇁ M(c) which is natural in the
sense that the square

Kc Kd

M(c) M(d).

fK

M( f )

(VII.iii)

commutes.

We write K⇁⇁ M to denote such an indexing.

Remark VII.70. Let T be a geometric theory. Recall that a model M of T in the
usual sense is equivalent to a model of the associated geometric doctrine FT. The
two notions of indexings of M given in Definition VII.1 and Definition VII.69 are not
identical, but can be identified up to equivalence.

Suppose that, for each singleton variable x of the theory T, there is a given partial
surjection Kx ⇁⇁ Mx, i.e. M is an indexed model according to Definition VII.1. We
obtain a presheaf of parametersK : Conop

N → Sets by settingKx~ as the product
∏

xi∈x~ Kxi

and, for each relabelling of contexts σ : y~ → x~, setting σK as the universally induced
map

Kx~

∏
yi∈y~

Kyi = Ky~

Kσ(yi) Kyi .

prσ(x~)

σK

pryi

By a similar universal construction, there exists a natural partial surjection Kx~ ⇁⇁ Mx~

for each context x~.
Conversely, an indexing K ⇁⇁ M of M according to Definition VII.69 evidently

yields an indexing of M in the sense of Definition VII.1 since, for each singleton
context x, we have a partial surjection Kx ⇁⇁ Mx.

In fact, these two processes are mutually inverse up to equivalence. The only
discrepancy arises because, for an arbitrary presheaf of parameters K : Conop

N → Sets,
it is not necessarily the case that Kx~ �

∏
xi∈x~ Kxi . However, the induced indexings on

the model M are equivalent since the partial surjection Kx~ ⇁⇁ Mx~ necessarily factors
as

Kx~

∏
xi∈x~
Kxi Kxi

Mx~ Mxi .

Classification of the representing open topological groupoids of a doctrine. In the
aid of intuition, during Sections VII.2 to VII.4 we worked in the familiar language
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of a theory of geometric logic, or less transparently, by Proposition III.42, an internal
locale of a topos of the form SetsConN . However, every step of the proof followed in
Sections VII.2 to VII.4 generalises readily to doctrines over an arbitrary base category.

The only results whose generalisations to arbitrary doctrines deserve clarification
are Lemma VII.16 and Proposition VII.17.

Proposition VII.71. Let P : Cop → PreOrd be a doctrine with a classifying topos EP and let
X0 be a set of models of P. A topology τ0 on X0 is a factoring topology, by which we mean that
there is a factorisation of the canonical geometric morphism

SetsX0 Sh(Xτ0
0 ) EP,

j

if and only if there is an indexing of each M ∈ X0 by a presheaf of parameters K : C → Sets
such that τ0 contains the corresponding logical topology, i.e. the topology generated by the
basic opens

~m : U �X0 = {M ∈ X0 |m ∈ ~U �M ⊆M(c) }

for each c ∈ C, m ∈ Kc and U ∈ P(c).

Proof. By an evident generalisation of Proposition VII.12, a topology τ0 is a factoring
topology if and only if there is a factorisation

SetsX0

Sh(Xτ0
0 ) C o P,

J
~− �X0

if and only if, for each object c ∈ C, there is a topology Tc on
∐

M∈X0
M(c) such that

(i) the projection

πc :
(∐

M∈X0
M(c)

)Tc
Xτ0

0

is a local homeomorphism,

(ii) for each U ∈ P(c), the subset

~U �X0 =
∐

M∈X0

~U �M ⊆
∐

M∈X0

M(c)

is open in the topology Tc,

(iii) and for each arrow d
f−→ c ∈ C, the map

(∐
M∈X0

M(d)
)Td

(∐
M∈X0

M(c)
)TcfX0=

∐
M∈X0

M( f )

is continuous.
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First, suppose that M ∈ X0 is indexed by a presheaf of parameters K : C → Sets.
We identify a topology Tc on

∐
M∈X0

M(c) which satisfies conditions (i) to (iii) when X0

is endowed with the topology τ-log0 generated by the basic opens ~m : U �X0 .
The topology Tc we choose is the obvious generalisation of the topology generated

by definables with parameters from Lemma VII.16 – it is the topology generated by
the two species of basic opens

~ x = m �X0 =

{
〈n,M〉

∣∣∣∣∣ Kc ⇁⇁ M(c)
sends m to n

}
⊆

∐
M∈X0

M(c)

and
~U �X0 =

∐
M∈X0

~U �M ⊆
∐

M∈X0

M(c).

Condition (ii) is automatically satisfied, and it is easily shown that πc is a local home-
omorphism for this topology. Finally, the functoriality condition (iii) follows from
the naturality of ~− �X0 and the indexing (VII.iii). Namely we have that, for any

arrow d
f−→ c of C, fX0

−1(~U �X0) = ~P( f )(U) �X0 and f −1
X0

(~ x = m �X0) = ~ y = fK(m) �X0 .
Therefore, any topology τ0 on X0 containing τ-log0 admits a factorisation

SetsX0 Sh(Xτ0
0 ) Sh

(
Xτ-log0

0

)
EP.

Now supposing the converse – that there is a choice of topologies Tc on
∐

M∈X0
M(c),

for each c ∈ C, satisfying conditions (i) to (iii), we identify an indexing of the models
in X0 for which τ0 contains the opens ~m : U �X0 . Just as in Proposition VII.17, we
choose to index a element n ∈ M(c) by the local sections s : U → ∐

M∈X0
M(c) of

πc :
∐

M∈X0
M(c)→ X0 with open domain and open image, i.e. the open local sections

of πc, for which n is in the image s(U). Since πc is a local homeomorphism, this defines
a partial surjection

{ open local sections of πc }⇁⇁ M(c).

It remains to show that this indexing is natural in sense expressed in (VII.iii).

This follows since, for each arrow d
f−→ c ∈ C, and each open local section s of πd,

the composite fX0 ◦ s is an open local section of πc. As the triangle∐
M∈X0

M(d)


Td

∐
M∈X0

M(c)


Tc

Xτ0
0

πc

fX0

πd

commutes, fX0 is an open map by [63, Lemma C1.3.2] and so fX0 ◦ s is still an open
map, and secondly fX0 ◦ s is evidently a section of πc since

πc ◦ fX0 ◦ s = πd ◦ s = idX0 .

Therefore, for this indexing, the topology Tc contains as opens s(U) = ~ x = s �X0 and
~U �X0 . Thus, since the local homeomorphism πc is, in particular, an open map, τ0

contains the open
πc(s(U) ∩ ~U �X0) = ~m : U �X0
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and hence the logical topology. □

The other results from Sections VII.3 to VII.4 generalise without difficulty. Thus,
as in Proposition VII.24 and Corollary VII.32, we arrive at the fact that, for a doctrinal
site (P, J) and a groupoidX = (X1 ⇒ X0) of models of P, the groupoid can be endowed
with topologies making it a representing open topological groupoid if and only if the
canonical localic geometric morphism

plog : Sh
(
X
τ-log1
τ-log0

)
Sh(C o P, J) ' Sh(Z(P, J)) ' EP, (VII.iv)

yields an equivalence of topoi Sh
(
X
τ-log1
τ-log0

)
' EP, where

(i) the topology τ-log0 on X0 is generated by basic opens ~m : U �X, for each c ∈ C,
m ∈ Kc and U ∈ P(c), as in Proposition VII.71,

(ii) and the topology τ-log1 on X1 generated by basic opens�������� m1 : U,
m2 7→ m3,

m4 : V

��������
X

=

 M α−→ N ∈ X1

∣∣∣∣∣∣∣∣
m1 ∈ ~U �M,
αd(m2) = m3,
m4 ∈ ~V �N

 ,
where c, d, e ∈ C, m1 ∈ Kc, U ∈ P(c), m2,m3 ∈ Kd, m4 ∈ Ke and V ∈ P(e).

Hence, just as in Section VII.4, the problem of identifying a representing open topo-
logical groupoid resolves down to identifying when the morphism between internal
locales

Sub
Sh

(
X
τ-log1
τ-log0

) (∐
M∈X0

M(−)
)

Z(P, J),

corresponding to (VII.iv), whose component at c ∈ C is the frame homomorphism

~− �X−1
c : Z(P, J)→ Sub

Sh
(
X
τ-log1
τ-log0

)
∐

M∈X0

M(c)

 ,
S 7→ ~S �X,

is an isomorphism of internal locales in SetsC
op

. We can easily identify conditions
corresponding to injectivity and surjectivity of the frame homomorphism ~− �X−1

c
that generalise the conditions of conservativity and elimination of parameters iden-
tified for model groupoids of geometric theories in Theorem VII.8, thus yielding our
characterisation of the representing open topological groupoids of a doctrinal site:

Theorem VII.72 (Classification of representing open topological groupoids for doc-
trinal sites). Let P : Cop → PreOrd be a doctrine whose desired set-based models are encoded
by a Grothendieck topology J on C o P, i.e.

P-mod(Sets) ' DocSites((P, J), (P ,KP)).

Let X = (X1 ⇒ X0) be a small subgroupoid of P-mod(Sets). The following are equivalent.
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(i) There exist topologies on X1 and X0 making X = (X1 ⇒ X0) an open topological
groupoid for which there is an equivalence of topoi

Sh(X) ' Sh(C o P, J) ' EP.

(ii) The groupoid X satisfies the following two conditions.

a) The groupoid X is J-conservative, by which we mean that, for all U,V ∈ P(c), if

~U �M = ~V �M

for all M ∈ X0, then there is a set of pairs{ (
fi,Wi

) ∣∣∣∣∣ di
fi−→ c ∈ C, Wi ⩽ P( fi)(U),P( fi)(V)

}
such that both of the resultant families of arrows in C o P{

(di,Wi)
fi−→ (c,U)

∣∣∣∣∣ i ∈ I
}

and
{

(di,Wi)
fi−→ (c,V)

∣∣∣∣∣ i ∈ I
}

are J-covering, or equivalently η(P,J)
c (U) = η(P,J)

c (V).
b) There exists an indexing of X by parameters K : Cop → Sets for which X geo-

metrically eliminates parameters, by which we mean that, for each of parameter
m ∈ Kc, there is some S ∈ Z(P, J)(c) such that

~ x = m �X =
{
〈n,N〉

∣∣∣∣∃M α−→ N ∈ X1 such that α(m) = n
}
,

= ~S �X =
⋃

( f ,U)∈S
fX0

∐
M∈X0

~U �M

 .
Example VII.73. Let T be a theory over a fragment of logic that interprets regular
logic, e.g. T could be a coherent or a classical theory. Note that since the associated
doctrine FT is still fibred over the category ConN, by Remark VII.70, the notion of an
indexed model of FT given in Definition VII.69 coincides with the usual notion offered
in Definition VII.1.

Considering how the geometric completion of an existential doctrinal site is com-
puted (see Proposition IV.6), we recognise that an indexed groupoid of T-models
K⇁⇁ X eliminates parameters if and only if, for each tuple of parameters m~ ∈ K, there
is a set

{
ϕi

∣∣∣ i ∈ I
}

of formulae in context x~ (over the appropriate fragment of logic, e.g.
classical formulae if T is a classical theory) for which

~ x~ = m~ �X =
⋃
i∈I
~ x~ : ϕi �X.



Chapter VIII

Weak equivalences of groupoids

Geometric morphisms as generalised continuous maps. The results of [68], [17]
express that topoi (with enough points) can be thought of as ‘spaces whose points
can have non-trivial isomorphisms’, in either a pointset or pointfree sense. Given
this perspective on the objects of Topos, it would complete the intuition if geometric
morphisms, the arrows of Topos, could also be thought of as ‘continuous maps of
spaces that respect isomorphisms of points’.

There is already a sense expressed in the literature in which this is true in the
localic setting. Because multiple localic groupoids may represent the same topos, it
is unsurprising that we must employ weak equivalences and (bi)categories of fractions,
as introduced in [40] and extended to the bicategorical setting in [102]. Informally,
a category of fractions is obtained by quotienting the arrows of the category by a
class of arrows that ‘should’ be isomorphisms. In [92, §7], Moerdijk demonstrated an
equivalence between the category of topoi Topos and the category of étale complete
localic groupoids and their homomorphisms, localised by a right calculus of fractions.

Key result. Our aim in this chapter is to establish a topological parallel in the
biequivalence

Toposiso
w.e.p. ' [W−1]LogGrpd, (VIII.i)

where

(i) Toposiso
w.e.p. is the bicategory of topoi with enough points, geometric morphisms,

and isomorphisms between these,

(ii) LogGrpd is a bicategory of topological groupoids,

(iii) andW is a left bicalculus of fractions on LogGrpd.

This gives a sense in which every geometric morphism between topoi with enough
points is a ‘continuous map that respects isomorphisms of points’, but in a pointset
rather than pointfree setting. Because the biequivalence (VIII.i) involves a left bical-
culus of fractions while the equivalence established in [92] uses a right calculus, our
biequivalence has a notably different flavour.

Logical motivation. Why is the biequivalence (VIII.i) of interest to the logician? Re-
call from Section VI.1 that, given a pair of geometric theories T and T′, any geometric

255
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morphism between classifying topoi

f : ET ET′

yields a functor
F : T-mod(F ) T′-mod(F )

that is natural inF , and vice versa. We can think of the latter as instructions on how to
transform a T-model into a T′-model. The biequivalence (VIII.i) expresses that, up to
a weak equivalence, such transformations can be detected on the level of representing
groupoids, lending credence to the intuition that a representing model groupoid is
one that ‘possesses enough information’ recover the whole theory.

Overview. The chapter proceeds as follows.

(A) We begin in Section VIII.1 by recalling Moerdijk’s equivalence from [92, §7]. In
contrast to the localic setting, because there exist geometric morphisms that are
not surjective on points, we cannot obtain a similar biequivalence for topoi with
enough points using right calculi on topological groupoids, as demonstrated in
Proposition VIII.4.

(B) Having negated the possibility of obtaining a biequivalence with a right calculus
of fractions, the biequivalence (VIII.i) is established in Section VIII.2.

VIII.1 Topoi as a right category of fractions
Bifunctoriality of the topos of sheaves construction. Recall from [92, §5] that send-
ing a localic groupoid to its topos of sheaves is a bifunctorial construction with respect
to homomorphisms of localic groupoids and their transformations.

Definition VIII.1 (Definition 4.1 [92]). A homomorphism of localic groupoids X
ϕ−→ Y is a

pair of locale morphismsϕ0 : X0 → Y0 andϕ1 : X1 → Y1, between the locales of objects
and arrows respectively, which commute with the respective structure morphisms of
the groupoids as in the diagram

X1 ×X0 X1 Y1 ×Y0 Y1

X1 Y1

X0 Y0.ϕ0

ϕ1

s t t′s′ e′e

ϕ1×ϕ0ϕ1

m m′

(VIII.ii)

This is precisely what it means to be a functor between internal categories.

Each homomorphism of localic groupoids X
ϕ−→ Y induces a geometric morphism

Sh(ϕ) : Sh(X) → Sh(Y). The inverse image functor Sh(ϕ)∗ sends descent datum
(W, θ) ∈ Sh(Y) to the pair consisting of ϕ∗0(W) and the map

s∗ϕ∗0(W) = ϕ∗1s′∗(W) ϕ∗1t′∗(W) = t∗ϕ∗0(W).
ϕ∗1(θ)
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That ϕ∗1(θ) satisfies the required equations to define descent datum on ϕ∗0(W) follows

from the commutativity of (VIII.ii). Each morphism (W, θ)
f−→ (W′, θ′) of descent

data is sent by Sh(ϕ)∗ to the map (ϕ∗0(W), ϕ∗1(θ))
ϕ∗0( f )
−−−→ (ϕ∗0(W′), ϕ∗1(θ′)). The required

commutativity condition ϕ∗1(θ′) ◦ s∗ϕ∗0( f ) = t∗ϕ∗0( f ) ◦ ϕ∗1(θ) follows, since

ϕ∗1(θ′) ◦ s∗ϕ∗0( f ) = ϕ∗1(θ′) ◦ ϕ∗1s′∗( f )
= ϕ∗1(θ′ ◦ s′∗( f ))
= ϕ∗1(t′∗( f ) ◦ θ)
= ϕ∗1t′∗( f ) ◦ ϕ∗1(θ)
= t∗ϕ∗0( f ) ◦ ϕ∗1(θ).

Remark VIII.2. In this chapter, we are following [92] in that we are using homomor-
phisms of localic/topological groupoids to induce geometric morphisms. In a later
paper [93, §4-5], Moerdijk shows that it is also possible to use bispaces.

Definition VIII.3. Given a pair of parallel homomorphisms

X Y
ϕ

ψ

between localic groupoids, a transformation ϕ a
=⇒ ψ is a locale morphism a : X0 → Y1

such that

(i) the equations s′ ◦ a = ϕ0 and t′ ◦ a = ψ0 are satisfied, expressing that a sends a

(generalised) point x ∈ X0 to its component ϕ0(x)
a(x)−−→ ψ(x) ∈ Y1,

(ii) and the square

X1 Y1 ×Y0 Y1

Y1 ×Y0 Y1 Y1

(ψ1,a◦s)

(a◦t,ϕ1) m′

m′

commutes, expressing that the choice of components is natural.

This is precisely what it means to be an internal natural transformation.
While it is clear how to define identity homomorphisms and composite homomor-

phisms for localic groupoids, it is perhaps less evident how to define a categorical
structure on the transformations.

(i) The identity transformationϕ
idϕ
==⇒ ϕ is named by the composite locale morphism

X0 Y0 Y1,
ϕ0 e′

(ii) while the composite of two transformationsϕ a
=⇒ ψ, ψ a′

=⇒ χ is given by the locale
morphism

X0 Y1 ×Y0 Y1 Y1.
a×Y0 a′ m′
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Together, localic groupoids, their homomorphisms and transformations of these, yield
a bicategory which we denote by LocGrpd.

A transformation ϕ
a
=⇒ ψ induces a natural transformation between the inverse

image functors Sh(a) : Sh(ϕ)∗ ⇒ Sh(ψ)∗. The component of Sh(a) at the descent
datum (W, θ) ∈ Sh(Y) is given by the morphism

ϕ∗(Y, θ) ψ∗(Y, θ)
Sh(a)(Y,θ)

as induced by the universal property of ψ∗0(Y) in the diagram

ϕ∗0(Y) s∗(Y) Y t∗(Y) ψ∗0(Y)

G0 H1 H0 H1 G0

⌟

Sh(a)(Y,θ)

⌟

θ

⌞ ⌞

a

ϕ0

s

ψ0

t

i

a

since s ◦ a = ϕ0 and t ◦ a = ψ0 and every square is a pullback. In summary, there is a
bifunctor

Sh : LocGrpd Topos.

All natural transformations between standard (set-based) groupoids are invertible.
The same is true for transformations between homomorphisms. Let

X Y
ϕ

ψ

be a pair of parallel homomorphisms of localic groupoids, and let ϕ a
=⇒ ψ be a trans-

formation. It is easily shown, using a pointed argument (see Remark V.18), that the
inverse to a is given by the composite locale morphism

X0 Y1 Y1.
a i′

Therefore, the bifunctor Sh : LocGrpd → Topos factors through the bisubcategory
Toposiso, the bicategory of topoi, geometric morphisms and invertible 2-cells between
these.

Moerdijk’s equivalence. Recall from [68] or Theorem VI.10 that every topos is rep-
resented by an étale complete open localic groupoid. Thus, the restriction

ECG LocGrpd ToposisoSh

to the 1-full subcategory ECG ⊆ LocGrpd of étale complete open localic groupoids
is essentially surjective. It can moreover be shown that it is faithful on 1-cells. How-
ever, it is not full on 1-cells, and so the functor does not witness a biequivalence of
bicategories.
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Instead, as shown in [92, §7] and the bicategorical extension in [102], a biequiva-
lence

ECG[W−1] ' Topos

can be obtained by quotienting ECG by a right bicalculus of fractions W on the category
ECG. In particular, for every geometric morphism

f : Sh(X) Sh(Y),

there is a span of étale complete open localic groupoids

W Y

X

ϕ

ψ

such thatW
ψ−→ X ∈W and the triangle

Sh(W) Sh(Y)

Sh(X)

Sh(ϕ)

Sh(ψ) ∼

f

commutes and Sh(ψ) is an equivalence of topoi.
The homomorphisms X

ϕ−→ Y ∈ W, the weak equivalences, are those sent by Sh to
equivalences of topoi, and these can be characterised as those homomorphisms that
are open and, in the pointfree sense, essentially surjective and fully faithful. That is,

(i) the locale morphisms ϕ0 and ϕ1 are open,

(ii) the composite

X0 ×Y0 Y1 Y1 Y0
pr2 t′

is an open surjection, expressing that ϕ is essentially surjective,

(iii) the square

X1 Y1

X0 × X0 Y0 × Y0

ϕ1

(s,t) (s′,t′)

ϕ0×ϕ0

is a pullback of locales, expressing that ϕ is fully faithful.

VIII.1.1 Right calculi of fractions on topological groupoids

Just as with localic groupoids, taking the topos of sheaves on a topological groupoid
is bifunctorial with respect to homomorphisms and transformations of topologi-
cal groupoids. These are defined by replacing ‘locale’ with ‘topological space’ in
Definition VIII.1 and Definition VIII.3. Alternatively,
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(i) a homomorphismX
ϕ−→ Y of topological groupoids is a functor on the underlying

groupoids such that the action on objects ϕ0 : X0 → Y0 and the action on arrows
ϕ1 : X1 → Y1 are both continuous,

(ii) a transformation ϕ
a
=⇒ ψ between a pair of parallel homomorphisms of topo-

logical groupoids is a natural transformation of the underlying functors of ϕ
and ψ such that the map a : X0 → Y1 that sends an object to its component is
continuous.

As before, there is a bifunctor

TopGrpd Toposiso.
Sh

This bifunctor factors through the 1-full 2-subcategory Toposiso
w.e.p. ⊆ Toposiso, the 2-

subcategory of topoi with enough points. The result of Butz and Moerdijk [17] (see
also Section VII.5.4) expresses that the functor Sh is essentially surjective.

We may therefore wonder if, in analogy with localic groupoids, there is a biequiva-
lence between Toposiso

w.e.p. and a category of right fractions on a suitable 2-subcategory
of TopGrpd. This is, however, never possible.

Proposition VIII.4. For any 2-subcategory C ⊆ TopGrpd, and any bicalculus of right
fractions Σ on C,

Toposiso
w.e.p. ; C[Σ−1].

Proof. We construct an example of a geometric morphism that cannot be obtained
by a span of topological groupoids. Let X = (X1 ⇒ X0) be a topological groupoid
contained in C ⊆ TopGrpd such that the topos Sh(X) has a point p : Sets → Sh(X)
that does not correspond to a point of X0, i.e. there is no factorisation

Sh(X0)

Sets Sh(X),

uX/

p

where uX : Sh(X0) → Sh(X) is the ‘forgetting action’ geometric morphism from Sec-
tion V.1.1. For example, Sh(X) could be the classifying topos for a theory with
unboundedly many models, which ensures the existence of such a p for any X0.

Suppose that there is a biequivalence Toposiso
w.e.p. ' C[Σ−1]. Then there is a homo-

morphism of topological groupoids Y
ϕ−→ X ∈ C such that

Sh(Y) ' Sets Sh(X).
Sh(ϕ)'p

Consequently, there is a commutative square of geometric morphisms

Sh(Y0) Sh(X0)

Sh(Y) ' Sets Sh(X).

uY

Sh(ϕ0)

uX

p
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Any point of the space Y0 yields a section of uY, as in the diagram

Sh(Y0) Sh(X0)

Sh(Y) ' Sets Sh(X).

uY

Sh(ϕ0)

uX

p

But such a point would yield a factorisation of p through uX, a contradiction. So
we conclude that Y0 is the empty space. But then, by Lemma V.8, there would be a
surjective geometric morphism

0Topos ' Sh(Y0) Sh(Y) ' Sets,
uY

but no such surjection exists1. Hence, Toposiso
w.e.p. ; C[Σ−1]. □

Nonetheless, the bifunctor Sh : TopGrpd → Toposiso
w.e.p. does induce a biequiva-

lence if we also restrict to suitable 2-subcategories of Toposiso
w.e.p.. For example, Pronk

establishes in [102, Theorem 27] a biequivalence

Étendue
iso
sp ' ÉtaleGrpd[W−1]

between the bicategory of (spatial) étendues (see [3, §IV.9.8.2(e)]) and a localisation of
the bicategory of étale topological groupoids, i.e. those groupoids whose source and
target maps are étale/local homeomorphisms.

VIII.2 Topoi as a left category of fractions
Although, as expressed in Proposition VIII.4, we cannot hope to represent the entire
bicategory Toposiso

w.e.p. by a bicalculus of right fractions on a 2-subcategory of TopGrpd,
we can establish an equivalence if we instead consider a left bicategory of fractions.

In this section, we identify a 1-full 2-subcategory of TopGrpd, which we tentatively
denote by LogGrpd and call the objects logical groupoids, and a bicalculus of left
fractionsW on LogGrpd for which there is a biequivalence

Toposiso
w.e.p. ' [W−1]LogGrpd.

In particular, the biequivalence Toposiso
w.e.p. ' [W−1]LogGrpd would entail that,

given two logical groupoids X,Y ∈ LogGrpd, there is an equivalence Sh(X) ' Sh(Y)
if and only if there is a cospan of homomorphisms

X Y

W

ϕ ψ

where X
ϕ−→W,Y

ψ−→W ∈W. Recall from Chapter VII that, given some theory T clas-
sified by the topos Sh(X) ' Sh(Y) ' Sh(W), the groupoids X,Y,W can be associated

1Of course, here we are assuming that Sets ; 0Topos, i.e. our chosen model of set theory is consistent.
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with groupoid of models of T which think of as ‘containing enough information to
recover the theory’. With this perspective, it is therefore not too surprising that given
two groupoids of models X,Y ‘with enough information’, then we can expand them
to a third model groupoidWwhich also has ‘enough information’.

VIII.2.1 Logical groupoids

We first identify the 2-subcategory LogGrpd ⊆ TopGrpd. Recall (from [79, §III.9],
say) that, given a group G and two topologies τ1 and τ2 on G for which Gτ1 ,Gτ2 are
both topological groups, Gτ1 and Gτ2 are Morita equivalent, i.e. BGτ1 ' BGτ2 , if and
only if τ1 and τ2 share the same open subgroups. For example, the group of the
rationals Q with addition is a topological group for either the Euclidean topology or
the co-discrete topology, but both have a unique open subgroup, and so there is an
equivalence of topoi BQ ' BQ

δ

' Sets. Logical groupoids intend to capture the same
behaviour. They can also be compared to the powder monoids of [104, Definition 5.2.16
& Theorem 5.2.18].

Definition VIII.5. A topological groupoid Xτ1
τ0 = (Xτ1

1 ⇒ Xτ0
0 ) is said to be a logical

groupoid if it is open, the spaces Xτ0
0 and Xτ1

1 are sober, and Xτ1
τ0 is étale complete in the

sense that:

(i) for a pair x, y ∈ X0, any isomorphism of the corresponding points

Sets Sh(X0)

Sh(X0) Sh(Xτ1
τ0)

u

u

x

y α ∼

is instantiated by an arrow x α−→ y ∈ X1,

(ii) and for any other topology τ′1 on X1, if X
τ′1
τ0 is a topological groupoid with

Sh
(
X
τ′1
τ0

)
' Sh(Xτ1

τ0),

then τ′1 ⊇ τ1. That is, τ1 is the coarsest topology on X1 determined by the topos
Sh(Xτ1

τ0).

We denote by LogGrpd the 1-full 2-subcategory of TopGrpd of logical groupoids.

Remark VIII.6. Why have we suggested the name logical groupoid? Let Xτ1
τ0 be a

logical groupoid according to Definition VIII.5. Let T be a geometric theory classified
by the topos Sh(Xτ1

τ0). In fact, we can require that T is an inhabited theory. To see
why, note that any theory T′ is Morita equivalent to the same theory with an added
inhabited ‘dummy’ sort, i.e. the expansion of T′ by a sort A, a constant c of type A,
and the axioms > `x:A c = x. We can then apply [63, Lemma D1.4.13] to deduce that
T′ is Morita equivalent to a theory with a (single) necessarily inhabited sort.

By Theorem VII.8, the groupoid X can be identified with an indexed groupoid
of T-models that is conservative and eliminates parameters. By Remark VII.18,
Proposition VII.22 and the fact that Xτ1

τ0 satisfies Definition VIII.5, we deduce that
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τ0 and τ1 are the logical topologies for this indexed groupoid of T-models. Moreover,
since X satisfies the étale completeness condition Definition VIII.5(i), then X is also
étale complete in the sense of Definitions VII.48.

Conversely, given a groupoidX of indexedΣ-structures that eliminates parameters
and which is étale complete according to Definitions VII.48, by Proposition VII.22 and
Lemma VII.28, the corresponding topological groupoid Xτ-log1

τ-log0
is a logical groupoid

according to Definition VIII.5. Hence, a topological groupoid is a logical groupoid if
and only if it is obtained from an étale complete, indexed groupoid of Σ-structures
that eliminates parameters, for some signature Σ.

Lemma VIII.7. For a pair X,Y of logical groupoids, the functor on hom-categories

Sh : LogGrpd(X,Y) Toposiso(Sh(X),Sh(Y))

is faithful.

Proof. Letϕ a
=⇒ ψ be a transformation. By sobriety, the componentϕ0(x)

a(x)−−→ ψ0(x) ∈ Y1

at x corresponds to the composite 2-cell

Sets Sh(X0) Sh(X) Sh(Y).
uXx

Sh(ϕ)

Sh(ψ)

Sh(a)

Hence, if Sh(a) = Sh(a′) for another transformation ϕ a′
=⇒ ψ, then a(x) = a′(x) for all x,

i.e. a = a′. □

Proposition VIII.8. Let f : F → E be a geometric morphism between topoi with enough
points. LetX = (X1 ⇒ X0) be a representing logical groupoid forF , i.e. there is an equivalence
F ' Sh(X). Then there is a representing logical groupoid Y of E and a homomorphism of
topological groupoids X

ϕ−→ Y such that there is an isomorphism of geometric morphisms

Sh(X) ' F E ' Sh(Y).
Sh(ϕ)' f

Proof. Let T be a geometric theory, over a signature Σ, classified by the topos E. By
[22, Theorem 7.1.5], the geometric morphism f is, up to isomorphism, induced by
a geometric expansion T′ of T. That is, T′ is a geometric theory over an expanded
signature Σ′ ⊇ Σ (that potentially adds new sorts) which contains the axioms of T,
and there is an isomorphism of geometric morphisms

ET′ ' F E ' ET.
eT
′
T
' f

By Theorem VII.8, the groupoid X = (X1 ⇒ X0) is a conservative groupoid of T′-
models with an indexing K ⇁⇁ X such that X eliminates parameters, and moreover,
X0 and X1 are endowed with the respective logical topologies induced by this indexing.
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Each point M ∈ X0, which corresponds to a model of T′, therefore yields a model
of T via the composite

Sets ET′ ET.M eT
′
T

We denote this T-model, the T-reduct of M, by M|T. The underlying sets interpreting
the sorts of M|T are simply the sets interpreting those sorts contained in the unex-
panded signature Σ ⊆ Σ′. Thus, each T-reduct M|T still has a K-indexing, and more-
over each isomorphism M α−→ N of T′-models automatically yields an isomorphism of
the T-reducts

M|T
α|T−−→ N|T.

By Corollary VII.57(ii), there exists a choice of representing groupoidY = (Y1 ⇒ Y0)
of E ' ET where Y0 contains an isomorphic copy of M|T for each T′-model M ∈ X0.
Note that the groupoid Y can be chosen as the Forssell groupoid of all K′-indexed
T-models FG(K′) for some set of parameters where K′ ⊇ K.

Therefore, by making some choice of M|T � M′ ∈ Y0 for each M ∈ X0, we obtain a
functor of the underlying groupoids ϕ : X→ Y,

M ∈ X0 7→M|T �M′ ∈ Y0,[
M α−→ N

]
∈ X1 7→

[
M′ �M|T

α|T−−→ N|T � N′
]
∈ Y1.

We must choose the models M|T � M′ ∈ Y0 in such a way that the map on objects
ϕ0 : X0 → Y0 and the map on arrows ϕ1 : X1 → Y1 are continuous with respect to the
respective logical topologies.

We obtain this by setting ϕ0(M) as the T-reduct M|T with the already present
indexing K′ ⊇ K ⇁⇁ M|T. It is easily checked that, thus defined, both ϕ0 and ϕ1

are continuous with respect to the logical topologies. That Sh(ϕ) ' f follows from
Lemma VIII.7 since they agree (up to isomorphism) on the points of F and the
isomorphisms of these points corresponding to the groupoid X. □

Lemma VIII.9. For a pair X,Y of logical groupoids, the functor on hom-categories

Sh : LogGrpd(X,Y) Toposiso(Sh(X),Sh(Y))

is also full.

Proof. Letϕ,ψ : X⇒ Y be a pair of homomorphisms, and let Sh(ϕ)
γ
=⇒ Sh(ψ) be an iso-

morphism between the induced geometric morphisms. Thus, by Definition VIII.5(i),
x ∈ X0, there is corresponding arrow ϕ0(x)

γx−→ ψ0(x) ∈ Y1. This defines a natural
transformation γ′ : X0 → Y1 between the underlying functors of ϕ and ψ. It remains
to show that γ′ is continuous.

Just as in Proposition VIII.8, we can assume that Sh(Y) classifies a geometric theory
T, and ϕ and ψ are induced by geometric expansions T′ and T′′ of T, i.e. there is a
diagram

ET′ ' ET′′ ' Sh(X) Sh(Y) ' ET.

Sh(ϕ)'eT
′
T

Sh(ψ)'eT
′′
T

γ
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Hence, Y can be associated with a conservative groupoid of K-indexed T-models
that eliminate parameters. SimilarlyX can simultaneously be identified with a repre-
senting groupoid ofK′-indexedT′-models and a representing groupoid ofK′′-indexed
T′′-models, where we can also assume thatK′,K′′ ⊇ K. The homomorphismϕ (respec-
tively, ψ) sends theT′-model M (resp.,T′′-model N) corresponding to an object x ∈ X0

to its T-reduct M|T (resp., N|T) with the same K ⊆ K′-indexing (resp., K′′-indexing).
The transformation γ′ : X0 → Y1 sends each point x ∈ X0 to an isomorphism of the
corresponding reducts M|T � N|T.

By Remark VIII.6, we can assume that Y1 is endowed with the logical topology for
arrows and that X0 is endowed with the logical topology for objects (for both the T′

andT′′ logical structure with which it is associated). Thus, a point x ∈ X0 is contained
in the inverse image

γ′−1


����������

a~ : ϕ
b~ 7→ c~
d~ : ψ

����������
Y


if and only if M ⊨ ϕ(a~), N ⊨ ψ(d~), and b~, c~ are identified in the T-reducts M|T � N|T
(recall that K ⊆ K′,K′′ and the signatures of T′,T′′ expand that of T, so all these
conditions are well-defined). Therefore,

~ a~ : ϕ �X ∩ ~ d~ : ψ �X ∩ ~ b~ = c~ �X = γ′
−1


����������

a~ : ϕ
b~ 7→ c~
d~ : ψ

����������
Y

 ,
and so γ′ is indeed continuous. □

VIII.2.2 Weak equivalences of logical groupoids

We now turn to describing the weak equivalences of logical groupoids. As currently
formulated, Definition VIII.10 relies on the logical approach to representing topolog-
ical groupoids developed in Chapter VII. Following this, we are able to establish our
desired biequivalence.

Definition VIII.10. A homomorphism of logical groupoidsX
ϕ−→ Y is said to be a weak

equivalence if the following are satisfied.

(i) There is a common choice of geometric theory T and a set of parameters K such
that X and Y are groupoids of K-indexed T-models, endowed with the induced
logical topologies, and moreover X is contained in Y, i.e. there are inclusions of
topological subgroupoids

X ⊆ Y ⊆ FG(K).

(ii) Viewed as groupoids of indexed T-models, both X and Y are conservative and
eliminate parameters.

We denote the class of weak equivalences byW.

As an immediate corollary of Theorem VII.8, we obtain that:
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Corollary VIII.11. If Y
ψ−→W is a weak equivalence of logical groupoids, then Sh(ψ) induces

an equivalence Sh(Y) ' Sh(W).

We are almost ready to demonstrate the biequivalence

Toposiso
w.e.p. ' [W−1]LogGrpd.

We must first show thatW defines a bicalculus of left fractions on LogGrpd according
to [102].

Proposition VIII.12. The classW of weak equivalences defines a bicalculus of left fractions
on LogGrpd.

Proof. Recall from [102, §2.1] that there are three conditions required to be a bicalculus
of left fractions. The classWmust be wide, satisfy the left Ore condition, and the left
cancellability condition (all in the bicategorical sense). We demonstrate each in turn.

(i) (Wideness) Evidently, W contains all identities, is closed under composition,
and if ϕ a

=⇒ ψ is a (necessarily invertible) transformation with ϕ ∈ W, then ψ is
contained inW too. Thus,W is wide.

(ii) (Left Ore condition) Let

Y W

X

ψ

ϕ

be a span where Y
ψ−→ W is a weak equivalence. We wish to find a square of

homomorphisms

Y W

X V

ψ

ϕ � ϕ′

ψ′

(VIII.iii)

that commutes up to isomorphism, where ψ′ is a weak equivalence.
The homomorphism Y

ϕ−→ X induces a geometric morphism

Sh(W) ' Sh(Y) Sh(X).
Sh(ϕ)

By applying Proposition VIII.8, there is a representing logical groupoid V of

Sh(X) and a homomorphism of topological groupoidsW
ϕ′−→ V. By Corollary VII.57(ii),

we can ensure also that V contains X as a subgroupoid in such a way that the

square (VIII.iii) commutes up to isomorphism. The inclusion X
ψ′−→ V is, by

construction, a weak equivalence.

(iii) (Left cancellability) Let

X Y W
χ

ϕ

ψ
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be a fork of homomorphisms of logical groupoids that commute up to iso-
morphism, and where X

χ−→ Y ∈ W. We wish to find another homomorphism

W
χ′−→ V ∈W such that the fork

Y W V
ϕ

ψ

χ′

also commutes up to isomorphism.
Since the induced geometric morphisms

Sh(X) ' Sh(Y) Sh(W)
Sh(ϕ)

Sh(ψ)

also commute, i.e. Sh(ϕ) ' Sh(ψ), by Lemma VIII.7, we have that ϕ ' ψ, and so
we can simply take idW as the desired weak equivalence.

We must also show that, for any other weak equivalence of logical groupoids

W
χ′−→ V ∈W that makes the fork

Y W V
ϕ

ψ

χ′

commute up to an isomorphism, then there are a pair of weak equivalences

W
ρ−→ V′,V ρ′−→ V′ ∈W and a coherent choice of isomorphism ρ ◦ idW

∼
=⇒ ρ′ ◦ χ′.

But we can simply choose ρ as W
χ′−→ V ∈ W and ρ′ as V

idV−−→ V ∈ W. It is
trivial to show that the identity transformation χ′ ◦ idW = idV ◦ χ′ satisfies the
necessary coherence condition expressed in [102, §2.1].

Thus,W defines a bicalculus of left fractions on LogGrpd. □

In [102], Pronk provides a bicategorical extension to Gabriel and Zisman’s locali-
sation result (see [40, Proposition I.1.3]).

Lemma VIII.13 (Proposition 24 [102]). Let G : C → D be a bifunctor and let Σ be a class
of 1-morphisms in C admitting a left bicalculus of fractions. Suppose that

(i) the bifunctor G is essentially surjective on objects and fully faithful on 2-cells,

(ii) for each f ∈W, G( f ) is an equivalence,

(iii) and for any arrow G(c)
g−→ G(d) ∈ D, there are a pair of arrows c

f−→ e ∈ C and d σ−→ e ∈ Σ
such that the triangle

G(c) G(d)

G(e)

g

G( f )
G(σ)

commutes up to isomorphism.

Then there is a biequivalence of bicategories [Σ−1]C ' D.
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Theorem VIII.14. There is a biequivalence

[W−1]LogGrpd ' Toposiso
w.e.p..

Proof. The functor

Sh : LogGrpd Toposiso
w.e.p.

is essentially surjective by [17] (see also Corollary VII.56) and fully faithful on 2-cells
by Lemma VIII.7 and Lemma VIII.9. By Corollary VIII.11, Sh sends arrows in W to
equivalences of topoi.

Let f : Sh(X) → Sh(Y) be a geometric morphism. By Proposition VIII.8, f is iso-
morphic to the geometric morphism Sh(ϕ) induced by a homomorphism of logical
groupoids X

ϕ−→W, where W is a representing groupoid for the topos Sh(Y). By
Corollary VII.57(ii), we can also chooseW to contain Y as a subgroupoid, and more-
over this inclusion Y ↪→ W can be chosen to be a weak equivalence. Hence, by
Lemma VIII.13, there is the desired biequivalence [W−1]LocGrpd ' Toposiso

w.e.p.. □

The logical interpretation. As a consequence of the biequivalence

[W−1]LogGrpd ' Toposiso
w.e.p.,

we are able to transform the problem of detecting Morita equivalences between logical
theories into a problem of topological algebra, as promised earlier. The full biequiv-
alence [W−1]LogGrpd ' Toposiso

w.e.p. is not necessary to deduce the following result;
it could instead be proven as a consequence of Theorem VII.8 and Corollary VII.57
alone.

Corollary VIII.15. Let T and T′ be two geometric theories with representing groupoids of
modelsX and Y respectively. The theoriesT andT′ are Morita equivalent, meaning that there
is an equivalence of topoi

ET ' ET′
if and only if there is a cospan of homomorphisms of logical groupoids

X Y

W

ϕ ψ

such that X
ϕ−→W and Y

ψ−→W are both weak equivalences of logical groupoids.



Appendix A

Elementary proofs for syntactic
categories

This appendix is intended to supplement Section III.3 by providing entirely elemen-
tary proofs of those results therein that make use of the internal language of a doctrine.
Explicating an elementary proof elucidates those parts where the structure of an exis-
tential doctrine is necessary.

Let P : Cop → MSLat be an existential doctrine. In Section III.3, we used the
internal language of P to intuit the following results.

(1) For each arrow (c,U)
f−→ (d,V) of C o P,

∃idc× f U ∈ P(c × d)

defines a provably functional relation (c,U)→ (d,V).

(2) Given composable arrows

(c,U) (d,V) (e,W)
f g

in C o P, there is an equality

∃idc×g◦ f U = ∃pr1,3
(P(pr1,2)∃idc× f U ∧ P(pr2,3)∃idd×gV),

i.e. ζP preserves composites.

(3) If W ∈ P(c × d) defines a provably functional relation (c,U) W−→ (d,V), then the
composite of the pair

(c × d,W) (c,U) (d,V)
∃idc×d×pr1 W W

is the provably functional relation (c × d,W)
∃idc×d×pr2 W
−−−−−−−→ (d,V).

We provide an elementary proof of each in turn, without use of the internal language.

Lemma A.1. Let P : Cop →MSLat be an existential doctrine. For each arrow (c,U)
f−→ (d,V)

of C o P, i.e. whenever U ⩽ P( f )(V), the proposition

∃idc× f U ∈ P(c × d)

is a provably functional relation (c,U)→ (d,V) ∈ Syn(P).

269
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Proof. We must check the three conditions from Definition III.32(ii) are satisfied. Using
the inequalities U ⩽ U = P(pr1 ◦ idc × f )(U) and U ⩽ P( f )(V) = P(pr2 ◦ idc × f )(V), we
obtain the first desired inequality

U ⩽ P(pr1 ◦ idc × f )(U), P(pr2 ◦ idc × f )(V)
=⇒ U ⩽ P(idc × f )P(pr1)(U), P(idc × f )P(pr2)(V),
=⇒ ∃idc× f (U) ⩽ P(pr1)(U) ∧ P(pr2)(V).

The second desired inequality,

P(pr1,2)∃idc× f U ∧ P(pr1,3)∃idc× f U ⩽ P(pr2,3)∃∆d>d,

is effectively transitivity of the internal equality predicate. We first note that all the
squares in the diagram

d c c × d c

d × d c × d c × d × d c × d

c c × d

∆d

f

idc× f

( f ,idd)

idc× f

(idc, f ,idd)

pr1,2

idc× f

pr1

idc× f

pr1,3pr1

(idc,idd, f )

1 2 3

4

are pullbacks, where (idc, f , idd) and (idc, idd, f ) denote the universally obtained maps

c c × d d

c × d × d

c d d,

(idc, f ,idd)

pr′2 pr′3

pr2pr1

idc

f

pr′1

idd

c c × d d

c × d × d

c d d.

(idc,idd, f )

pr′3

pr2pr1

idc idd

f

pr′2pr′1

We note also that ( f , idd) = pr2,3 ◦ (idc, f , idd). Beginning with the identity inequality
∃idc× f>c ⩽ ∃idc× f>c, we conclude that

∃idc× f>c ⩽ ∃idc× f>c

=⇒ ∃idc× f P(idc × f )(>c×d) ⩽ ∃idc× f P( f )(>d),

=⇒ P(idc, f , idd)∃(idc,idd, f )>c×d ⩽ P( f , idd)∃∆d>d by 1 , 2 and B.-C.,

=⇒ P(idc, f , idd)∃(idc,idd, f )>c×d ⩽ P(idc, f , idd)P(pr2,3)∃∆d>d,

=⇒ ∃(idc, f ,idd)(>c×d ∧ P(idc, f , idd)∃(idc,idd, f )>c×d) ⩽ P(pr2,3)∃∆d>d

=⇒ ∃(idc, f ,idd)>c×d ∧ ∃(idc,idd, f )>c×d ⩽ P(pr2,3)∃∆d>d by Frobenius,

=⇒ ∃(idc, f ,idd)P(pr1)(>c) ∧ ∃(idc,idd, f )P(pr1)(>c) ⩽ P(pr2,3)∃∆d>d,

=⇒ P(pr1,2)∃idc× f>c ∧ P(pr1,3)∃idc× f>c ⩽ P(pr2,3)∃∆d>d by 3 , 4 and B.-C.
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We need now only note that U ⩽ >c to achieve our desired inequality that

P(pr1,2)∃idc× f U ∧ P(pr1,3)∃idc× f U ⩽ P(pr2,3)∃∆d>d.

The final inequality is obtained via

U = ∃pr1◦(idc× f )U = ∃pr1
∃idc× f U.

□

Lemma A.2. Given composable arrows

(c,U) (d,V) (e,W)
f g

in C o P, there is an equality

∃idc×g◦ f U = ∃pr1,3
(P(pr1,2)∃idc× f U ∧ P(pr2,3)∃idd×gV),

i.e. the assignments

(c,U) 7→ (c,U),

(c,U)
f−→ (d,V) 7→ (c,U)

∃idc× f U
−−−−−→ (d,V)

define a functor ζP : C o P→ Syn(P).

Proof. There is a pair of composable arrows

(c,U) (d,V) (e,W)
f g

in C o P if U ⩽ P( f )(V) and V ⩽ P(g)(W). The composite of the arrows

(c,U) (d,V) (e,W)
∃idc× f U ∃idd×gV

in Syn(P) is given by the predicate

∃pr1,3
(P(pr1,2)∃idc× f U ∧ P(pr2,3)∃idd×gV).

Thus, ζP preserves composites if we are able to prove that

∃idc×g◦ f U = ∃pr1,3
(P(pr1,2)∃idc× f U ∧ P(pr2,3)∃idd×gV).

To demonstrate this equality, we first note that all the squares in the diagram

c c × d d

c × e c × d × e d × e

c c × d

idc× f

idc×g◦ f

pr1

(idc× f ,ide)

idc× f

pr1,2

(idc,idd×g)

pr2,3

pr2

idd×g1

2

3
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are pullbacks. Therefore, we have a chain of equalities

∃pr1,3
(P(pr1,2)∃idc× f U ∧ P(pr2,3)∃idd×gV)

= ∃pr1,3
(∃(idc× f ,ide)P(pr1)(U) ∧ ∃(idc,idd×g)P(pr2)(V)) by 2 , 3 and B.-C.,

= ∃pr1,3
∃(idc× f ,ide)(P(pr1)(U) ∧ P((idc × f , ide))∃(idc,idd×g)P(pr2)(V)) by Frobenius,

= P(pr1)(U) ∧ P((idc × f , ide))∃(idc,idd×g)P(pr2)(V)),

= P(pr1)(U) ∧ ∃idc×g◦ f P(idc × f )P(pr2)(V) by 1 and B.-C.,

= ∃idc×g◦ f (P(idc × g f )P(pr1)(U) ∧ P(idc × f )P(pr2)(V)) by Frobenius,

= ∃idc×g◦ f (U ∧ P( f )(V)),

= ∃idc×g◦ f U since U ⩽ P( f )(V).

Thus, we achieve the desired equality

∃pr1,3
(P(pr1,2)∃idc× f U ∧ P(pr2,3)∃idd×gV) = ∃idc×g◦ f U.

We observe also that the identity arrow (c,U)
idc−−→ (c,U) in C o P gets assigned to

the identity arrow (c,U)
∃∆c U−−−→ (c,U) in Syn(P). Hence, ζP is functorial. □

Lemma A.3. If (c,U) W−→ (d,V) is a provably functional relation, then the composite of the
pair

(c × d,W) (c,U) (d,V)
∃idc×d×pr1 W W

is the provably functional relation (c × d,W)
∃idc×d×pr2 W
−−−−−−−→ (d,V) and thus in the image of ζP.

Proof. If (c,U) W−→ (d,V) is a provably functional relation, i.e. an arrow of Syn(P), then
as W ⩽ P(pr1)(U) there is an arrow (c × d,W)

pr1−−→ (c,U) of C o P. The composite of the
pair

(c × d,W) (c,U) (d,V)
ζP(pr1)=∃idc×d×pr1 W W (A.a)

is given by ∃pr1,2,4
(pr1,2,3∃idc×d×pr1

(W) ∧ pr2,4(W)). We wish to show that this arrow lies
in the image of ζP, namely that there is an equality

∃idc×d×pr2
W = ∃pr1,2,4

(pr1,2,3∃idc×d×pr1
(W) ∧ pr2,4(W)).

We first gather the necessary observations we will need. Both the squares

c × d × d c × d

c × d × c × d c × d × c

pr1,2

(idc×d×pr1,idd) idc×d×pr1

pr1,2,3

(A.b)

and

c × d c × d × d

d d × d

idc×d×pr2

pr2 pr2,3

∆d

(A.c)
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are pullbacks, and by definition there is the inequality

P(pr1,2)(W) ∧ P(pr1,3)(W) ⩽ P(pr2,3)∃∆d>d. (A.d)

Therefore, there is a chain of equalities

∃pr1,2,4
(P(pr1,2,3)∃idc×d×pr1

(W) ∧ P(pr2,4)(W))

=∃pr1,2,4
(∃(idc×d×pr1,idd)P(pr1,2)(W) ∧ P(pr2,4)(W)) by (A.b) and B.-C.,

=∃pr1,2,4
∃(idc×d×pr1,idd)(P(pr1,2)(W) ∧ P(idc×d × pr1, idd)P(pr2,4)(W)) by Frobenius,

=P(pr1,2)(W) ∧ P(pr1,3)(W),

=P(pr1,2)(W) ∧ P(pr1,3)(W) ∧ P(pr2,3)∃∆d>d using (A.d),

=P(pr1,2)(W) ∧ P(pr1,3)(W) ∧ ∃idc×d×pr2
P(pr2)(>d) by (A.c) and B.-C.,

=P(pr1,2)(W) ∧ P(pr1,3)(W) ∧ ∃idc×d×pr2
>c×d,

=∃idc×d×pr2
(P(idc×d × pr2)P(pr1,2)(W)∧P(idc×d × pr2)P(pr1,3)(W)∧>c×d) by Frobenius,

=∃idc×d×pr2
(P(idc×d)(W) ∧ P(idc×d)(W)),

=∃idc×d×pr2
W.

Hence, we conclude that the composite of (A.a) is the image under ζP of the arrow

(c × d,W)
pr2−−→ (d,V) ∈ C o P

as desired. □





Appendix B

Descent data and equivariant sheaves

In this appendix we explicitly spell out the equivalence between the datum of a
compatible X1-action on a local homeomorphism q : Y→ X0 and descent datum (Y, θ)
for a topological/localic groupoid X. Thereby, we are free to using either definitions
when discussing the topos of sheaves Sh(X). The equivalence is merely a case of
unravelling definitions, but since this can at times be fiddly, we include an exposition
here. We will argue in the language of point-set topology, but recall from Remark V.18
that this also demonstrates the equivalence for locales.

Given a local homeomorphism q : Y→ X0 with a compatible X1-action

β : Y ×X0 X1 Y,

the corresponding descent datum is the pair (Y, θβ) where θβ is the induced map

s∗(Y)

t∗(Y) Y

X1 X0,

β

θβ

⌟
q

t

where the outside square commutes by the axiom q(β(y, α)) = t(α) of β.
The spaces s∗(Y) and t∗(Y) are

s∗(Y) = {(y, α) ∈ Y × X1 | s(α) = q(y)},
t∗(Y) = {(y, α) ∈ Y × X1 | t(α) = q(y)},

and θβ is the map which sends (y, α) ∈ s∗(Y) to (β(y, α), α) ∈ t∗(Y). We first show that
θβ does indeed define descent datum on Y.

The condition e∗(θβ) = idY asserts that the map e∗(θβ) in the composite pullback
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diagram below is canonically the identity on Y.

e∗s∗(Y) s∗(Y)

e∗t∗(Y) t∗(Y)

X0 X1

e∗(θβ)
⌟

θβ

⌟

e

The space e∗s∗(Y) is given by

e∗s∗(Y) = {(x, y, α) ∈ X0 × Y × X1 | e(x) = α, s(α) = q(y)}

and similarly

e∗t∗(Y) = {(x, y, α) ∈ X0 × Y × X1 | e(x) = α, t(α) = q(y)}.

The map e∗(θβ) : e∗s∗(Y)→ e∗t∗(Y) acts by

(x, y, α) 7→ (x, β(y, α), α).

But since x = s(e(x)) = s(α) = q(y), a triple (x, y, α) ∈ e∗s∗(Y) is entirely determined
by y. Thus, there is a canonical homeomorphism e∗s∗(Y) � Y given by projecting
onto the second component of the tuple. Similarly, the same projection yields a
homeomorphism e∗t∗(Y) � Y. Since α = e(q(y)) for each (x, y, α) ∈ e∗s∗(Y), we observe
that β(y, α) = β(y, e(q(y))) = y. Thus, we have a commuting triangle

e∗s∗(Y)

Y

e∗t∗(Y),

e∗(θβ)

∼

∼

as required.
Now we turn to the condition that m∗(θβ) = pr∗2(θβ) ◦ pr∗1(θβ). The spaces involved

can be expressed as

pr∗1s∗(Y) = {(y, α, γ) ∈ Y × X1 × X1 | s(pr1(α, γ)) = s(α) = q(y), t(α) = s(γ)},
pr∗1t∗(Y) = {(y, α, γ) ∈ Y × X1 × X1 | t(pr1(α, γ)) = t(α) = q(y), t(α) = s(γ)},
pr∗2s∗(Y) = {(y, α, γ) ∈ Y × X1 × X1 | s(pr2(α, γ)) = s(γ) = q(y), t(α) = s(γ)},
pr∗2t∗(Y) = {(y, α, γ) ∈ Y × X1 × X1 | t(pr2(α, γ)) = t(γ) = q(y), t(α) = s(γ)}.

Using the equations s ◦ m = s ◦ pr1 and t ◦ m = t ◦ pr2, and the commutativity of the
pullback square

X1 ×X0 X1 X1

X1 X0,

pr2

pr1
⌟

s

t
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we conclude that

m∗s∗(Y) = pr∗1s∗(Y),
m∗t∗(Y) = pr∗2t∗(Y),

pr∗1t∗(Y) = pr∗2s∗(Y)

Thus, the equation m∗(θβ) = pr∗2(θβ) ◦ pr∗1(θβ), i.e.[
m∗s∗(Y)

m∗(θβ)
−−−−→ m∗t∗(Y)

]
=

[
pr∗1s∗(Y)

pr∗1(θβ)
−−−−→ pr∗1t∗(Y) = pr∗2s∗(Y)

pr∗2(θβ)
−−−−→ pr∗2t∗(Y)

]
,

type-checks.
The map pr∗1(θβ) is the map in the double pullback

pr∗1s∗(Y) s∗(Y)

pr∗1t∗(Y) t∗(Y)

X1 ×X0 X1 X1,

π∗1(θβ)
⌟

θβ

⌟

pr1

and therefore acts by
(y, α, γ) 7→ (β(y, α), α, γ).

Similarly, pr∗2s∗(Y)
pr∗2(θβ)
−−−−→ pr∗2t∗(Y) acts by

(y, α, γ) 7→ (β(y, γ), α, γ)

and m∗s∗(Y)
m∗(θβ)
−−−−→ m∗t∗(Y) acts by

(y, α) 7→ (β(y,m(α, γ)), α, γ).

Thus, we observe that

(pr∗2(θβ) ◦ pr∗1(θβ))(y, α, γ) = pr∗2(θβ)(β(y, α), α, γ)
= (β(β(y, α), β), α, γ)
= (β(y,m(α, γ)), α, γ)
= m∗(θβ)(y, α, γ).

Hence, the pair (Y, θβ) indeed constitutes descent datum.

An equivariant map Y
f−→ Y′ between spaces with respective X1-actions β and β′ also

constitutes a morphism of descent data (Y, β)
f−→ (Y′, β′). The required commutativity

condition,
t∗( f ) ◦ θβ = θβ′ ◦ s∗( f ),
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is forced by universal property of t∗(Y′) in the commutative diagram

s∗(Y) s∗(Y′)

Y Y′

t∗(Y) t∗(Y′)

X0 X0

X1 X1.

s∗( f )

β β′

f

t t

t∗( f )

θβ θβ′

For the other direction, suppose we are given a descent datum (Y, θ). We then
obtain a compatible X1-action βθ : s∗(Y)→ Y by taking βθ to be the composite

Y ×X0 X1 � s∗(Y) t∗(Y) Y.θ pr1

Checking that βθ defines a legitimate X1-action, or that a morphism of descent data

(Y, θ)
f−→ (Y′, θ′) yields an equivariant map (Y, βθ)

f−→ (Y′, βθ′), essentially amounts to
the reverse of what we have done above, and so we omit the details. Finally, note that
the two correspondences are mutual inverses since, for all (y, α) ∈ Y ×X0 X1,

βθβ(y, α) = pr1(β(y, α), α) = β(y, α)

and similarly θβθ = θ.



Concluding remarks

Relative topos-theoretic techniques in doctrine theory

In Part A, we saw how the techniques of relative topos theory can be successfully
applied to the study of completions of doctrines. Broadly speaking, there are two kinds
of completions of doctrines considered in the literature. There are those completions
which add structure to the fibres, such as Trotta’s existential completion [119] or
Coumans’ canonical completion [30], and then there are those which add structure
to the indexing category, exemplified in the work [81]. The geometric completion
considered in Chapter IV belongs to the first species, but a continuation of the work
commenced in this dissertation encompasses the latter as well.

Exact completions of doctrines. As observed in [119, §6], by composing the pseudo-
adjunctions coming from the existential completion, the syntactic category construc-
tion and the exact completion of a regular category (see [28, §2.3]), as in the diagram

PrimDoc ExDoc Reg Exact,a a a

we obtain the exact completion of a primary doctrine in the sense of [83]. The work of
Maietti, Pasquali and Rosolini [83], [80] has been fundamental in understanding the
exact completion of a doctrine via a series of doctrinal completions. The composite
functor PER : ExDoc→ Exact is the so-called ‘tripos’ construction (see [53], [100]), also
called the partial equivalence relation construction since the objects of the resultant
category are partial equivalence relations in the internal language of the doctrine.

Since the geometric completion of a primary doctrine interprets geometric logic, we
could also consider taking the analogous category whose objects are finite, or indeed
infinite, tuples of internal partial equivalence relations. In the case of finite tuples,
this would obtain a doctrinal version of the pretopos completion from [87, §8.4]. More
generally, we recover a whole spectrum of ‘tripos-like’ completions for doctrines,
akin to the analogous exactness completions for categories (see [107], [115]). Not
only are such ‘tripos-like’ constructions employed to construct notable examples of
elementary topoi, such as Hyland’s effective topos, but their connection to the model-
theoretic Shelah’s elimination of imaginaries construction has also been noted (see [48]).

While the infinite partial equivalence relation construction for a (primary) doctrine
is only ‘syntactically parsable’ when the doctrine also interprets geometric logic, this
restriction can be evaded by first taking the geometric completion. The unifying role
of the geometric completion in relating the various ‘tripos-like’ constructions will be
the subject of future work.
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Removing hypotheses. Thus, our approach parallels the burgeoning interest in
describing exact completions for weaker and weaker initial structures. For example,
the exact completion of a category with finite limits given in [27] is extended by
Carboni and Vitale in [28] to describe the exact completion of a category with only
weak finite limits. This interest has been paralleled by recent work for doctrines, e.g.
in [29].

Our use of relative topos theory permitted a construction of the geometric com-
pletion at the extreme end of this spectrum in that it can be defined for entirely
unstructured doctrines (that is, any PreOrd-valued pseudo-functor). Since morphisms
of (relative) sites ‘preserve finite limit data relatively’ (see Remark I.4), a relative topos
theoretic approach to exactness completions will similarly facilitate the construction
of exact completions with only the weakest viable hypotheses.

Representing groupoids and Morita equivalence
Our original motivation in pursuing a marriage of topology and predicate logic was to
furnish the tools needed for a further investigation of Morita equivalences. Recall that
two theoriesT,T′ with classifying topoi are Morita equivalent if there is an equivalence
of topoi ET ' ET′ , or equivalently if there is an equivalence of model categories

T-mod(F ) ' T′-mod(F ),

natural in any topos F . From the point of view of the category theorist, for whom
equivalence replaces identity, a Morita equivalence between theories ought to be
‘trivial’ in some sense. However, superficially this is far from the case. Just as with
bi-interpretability, every theory is Morita equivalent to infinitely many other theories,
and syntactically these theories can be very different (e.g., a single-sorted theory
can be Morita equivalent to a multi-sorted theory, see Remark VI.2). Indeed, such
equivalences are at the heart of Caramello’s theory of ‘topos-theoretic bridges’ (see
[22, §2.2]).

We proposed the use of topological groupoids as a syntax-invariant perspective on
Morita equivalence, intending to translate the problem of identifying Morita equiv-
alences of theories into one of topological algebra, with the additional benefit that
the working mathematician often has a firmer grasp on a spotlighted tomogram of
models of a theory than its entire syntax.

To conclude, we evaluate the efficacy of our contributions in respect to this goal.
The omnipresent time restraints of a doctorate have also precluded some extensions
to our study, which we highlight as potential avenues for future research.

A topological description of weak equivalences. Consider a weak equivalence
X

ϕ−→ Y of logical groupoids. As currently formulated in Definition VIII.10, that ϕ is
a weak equivalence relies on an oracular choice of theory simultaneously classified
by the topoi Sh(X) and Sh(Y). To be considered a complete translation of the logical
problem of Morita equivalence into one of topological algebra, an entirely topological
characterisation of weak equivalences is required.

The Moerdijk site for Sh(X) (see [92, Definition 6.1]) provides a promising source
of such a characterisation. Let X be a logical groupoid. The choice of a theory T
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over a signature Σ classified by Sh(X) corresponds to a choice of definable sheaves
(~ x~ : ϕ �X, π~ x~:ϕ �, θ~ x~:ϕ �). We can therefore eliminate the need for a choice of definable
sheaves by instead considering a suitable topologically defined set of sheaves. We
note that the objects of the Moerdijk site are characterised in entirely topological
terms and, moreover, it can be demonstrated that for any choice of theory classified
by Sh(X), there exists a generating set of objects for Sh(X) that are definable sheaves
contained in the Moerdijk site (cf. [5, Lemma 2.1.5]). The properties of conservativity
and elimination of parameters ought thus to be translated into properties of the
sheaves in the theory-invariant Moerdijk site.

Non-invertible 2-cells. When constructing the biequivalence

[W−1]LogGrpd ' Toposiso
w.e.p.

in Theorem VIII.14, we were required to restrict our investigation to the invertible
2-cells of the bicategory Toposw.e.p. ⊆ Topos since a transformation between homo-
morphisms of topological groupoids is necessarily invertible. However, the slogan
that representing groupoids possess ‘sufficient information to recover’ their topoi of
sheaves suggests that the groupoids X,Y do contain knowledge, in some fashion, of
the non-invertible 2-cells

Sh(X) Sh(Y),

Sh(ϕ)

Sh(ψ)

for any pair of parallel homomorphisms of topological groupoids ϕ,ψ.
As suggested by the analysis of [118, §16], [51, §5], Sierpiński-valued homotopies

offer a potential solution. Recall that, in common parlance, a homotopy f H
=⇒ g between

parallel continuous maps f , g : X⇒ Y is a continuous map H : [0, 1] : X→ Y such that
H(0, x) = f (x) and H(1, x) = g(x) for all x ∈ X. A Sierpiński-valued homotopy is the
same basic concept where the interval [0, 1] is replaced by the Sierpiński space S. Such
homotopies can be generalised, as in [51, Definition 5.1], to the setting of topological
groupoids. Importantly, Sierpiński-valued homotopies are not invertible. This is the
subject of on-going work with Graham Manuell.

Topos-theoretic invariants of topological groupoids. Given a theory T with a rep-
resenting model groupoid X, we can restrict which theories can be Morita equivalent
to T by identifying topological properties of the topological groupoid Xτ-log1

τ-log0
that are

preserved under weak equivalences. These will correspond to topos-theoretic invari-
ants of the classifying topos Sh(X) ' ET, and thereby contribute to the theory of
‘topos-theoretic bridges’ from [22, §2.2].

We have highlighted some syntactic properties already: in Proposition VII.35
and Proposition VII.45. The literature abounds with other examples, such as the
aforementioned link between étale groupoids and étendues (see [3, §VI.9.8.2(e)]).
Given the equivariant nature of the groupoid representation of logical theories, it is
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natural to expect the tools of algebraic topology to generate fruitful applications to
logic. Steps have already been taken in this direction (see [16] and [15], for instance).
The benefit of such a development can be bidirectional: both [65], [66] and [69] employ
logically inspired intuition in the study of the cohomology theory of topoi.
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